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Abstract

In this paper we study the two-dimensional non-guillotine cutting prob-
lem, the problem of cutting rectangular pieces from a large stock rectangle
so as to maximize the total value of the pieces cut. The problem has many
industrial applications whenever small pieces have to be cut from or packed
into a large stock sheet. We propose a tabu search algorithm. Several moves
based on reducing and inserting blocks of pieces have been defined. Inten-
sification and diversification procedures, based on long-term memory, have
been included. The computational results on large sets of test instances
show that the algorithm is very efficient for a wide range of packing and
cutting problems.
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1 Introduction

The two-dimensional non-guillotine cutting problem consists of cutting a given
finite set of small rectangular pieces from a large stock rectangle of fixed dimen-
sions with maximum profit. The problem appears in many production processes
in the textile, paper, steel, glass and wood industries. R = (L,W ) is the large
stock rectangle of length L and width W . Each piece i has dimensions (li, wi),
and value vi, i = 1, . . . ,m. The pieces have fixed orientation and must be cut
with their edges parallel to the edges of the stock rectangle (orthogonal cuts).
The problem is to cut off the rectangle R into xi copies of each piece i, such that
0 ≤ Pi ≤ xi ≤ Qi, and the total values of the pieces cut,

∑
i vixi is maximized.

We will denote by M =
∑

i Qi the maximum number of pieces which could be cut.
According to the values of Pi and Qi we can distinguish three types of problems:

1. Unconstrained: ∀i, Pi = 0, Qi = ⌊L ∗ W/li ∗ wi⌋ (trivial bound).
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2. Constrained: ∀i, Pi = 0; ∃i, Qi < ⌊L ∗ W/li ∗ wi⌋

3. Doubly constrained: ∃ i, Pi > 0; ∃ j, Qj < ⌊L ∗ W/lj ∗ wj⌋

In Figure 1 we see an example with a stock rectangle of R = (10, 10), and
m = 10 pieces to be cut. The first solution (Figure 1(b)) is optimal for the
unconstrained problem, while the second solution (Figure 1(c)) corresponds to
the constrained problem and the third (Figure 1(d)) to the doubly constrained
problem, with some Pi 6= 0.

Stock rectangle : R = (10, 10)
Piece li wi Pi Qi vi

1 3 2 1 2 7
2 7 2 1 3 20
3 4 2 1 2 11
4 6 2 0 3 13
5 9 1 0 2 21
6 8 4 0 1 79
7 4 1 1 2 9
8 1 10 0 1 14
9 3 7 0 3 52
10 4 5 0 2 60
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(b) Unconstr. Opt: 268
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(c) Constr. Opt: 247
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(d) Doubly cons. Opt: 220

Figure 1: Instance 3 from Beasley[4]

Some authors have considered the unconstrained problem: Tsai et al.[20],
Arenales and Morabito[3], Healy et al.[11]. Nevertheless, the constrained problems
are more interesting for applications and more research has been devoted to this
case. Some exact methods have been proposed by Beasley[4], Scheithauer and
Terno[18], Hadjiconstantinou and Christofides[10], Fekete and Schepers[8], and
Caprara and Monaci[6].
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A simple upper bound for the problem can be obtained by solving the following
bounded knapsack problem, where variable xi represents the number of pieces of
type i cut in excess of its lower bound Pi:

Max
m∑

i=1

vixi +
m∑

i=1

viPi (1)

s.t. :
m∑

i=1

(liwi)xi ≤ LW −
m∑

i=1

Pi(liwi) (2)

xi ≤ Qi − Pi, i = 1, . . . ,m (3)

xi ≥ 0, integer, i = 1, . . . ,m. (4)

Other bounds, apart from those included in the exact methods mentioned
above, have been proposed by Scheithauer and Terno[19], Amaral and Wright[2].

Several heuristic algorithms have been proposed recently. Wu et al.[22] de-
velop a constructive algorithm for the special case in which Pi = Qi ∀i. At each
step a piece is cut in a corner of the current cutting pattern and the piece to cut
is decided according to a fitness evaluation function which estimates the quality
of the complete solution that could be obtained starting from the piece being
considered. The other proposals are based on metaheuristic procedures, mainly
simulated annnealing and genetic algorithms. Lai and Chan[14, 15] use simulated
annealing. Each solution is given by an ordered list of pieces and a list is trans-
lated into a cutting pattern by a placement algorithm. Instead of the more usual
bottom-left algorithm, they propose a difference algorithm in which the piece is
placed in the existing empty space which is nearest to the bottom left corner of
the stock sheet. They report a limited computational experience on a small set
of randomly generated instances and one real problem from a printing company.
The Leung et al.[16, 17] algorithms are based on the work by Lai and Chan[14, 15]
and by Jakobs[13]. Jakobs[13] develops a genetic algorithm for the related strip
packing problem and uses as placement algorithm a bottom-left procedure. They
combine both metaheuristics and both placement algorithms and report compu-
tational results on a set of randomly generated instances. Beasley [5] develops a
genetic algorithm based on a non-linear formulation of the problem, where vari-
ables indicate if a piece is cut or not and its position on the stock sheet. Therefore,
the solutions are lists of variables and directly show the cutting pattern. No place-
ment algorithm is needed. He presents a complete computational study on a set
of standard test problems and on a number of large randomly generated problems.
Alvarez-Valdes et al [1] follow a different approach and develop a GRASP algo-
rithm. Their computational tests collect the problems used by Leung et al.[16, 17]
and by Beasley[5].

In this paper, we present a Tabu Search algorithm for the two-dimensional
non-guillotine cutting problem. We provide computational results obtained on
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four sets of test problems: the 21 problems from the literature collected by Beasley
[5]; the 630 large random problems also generated by Beasley [5]; 10 problems used
by Leung et al. [17], and the 21 problems used by Hopper and Turton[12]. The
last set of problems were initially designed for the strip packing problem and have
been adapted to the two-dimensional non-guillotine cutting problem with the aim
of testing the algorithm on a set of large and difficult zero-waste instances.

2 A constructive algorithm

In this section we briefly describe a constructive algorithm that will be used
in the Tabu Search algorithm. More details may be found in [1]. Constructing
a solution is an iterative process in which we combine two elements: a list P of
pieces still to be cut, initially the complete list of pieces, and a list L of empty
rectangles in which a piece can be cut, initially containing only the stock rectangle
R = (L,W ). At each step a rectangle is chosen from L, and from the pieces in
P fitting in it a piece is chosen to be cut. That usually produces new rectangles
going into L and the process goes on until L = ∅ or none of the remaining pieces
fit into one of the remaining rectangles.

Step 0. Initialization:

L = {R}, the set of empty rectangles.
P = {p1, p2, . . . , pm}, the set of pieces still to be cut.
The set P is initially ordered according to 3 criteria: Order by non-increasing
Pi ∗ li ∗ wi, giving priority to pieces which must be cut. If there is a tie (for
instance, if Pi = 0,∀i), order by non-increasing vi/(li ∗ wi). If there is a tie
(for instance, if vi = li ∗ wi,∀i), order by non-increasing li ∗ wi.

B = ∅, the set of pieces cut. Pieces of the same type may appear grouped
in rectangular blocks.

Step 1. Choosing the rectangle:

Take R∗, the smallest rectangle of L in which a piece pi ∈ P can fit.
If such R∗ does not exist, stop.
Otherwise, go to Step 2.

Step 2. Choosing the piece to cut:

Choose a piece pi and a quantity ni ≤ Qi, forming block B∗ to be cut in R∗.
The piece i is chosen to produce the largest increase in the objective function.
Block B∗ is cut in the corner of R∗ which is nearest to a corner of the stock
rectangle.
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Update P, B and Qi which indicates the number of pieces still to be cut.
Move block B∗ towards the nearest corner of the stock rectangle.

Step 3. Updating the list L:

Add to L the possible rectangles produced when cutting B∗ from R∗.
Take into account the possible changes in L when moving block B∗.
Merge rectangles to favor cutting new pieces of P.
Go back to Step 1.

Though we keep a list of empty rectangles L, we really have an irregular,
polygonal empty space in which the pieces still to be cut can be considered for
fitting. One way of adapting our list L to the flexibility of non-guillotine cutting
is to merge some of the rectangles from the list, producing some new rectangles
in which the pieces to be cut could fit better.

When we merge 2 rectangles, at most 3 new rectangles may appear, usually
one large rectangle and 2 small ones (see Figure 2). Among the several alternatives
for merging we try to select the best, that is, the one in which it is possible to
cut the pieces best situated in the ordered list P. With this objective in mind,
we impose some conditions:

1. If the order of the best piece which fits into the large rectangle is strictly
lower than the order of the pieces in the original rectangles, we merge them.

2. If the order of the best piece which fits into the large rectangle is equal to
the order of the pieces in the original rectangles, we merge them if the area
of the large rectangle is bigger than the area of each one of the original
rectangles.

3. If the order of the best piece which fits in the large rectangle is strictly
greater than the order of the pieces in the original rectangles, we do not
merge them.

In Figure 2 we see several possible cases. In Figure 2(a) the two original
rectangles will always be merged. The new rectangle is larger than them and all
the pieces fitting in the original rectangles will fit in it. In Figure 2(b) the new
rectangles are not larger than the original ones. These will be merged only if the
new central rectangle accommodates a piece of lower order than those fitting in
the original rectangles. In Figure 2(c) one of the new rectangles is larger than the
original ones and therefore they will be merged unless the best piece fitting in the
original vertical rectangle does not fit in the new ones.

At the end of the constructive process, a solution is composed of a list of blocks
B, and a list of empty rectangles L, with total value

∑
i vixi.
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(a) (b) (c)

Figure 2: Merging 2 empty rectangles

3 A Tabu Search algorithm

Tabu Search is now a well-established optimization algorithm (for an intro-
duction, refer to the book by Glover and Laguna[9]). The basic elements of the
algorithm are described in the following subsections.

3.1 Definition of moves

The solution space in which we move is composed of feasible solutions only.
In this space we will define several moves to go from one solution to another. An
initial solution is obtained by applying the constructive algorithm described in
Section 2.

We distinguish two types of moves: block reduction and block insertion. In
block reduction, the size of an existing block is reduced, eliminating some of its
rows or columns. In block insertion, a new block is added to the solution. For both
moves we first present a scheme of the procedures and then a detailed example.

• Block reduction

Step 0. Initialization:

B = the list of blocks of the current solution
L = the list of empty rectangles

Step 1. Choosing the block to reduce

Take B, one of the blocks of B, with k columns and l rows of pieces pi.

Select the number r of columns (rows) to eliminate,

1 ≤ r ≤ k (1 ≤ r ≤ l),

keeping the number of pieces in the solution xi ≥ Pi.
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If Pi = 0, the block may disappear completely.

The new waste rectangle R is added to L.

Step 2. Move the remaining blocks to their nearest corners:

The list of waste rectangles L is updated accordingly.

Step 3. Fill the empty rectangles with new blocks:

Apply the constructive algorithm of Section 2,

The algorithm starts from the current lists L and B, and P contains the
pieces which can still be cut and added to the current solution. Before
proceeding to the construction process, rectangles in L are considered
for merging, to best accommodate the pieces of P.

When selecting the piece to cut, the piece eliminated at Step 1 is not
considered until another piece has been included in the modified solu-
tion.

Step 4. Merge the blocks with the same structure:

We try to merge blocks of the same piece with the same length or width
if they are adjacent and have a common side, or if one of them can be
moved to make them both adjacent to one common side.

In Figure 3 we see an example of a reduction move on an instance proposed
by Jakobs[13] and used later by Leung et al.[17]. The stock rectangle is R =
(120, 45), m = 22 and M = 25 pieces can be cut from it, completely filling
it. Figure 3(a) shows a solution with 23 pieces which cannot accommodate
two (6x12) pieces. The set L of empty rectangles is composed of R1 =
(60, 24, 72, 30) and R2 = (72, 18, 84, 24) (in light grey). In Step 1, a block
composed of one piece (12x21) (in dark grey), is selected to be reduced and
therefore it disappears from the solution, creating a new empty rectangle
R3 = (72, 24, 84, 45) which is added to L (Figure 3(b)). In Step 2, a block
composed of a piece (12x15) is moved to the top right corner. Therefore,
L = {R1, R2, R4, R5}, where R4 = (60, 30, 72, 45) and R5 = (72, 24, 84, 30)
(Figure 3(c)). In Step 3 the constructive procedure fills the empty rectangles.
First, R1 and R4 are merged, forming R6 = (60, 24, 72, 45), and R2 and R5

are merged, forming R7 = (72, 18, 84, 30). Then, R7 is selected and the two
pieces (6x12) are cut in it, completely filling it. Finally, R6 is taken and the
piece initially eliminated is cut in it. The final solution, which is optimal,
appears in Figure 3(d).

7



(a) Selection (b) Reduction

(c) Moving to the corner (d) Fill

Figure 3: Block reduction. Instance 3 from Jakobs[13]
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(c) Merge (d) Fill

Figure 4: Empty rectangles in the reduction move

• Block insertion

Step 0. Initialization:

B = the list of blocks
L = the list of empty rectangles

Step 1. Choosing the block to insert

Take pi, a piece for which xi < Qi, and consider a block of these pieces
with k columns and l rows (k ∗ l ≤ Qi − xi).

Step 2. Select the position to insert the new block

Step 3. Remove the pieces of the solution overlapping with the inserted
block

Update B (some of the original blocks are reduced or eliminated)

Update L (some new empty rectangles may appear).
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Step 4. Fill the empty rectangles with new blocks

Step 5. Merge the blocks with the same structure:

Steps 4 and 5 are the same as in block reduction.

In Step 3, two strategies have been considered to select the position of the new
block. In both cases, the block is placed partially or totally covering one or more
empty rectangles.

• For each empty rectangle consider the four alternatives in which a corner
of the rectangle is chosen for the corresponding corner of the block. If the
dimensions of the block are larger than those of the rectangle, the block may
overlap with other blocks or may occupy part of other empty rectangles.

• Select only one empty rectangle, that producing the largest intersection with
the block if the bottom left corner of the block were placed in the bottom left
corner of the rectangle. For this rectangle, the four alternatives described
above are considered.

In Figure 5 we see an example of the second strategy. In Figure 5(a) two empty
rectangles, in grey, are considered to accommodate the new block, in white. As
the largest common area corresponds to rectangle 1, it is chosen. In Figure 5(b)
the four corners of the empty rectangle are considered for situating the corner of
the new block.

1

2

(a) Largest common area (b) Possible positions

Figure 5: Selecting the position of the new block

In Figure 6 we see an example of an insertion move on an instance proposed
by Fekete and Schepers[8] and later used by Beasley[5]. The stock rectangle is
R = (100, 100), m = 15 and M = 50 pieces can be cut from it. Figure 6(a)
shows a solution of value z = 27539. The set L of empty rectangles is composed
of R1 = (70, 41, 72, 81) and R2 = (72, 80, 100, 81). In Step 1 we select a piece
i = 5 of dimensions (6x40) with Qi = 5 and only 2 copies in the current solution
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and consider a block B∗ of one piece. In Step 2 we place B∗ over R1, selecting
the top left corner of the rectangle to locate the top left corner of the block. B∗

completely covers R1 and part of R2, which becomes R3 = (76, 80, 100, 81). B∗

also partially covers an existing block (Figure 6(b)). Therefore, in Step 3, we
remove the pieces of the initial solution overlapping with B∗. That produces two
new empty rectangles R4 = (76, 40, 78, 80) and R5 = (72, 40, 76, 41) (Figure 6(c)).
In Step 4, the filling procedure starts form this list L = {R3, R4, R5}. First, R3

and R4 are merged, producing R6 = (76, 40, 78, 81) and R7 = (78, 80, 100, 81).
While none of the remaining pieces could fit either in R3 or in R4, a piece i = 13
of dimensions (2x41) now fits into R6. The new solution is better than the initial
one and has a value z∗ = 27718, optimal for the problem (Figure 6(d)).

(a) Initial (b) Insert

(c) Eliminate overlap (d) Merge and fill

Figure 6: Block insertion. Instance 1 from Fekete and Schepers[8]

3.2 Moves to be studied

At each iteration we study all the possible reduction and insertion moves which
can be applied to the current solution.
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• Reduction:

1. Take each block of the solution, one at a time, in random order.

2. Consider all possibilities of reduction in the directions adjacent to
empty rectangles.

• Insertion:

1. Select a piece for which the number of copies in the solution, xi, is
lower than Qi, one at time, in random order.

2. Consider all the possible blocks which can be built with this piece.

3. Consider all the alternatives for placing the block onto an empty rect-
angle.

3.3 Selection of the move

The objective function consists only of maximizing the value of pieces cut f(x) =∑
i vixi. However, if the moves are evaluated according to that function, there can

be many moves with the same evaluation. Therefore, if there are ties, we break
them by using a secondary objective function g(x) = k1S + k2|L| + k3C + k4F .

• S (Symmetry): We try not to explore symmetric solutions but prefer solu-
tions in which empty rectangles are mostly concentrated to the right and to
the top of the stock rectangle.

S = 1 if there is no symmetric solution with the wastes more concentrated
to the right and to the top. Otherwise, S = 0.

• |L| (Number of empty rectangles)). If possible, we prefer solutions in which
the number of empty rectangles will be as low as possible.

• C (Centered and concentrated wastes): We prefer solutions in which empty
rectangles are centered and concentrated as much as possible, because that
will make it easier to merge them and obtain spaces for more pieces. We
consider the smallest rectangle ER containing all the empty rectangles and

C = 1 − (0.75 ∗ rd + 0.25 ∗ ra)

where rd is the distance from the center of ER to the center of the stock
rectangle, divided by the distance from the center of the stock rectangle to
its bottom left corner, and ra is the area of ER divided by the area of the
stock rectangle.
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• F (Feasibility). In doubly constrained problems, the initial solution may not
be feasible. In this case F = 1. Otherwise, F = 0.

These criteria are added to the secondary function with some weights reflecting
their relative importance, according to the results of a preliminary computational
experience on a subset of problems. In the current implementation, the weights
are:

Criterion Coefficient Weight
Symmetry k1 5000
Empty rectangles k2 −950
Centered empty rectangles k3 50
Feasibility k4 −50000

3.4 Tabu list

The tabu list contains for each solution the following pair of attributes: the value
of the objective function and the smallest rectangle ER containing all its empty
rectangles. A move is then tabu if these two attributes of the new solution match
one pair of the tabu list.

The tabu list size varies dynamically. After a given number of iterations with-
out improving the solution, the length is randomly chosen from [0.25∗M, 0.75∗M ],
where M =

∑
i Qi.

The aspiration criterion allows us to move to a tabu solution if it improves
the best solution obtained so far.

3.5 Intensification and diversification strategies

The moves we have defined involve a high level of diversification. However, we
have included two more diversification strategies:

• Long term memory

Throughout the search process, we keep in memory the frequency of each
piece appearing in the solutions.

This information is used for both diversification and intensification purposes.
When used for diversification, we favor the moves of pieces not appearing
very frequently in the solutions, then inducing new pieces to appear. When
used for intensification, we consider only pieces corresponding to high qual-
ity solutions and then we favor these pieces appearing again in the new
solutions.
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In a diversification phase, the objective function is modified by subtracting
a term that is the sum of the frequencies of the pieces appearing in the
solutions:

f(x) → f(x) −
∑

i freq(pi)

In an intensification phase, the objective function is modified by adding a
term reflecting the frequency of the pieces in the set of elite solutions E

f(x) → f(x) + K
∑

i∈E freq(pi)

• Restarting

According to the secondary objective function, we tend to explore solutions
satisfying the symmetry criterion. After a given number of iterations with-
out improving the best known solution, the current solution is changed by
performing a horizontal and a vertical symmetry on it. The new solution
obtained in that way would be quite different from the recently studied
solutions and it is taken as a new starting point for the search.

3.6 Adjusting the bounds of the pieces

Throughout the iterative process we have the best known solution of value vbest.
We can use this value to adjust Pi of some pieces that must appear if we want to
improve the solution, and Qj of some pieces whose inclusion would not allow us
to improve the solution.

• Increasing lower bounds Pi

Let us define totalpieces =
m∑
i

vi ∗Qi, the total value of the available pieces. If

there is a piece i such that Pi < Qi, and totalpieces − (Qi − Pi) ∗ vi <= vbest,
a solution with the minimum Pi copies of this type of piece cannot improve
the best known solution. Any better solution must include more pieces of
this type and Pi can be increased. If we compute t as:

max t : totalpieces − t ∗ vi > vbest ; t ≥ 0, t ≤ Qi − Pi

Then, Pi = Qi − t. This improved lower bound can be useful in the con-
structive phase, in which the pieces with Pi > 0 are cut first, and in the
improvement phase, in which pieces in their lower bounds are not consid-
ered to be removed from the current solution.
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• Decreasing upper bounds Qi

Let us denote by R =
∑

Pi>0
Pi ∗ li ∗ wi the area of the pieces which must

appear in any feasible solution, Rv =
∑

Pi>0
Pi ∗ vi, the value of these pieces,

ei = vi/(li ∗ wi) the efficiency of piece i and emax = max{ei, i = 1, . . . ,m},
the maximum efficiency of the pieces. If there is a piece i, with Qi > Pi and
ei < emax satisfying:

(Qi ∗ li ∗ wi ∗ (emax − ei) ≥ emax ∗ (L ∗ W − R) + Rv − vbest

any solution with Qi copies of this piece cannot improve the best known
solution. Therefore, at any better solution the number of copies of piece i
should be limited to below Qi. If we compute t as:

max t : t ∗ li ∗ wi ∗ (emax − ei) < (emax ∗ (L ∗ W − R) + Rv − vbest

t ≥ 0, t ≤ Qi − Pi

then Qi = Pi + t. This decrease in the upper bound can be useful when
constructing and improving solutions in the subsequent iterations. In some
cases, Qi can be set to 0 and the corresponding piece is no longer considered
for cutting.

3.7 Path relinking

Path Relinking is an approach for integrating intensification and diversification
strategies in the context of Tabu Search (Glover and Laguna[9]). This approach
generates new solutions by exploring trajectories that connect high quality solu-
tions. Starting from one of these solutions, called the initiating solution, a path
is generated in the solution space that leads towards another solution, called the
guiding solution. This is done by selecting moves that introduce the attributes of
the guiding solution into the new solutions.

Throughout the search process we keep a set of elite solutions, the best solu-
tions found. We now take pairs of elite solutions and use one of them, solution
A, as the initiating solution and the other, solution B, as the guiding solution.
As the Tabu search algorithm favors solutions with empty rectangles preferably
in the upper right part of the stock rectangle, both solutions will tend to have the
empty rectangles in this zone. Therefore, we apply a vertical symmetry to the
initiating solution before starting the Path Relinking process.

We follow a constructive strategy, inserting the blocks of solution B, one at
a time, into solution A. The insertion move follows the procedure described in
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Section 3.1. The pieces overlapping with the block are eliminated, the remaining
blocks are moved to their nearest corners and the resulting empty rectangles are
filled. At the end of the process, we will have reproduced solution B, but along
the path new solutions will have been generated. When inserting the blocks of
solution B, we first insert the blocks adjacent to the sides of the stock rectangle
and then the blocks in the center.

An example of the first step of Path Relinking appears in Figure 7. Solution
A with value 5376 is selected as the initiating solution (Figure 7(a)), and solution
B with value 5352 as the guiding solution (Figure 7(b)). The vertical symmetry
applied to solution A produces the solution of Figure 7(c). Then a block of B
is inserted on it (Figure 7(d)). The pieces overlapping with it are deleted as
well as one piece of the same type of the piece being inserted so that Qi is not
exceeded. The remaining blocks are moved to their nearest corners, as indicated
by the arrows in Figure 7(e). Finally the empty spaces are merged and filled with
new pieces, producing the solution in Figure 7(f). This solution is different from
solutions A and B and has a value of 5395.

(a) Solution A: 5376 (b) Solution B: 5352 (c) Simmetry on A

(d) Insert a block of B (e) Eliminate overlapping (f) Merge and fill

Figure 7: Path Relinking. Instance 2 from Jakobs[13]
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4 Computational experience

4.1 Test problems

We have used several sets of test problems:

1. A set of 21 problems from the literature: 15 from Beasley [4], 2 from Hadji-
constaninou and Christofides[10], 1 from Wang[21], 1 from Christofides and
Whitlock[7], 5 from Fekete and Schepers[8]. For all of them the optimal
solutions are known. They have also been solved by Beasley [5].

2. A set of 630 large problems generated by Beasley[5], following the work
by Fekete and Schepers[8]. All the problems have a stock rectangle of size
(100, 100). For each value of m, number of piece types (m =40, 50, 100,
150, 250, 500, 1000), 10 problems are randomly generated with Pi = 0,
Qi = Q∗,∀i = 1, . . . ,m where Q∗ = 1; 3; 4. These 630 instances are divided
into 3 types, according to the percentages of the types of pieces of each class:

Class Description Length Width
1 Short and wide [1,50] [75,100]
2 Long and narrow [75,100] [1,50]
3 Large [50,100] [50,100]
4 Small [1,50] [1,50]

Type Percentages of pieces of each class
1 2 3 4

1 20 20 20 40
2 15 15 15 55
3 10 10 10 70

The value assigned to each piece is equal to its area multiplied by an integer
randomly chosen from {1, 2, 3}.

3. The 21 test problems mentioned first were transformed by Beasley[5] into
doubly constrained problems by defining some lower bounds Pi. Specifically,
for each type of piece from i = 1, . . . ,m satisfying:

m∑
j=1,j 6=i

(ljwj)Pj + liwi ≤ (LW )/3, the lower bound Pi is set to 1.

This set of problems would allow us to test the algorithm in the general case
of doubly constrained problems.
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4. Finally, we have included the test problems used by Leung et al.[17], con-
sisting of 3 instances from Lai and Chan[14], 5 from Jakobs[13], and 2 from
Leung et al.[17]. We have also included 21 larger instances from Hopper
and Turton [12]. There are unweighted problems in which the value of each
piece corresponds to its area and the objective is to minimize the waste of
the stock rectangle. The problems have been generated in such a way that
the optimal solution is a cutting pattern with zero waste.

We have included the Leung et al.[17] and Hopper and Turton[12] sets of prob-
lems because they have characteristics which can be considered complementary to
the two first sets used by Beasley, as can be seen in Table 1, in which we show the
ratios of total pieces available to be cut to the upper bound of pieces fitting into
the stock rectangles. We can see that the problems of the second set, Types I,
II and III, can be considered selection problems because there are many available
pieces and only a small fraction of them will make part of the solution. However,
the Leung et al. and Hopper and Turton problems are jigsaw problems. All avail-
able pieces will make part of the solution and the difficulty here is to find their
correct position in the cutting pattern. An algorithm working well on both types
of problems can be considered a general purpose algorithm.

Sets of problems Averages
Total value of pieces/ Total area of pieces/
Upper bound of value Upper bound of area

Literature problems 3,13 3,61
Type I 123,69 185,60
Type II 101,69 152,71
Type III 79,67 119,20
Zero-waste problems 1,00 1,00

Table 1: Test problems – Characteristics.

4.2 Implementation

Our algorithm has been coded in C + + and run on a PentiumIII at 800Mhz.
After 100 iterations without improving the best known solution, the length of the
tabu list is changed. After 400 iterations without improvement we do a diversifica-
tion phase based on long term frequencies over 100 iterations or until an improved
solution is found. We then recover the original objective function and continue
the search. After 400 iterations without improvement we do an intensification
phase with K = 100 over 100 iterations or until an improved solution is found.
We recover the original objective function but if the solution has not been not
improved, instead of continuing the search from it we do a restarting move and
proceed from the new solution.
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In Section 4.1 we have described three types of problems: constrained selection
problems, constrained jigsaw problems and doubly constrained problems. Some of
the strategies described in Section 3 are more adequate for some of these types of
problems. In Step 2 of the Block insertion move, if we have a selection problem, we
use the second strategy, identifying the empty rectangle with the largest common
area and only studying the possible positions of the new block on it. If we have a
jigsaw problem, we study all the empty rectangles as possible placements for the
block. The algorithm automatically detects the type of problem and applies the
adequate strategy.

The algorithm runs until it reaches the optimal solution, if known, or the
corresponding upper bound, or until a limit of 1500 iterations. The strategy of
stopping at the optimal solution or the upper bound has been used by Beasley[5]
and we have adopted it in order to compare our results with those obtained by
him. The limit of 1500 has been set to keep the running times similar to those of
the GRASP algorithm used by Alvarez-Valdes et al.[1].

Throughout the search we keep a set of 10 elite solutions upon which the Path
Relinking procedure will act. However, as the solutions provided by Tabu Search
were so good, Path Relinking could not improve the initial solutions and this
procedure has not been included in the final implementation.

4.3 Computational results

The computational results appear in Tables 2, 3 and 4. The first two tables include
a direct comparison with Beasley’s results[5] and with the GRASP algorithm
results[1] in terms of solution quality. The computing times cannot be directly
compared with Beasley’s time. Beasley coded his algorithm in FORTRAN and
used a Silicon Graphics O2 workstation (R10000 chip, 225MHz, 128 MB). An
approximate comparison (http : //www.spec.org) indicates that his computer is
twice as fast as ours. On Table 2 we see that our Tabu Search algorithm optimally
solves all the problems in very short computing times, clearly outperforming the
other two algorithms in terms of quality and running times. For the large problems
in Table 3 the optimal solutions are not known and the comparisons are made with
knapsack upper bounds. Table 3 shows that the Tabu Search algorithm again
obtains better results on every type of problem, except for m = 50, Q∗ = 1 in
which GRASP is slightly better. The computing times are much shorter than those
of Beasley’s algorithm, though they are larger than those required by the GRASP
procedure. Both algorithms are based on similar ideas. The more elaborated Tabu
Search algorithm obtains better solutions but needs longer processing times.

The adjustment of lower bounds does not have significant effects on the per-
formance of the algorithms, but the adjustment of upper bounds does have a
dramatic effect, especially in these large random problems in which there are im-

18



portant differences in the efficiency of the pieces. For instance, for problems with
m = 1000 types of pieces, more than 60% of the pieces are discarded as soon as
good solutions are found. That increases significantly the speed of GRASP and
Tabu Search algorithms which use these adjustments.

The direct comparison with Leung et al.[17] is not possible, though their 19
test instances are a subset of those appearing in Table 4. On the one hand,
they do not give CPU times. On the other hand, they propose two versions of
their algorithm, each of them with several mutation rates, and give minimum and
mean waste in 15 runs of 30000 iterations. The best that can be said is that our
average distance to optimum is slightly better than the average distances of their
algorithms and quite similar to the best distances they obtain after 15 runs. We
can also point out, as Beasley [5] illustrates, that there are some optimal cutting
patterns that cannot be obtained by the Leung et al.[17] procedure, a situation
that does not arise with our procedure. In Table 4 we again compare the GRASP
and the Tabu Search algorithms. Tabu Search clearly outperforms GRASP in
terms of the quality of the solution, with quite similar computing times.

Finally, Table 5 shows the results of the algorithms on the set of doubly con-
strained test problems. The upper bound corresponds to the solution of the con-
strained problem. The problems for which the algorithms do not find solutions
are not feasible, but they are maintained in the set of test problems and therefore
are included in the table. The Tabu Search algorithm obtains the best result for
each instance of the set but its computing times are slightly longer.

5 Conclusions

We have developed a new heuristic algorithm based on Tabu Search techniques for
the non-guillotine two-dimensional cutting stock problem. Two moves have been
proposed, based on the reduction and insertion of blocks of pieces. The efficiency
of the moves is based on a merge and fill strategy that accommodates the empty
rectangles to the pieces still to be cut. Some intensification and diversification
strategies, based on long-term memory, have also been included.

The computational results show that these ideas work well for the constrained
and doubly constrained test problems proposed by Beasley [5]. For the Leung et
al.[17] and Hopper and Turton[12] zero-waste problems the results are also good
and the proposed algorithm can be considered to work consistently well for a wide
range of cutting problems.
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Source of problem I Problem size Beasley’s GRASP TABU Optimal CPU time (seconds)
(L,W) m M solution solution solution solution Beasley GRASP TABU

Beasley [4] 1 (10, 10) 5 10 164 164 164 164 0,02 0,00 0,06
2 (10, 10) 7 17 230 230 230 230 0,16 0,00 0,00
3 (10, 10) 10 21 247 247 247 247 0,53 0,00 0,00
4 (15, 10) 5 7 268 268 268 268 0,01 0,00 0,00
5 (15, 10) 7 14 358 358 358 358 0,11 0,00 0,00
6 (15, 10) 10 15 289 289 289 289 0,43 0,00 0,00
7 (20, 20) 5 8 430 430 430 430 0,01 0,00 0,00
8 (20, 20) 7 13 834 834 834 834 3,25 0,77 0,16
9 (20, 20) 10 18 924 924 924 924 2,18 0,00 0,05

10 (30, 30) 5 13 1452 1452 1452 1452 0,03 0,00 0,00
11 (30, 30) 7 15 1688 1688 1688 1688 0,60 0,05 0,00
12 (30, 30) 10 22 1801 1865 1865 1865 3,48 0,05 0,06

Hadjiconstantinou 3 (30, 30) 7 7 1178 1178 1178 1178 0,03 0,00 0,00
and Christofides [10] 11 (30, 30) 15 15 1270 1270 1270 1270 0,04 0,00 0,00
Wang[21] (70, 40) 19 42 2721 2726 2726 2726 6,86 0,77 0,11
Christofides and Whitlock[7] 3 (40, 70) 20 62 1720 1860 1860 1860 8,63 0,39 0,06
Fekete and Scheppers [8] 1 (100, 100) 15 50 27486 27589 27718 27718 19,71 2,31 0,05

2 (100, 100) 30 30 21976 21976 22502 22502 13,19 4,17 2,14
3 (100, 100) 30 30 23743 23743 24019 24019 11,46 3,68 3,40
4 (100, 100) 33 61 31269 32893 32893 32893 32,08 0,00 0,66
5 (100, 100) 29 97 26332 27923 27923 27923 83,44 0,00 0,00

Mean percentage of deviation from optimum 1,21% 0,19% 0,00% 8,87 0,58 0,32
Number of optimal solutions (out of 21) 13 18 21

Table 2: Computational results – Problems from literature
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Mean percentages of deviation from knapsack upper bound
m Q* M Beasley’s GRASP TABU CPU time (seconds)

solution solution solution Beasley GRASP TABU
40 1 40 7,77 6,97 6,55 13,57 2,33 10,97

3 120 3,54 2,22 1,95 47,43 6,62 14,20
4 160 3,24 1,81 1,65 63,30 4,44 18,26

50 1 50 5,48 4,80 4,85 14,60 4,71 15,49
3 150 2,35 1,50 1,27 59,27 7,05 22,50
4 200 2,63 1,18 0,96 80,07 5,34 18,19

100 1 100 2,26 1,51 1,50 27,20 5,36 38,79
3 300 1,27 0,47 0,31 119,47 9,41 32,11
4 400 1,06 0,26 0,18 175,10 6,99 19,67

150 1 150 1,31 0,89 0,84 40,60 5,53 54,90
3 450 0,60 0,14 0,07 190,53 11,71 31,76
4 600 0,92 0,11 0,05 323,83 6,75 19,87

250 1 250 0,88 0,51 0,45 76,70 5,27 90,07
3 750 0,57 0,04 0,01 439,47 13,89 13,70
4 1000 0,39 0,03 0,00 693,67 6,65 4,50

500 1 500 0,26 0,05 0,03 203,10 3,24 86,17
3 1500 0,18 0,00 0,00 1210,80 12,24 1,10
4 2000 0,18 0,00 0,00 1790,83 1,15 0,84

1000 1 1000 0,09 0,00 0,00 667,23 1,01 7,80
3 3000 0,07 0,00 0,00 3318,47 6,53 1,54
4 4000 0,07 0,00 0,00 4840,57 0,29 1,19

Type I 1,64 1,04 0,95 558,11 5,13 19,61
Type 2 1,70 1,14 1,06 668,41 5,90 23,84
Type 3 1,66 1,03 0,94 830,02 7,28 32,56
All 1,67 1,07 0,98 685,51 5,91 25,34

Table 3: Computational results– Large random problems.
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Source of I Problem size GRASP TABU Optimal CPU time
problem (L,W) m M solution solution solution GRASP TABU

Lai and Chan[14] 1 (400,200) 9 10 80000 80000 80000 0,00 0,00
2 (400,200) 7 15 79000 79000 79000 0,00 0,02
3 (400,400) 5 20 154600 160000 160000 4,12 0,38

Jakobs[13] 1 (70,80) 14 20 5447 5600 5600 10,16 1,89
2 (70,80) 16 25 5455 5540 5600 15,44 16,88
3 (120,45) 22 25 5328 5400 5400 12,57 0,42
4 (90,45) 16 30 3978 4050 4050 10,28 1,97
5 (65,45) 18 30 2871 2925 2925 14,94 1,53

Leung et al.[17] 1 (150,110) 40 40 15856 16280 16500 90,52 52,36
2 (160,120) 50 50 18628 19044 19200 132,26 63,95

Hopper and Turton[12] 1-1 (20,20) 16 16 400 400 400 0,94 0,42
1-2 (20,20) 17 17 386 400 400 9,28 4,23
1-3 (20,20) 16 16 400 400 400 0,06 0,95
2-1 (40,15) 25 25 590 600 600 19,44 0,44
2-2 (40,15) 25 25 597 600 600 17,36 4,16
2-3 (40,15) 25 25 600 600 600 0,71 0,00
3-1 (60,30) 28 28 1765 1800 1800 26,80 4,91
3-2 (60,30) 29 29 1755 1800 1800 37,35 10,11
3-3 (60,30) 28 28 1774 1800 1800 30,92 5,52
4-1 (60,60) 49 49 3528 3580 3600 102,05 45,27
4-2 (60,60) 49 49 3524 3564 3600 110,79 68,59
4-3 (60,60) 49 49 3544 3580 3600 94,41 51,11
5-1 (60,90) 73 73 5308 5342 5400 212,07 135,97
5-2 (60,90) 73 73 5313 5361 5400 231,56 96,80
5-3 (60,90) 73 73 5312 5375 5400 231,24 82,06
6-1 (80,120) 97 97 9470 9548 9600 480,44 240,39
6-2 (80,120) 97 97 9453 9448 9600 465,49 399,86
6-3 (80,120) 97 97 9450 9565 9600 478,02 206,78
7-1 (160,240) 196 196 37661 38026 38400 3760,14 3054,38
7-2 (160,240) 197 197 37939 38145 38400 2841,96 1990,70
7-3 (160,240) 196 196 37745 37867 38400 3700,99 5615,75

Mean percentage of deviation from optimum 1,68% 0,42% 423,95 392,19
Number of optimal solutions (out of 31) 5 16

Table 4: Computational results – Zero-waste problems
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Source of problem I Problem size Beasley’s GRASP TABU Upper CPU time (seconds)
(L,W) m M solution solution solution bound Beasley GRASP TABU

Beasley [4] 1 (10, 10) 5 10 164 164 164 164 0,02 0,00 0,00
2 (10, 10) 7 17 225 225 225 230 5,53 0,71 1,70
3 (10, 10) 10 21 220 220 220 247 7,85 1,21 2,26
4 (15, 10) 5 7 268 268 268 268 0,01 0,00 0,00
5 (15, 10) 7 14 301 301 301 358 5,05 0,72 1,48
6 (15, 10) 10 15 265 252 265 289 6,81 1,81 1,59
7 (20, 20) 5 8 430 430 430 430 0,01 0,00 0,00
8 (20, 20) 7 13 819 819 819 834 6,54 1,32 1,76
9 (20, 20) 10 18 924 924 924 924 5,64 0,00 0,00

10 (30, 30) 5 13 n/f n/f n/f n/f 2,38 0,22 0,94
11 (30, 30) 7 15 1505 1518 1518 1688 2,96 1,59 2,52
12 (30, 30) 10 22 1666 1648 1672 1865 3,78 1,65 3,73

Hadjiconstantinou 3 (30, 30) 7 7 1178 1178 1178 1178 0,25 0,00 0,00
and Christofides [10] 11 (30, 30) 15 15 1216 1216 1216 1270 2,60 2,08 3,18
Wang[21] (70, 40) 19 42 2499 2700 2716 2726 6,36 1,48 6,16
Christofides and Whitlock [7] 3 (40, 70) 20 62 1600 1720 1720 1860 6,81 0,88 5,27
Fekete and Scheppers [8] 1 (100, 100) 15 50 25373 24869 25384 27718 11,86 3,73 25,27

2 (100, 100) 30 30 17789 19083 19657 22502 5,80 3,02 18,35
3 (100, 100) 30 30 n/f n/f n/f n/f 4,03 0,66 12,41
4 (100, 100) 33 61 27556 27898 28974 32893 20,42 2,80 37,46
5 (100, 100) 29 97 21997 22011 22011 27923 18,41 3,30 61,90

Mean percentage of deviation from upper bound 8,11% 7,36% 6,62% 5.86 1.29 8.86
n/f: No feasible solution found

Table 5: Computational results – Doubly constrained problems
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