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Abstract

Arc Routing Problems on mixed graphs have been modelled in the literature either
using just one variable per edge or associating to each edge two variables, each one rep-
resenting its traversal in the corresponding direction. In this paper, and using the Mixed
General Routing Problem as an example, we compare theoretical and computationally
both formulations as well as the lower bounds obtained from them using Linear Pro-
gramming based methods. Extensive computational experiments, including some big and
newly generated random instances, are presented.

Key Words: Arc Routing, Mixed Chinese Postman Problem, Mixed Rural Postman
Problem, Mixed General Routing Problem.

1 Introduction

Arc Routing Problems consist of finding a minimum cost set of routes over all or some of the
links of a graph satisfying some side constraints. See the book edited by Dror (2000) for an
excellent survey of the state of the art and applications of the field of Arc Routing. The basic
problem, known as the Chinese Postman Problem (CPP ), is that of determining a minimum
cost closed walk traversing at least once each edge of a non directed graph. From this basic
and simple problem, the research, motivated by real-world applications, has focused along
the last two decades on increasingly more difficult and general problems.

One step further in this generalization is to consider an underlying graph consisting both
of edges and arcs. When the basic CPP is defined on such a mixed graph, the problem is
known as the Mixed Chinese Postman Problem (MCPP ), and it is NP -hard, as shown by
Papadimitriou (1976). Ford and Fulkerson (1962) were the first to present a characterization
of those (Eulerian) mixed graphs that admit a closed walk traversing each link (edge or
arc) exactly once. The MCPP was addressed by Christofides et al. (1984), who proposed a
Branch & Bound algorithm for its resolution. Using a similar formulation for a more general
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problem, the Windy Postman Problem (WPP ), Grötschel and Win (1992) designed a cutting-
plane algorithm capable of solving medium size MCPP instances to optimality. Some years
later, Nobert and Picard (1996), using a somewhat different formulation, presented another
cutting-plane algorithm for this problem. This procedure is able to optimally solve instances
of medium-large size. The MCPP is a special case of the Mixed Rural Postman Problem
(MRPP ), which consists of finding a minimum cost closed walk traversing a subset of the
links of a mixed graph; these links are then the required ones, while the non-required links
may be part of the solution. If, in a more general context, a subset of vertices requiring service
is also considered, we have the Mixed General Routing Problem (MGRP ) that, although not
strictly an arc routing problem, is one of the more general uncapacitated routing problems
with a single vehicle and contains all the previous mentioned arc routing problems, as well
as their undirected and directed versions, as special cases.

The MGRP has been recently studied in Corberán, Romero & Sanchis (2003) and Cor-
berán, Mej́ıa & Sanchis (2002). In the second paper a cutting-plane algorithm based on most
of the known valid and facet-defining inequalities of the MGRP polyhedron is presented. This
MGRP study starts from a formulation in which only one variable is associated to each edge.
As the formulation proposed by Nobert & Picard (1996) for the MCPP, it is based on the
characterization of an Eulerian mixed graph given by Ford & Fulkerson (1962). But some
routing problems on mixed graphs have also been modelled using two variables associated to
the same edge (see for example Christofides et al. (1984) and Grötschel and Win (1992)),
each variable representing its traversal in the corresponding direction. In fact, during the
revision of [5], an anonymous referee argued that formulating the MGRP using two variables
for each edge would produce a stronger LP relaxation. To convince him/her, authors did
some computational experiments that showed that the lower bounds obtained from the for-
mulation using only one variable per edge were better than those obtained with the other one.
But later on an error was detected in the coding of the cutting-plane algorithm based on the
two variables per edge formulation. Once the mistake was corrected and the computational
experiments repeated, the results were then not so conclusive. Therefore, from the above
discussion, we think that this important point deserves to be studied in depth. This is the
purpose of this paper.

We will compare these two alternative formulations to arc routing problems on mixed
graphs choosing a very general problem, the MGRP, as an example. In Section 2 we de-
fine precisely the problem, introducing the notation to be used along the following sections
and presenting the two different integer formulations of the MGRP, which are shown to be
equivalent. In Section 3, and for each formulation, we obtain initial lower bounds from linear
programming based methods. Although the initial LP relaxations are not equivalent, we
obtain equivalent linear formulations once that every valid inequality from the classes that
are known to be separated in polynomial time is also considered. Bounds obtained from both
‘polynomial’ linear relaxations can be further improved by adding other valid inequalities as
they are (heuristically) detected. Section 4 presents the computational experiments in which
both formulations are compared over an extensive set of newly generated instances. The last
Section includes a brief summary and the conclusions of the research.
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2 Problem Definition and Formulations

Given a strongly connected mixed graph G = (V, E, A) with vertex set V , edge set E, arc set
A, a cost ce for each link e ∈ E ∪A, a set ER ⊆ E of required edges, a set AR ⊆ A of required
arcs and a set VR ⊆ V of required vertices, the Mixed General Routing Problem (MGRP) is
the problem of finding a minimum cost closed walk (a tour) passing through each required
link e ∈ ER ∪AR and through each i ∈ VR at least once.

Note that if i ∈ V is a vertex incident to any required link e ∈ ER ∪ AR, the condition
on the tour passing through link e contains the condition of visiting vertex i. Therefore, in
what follows, we will assume that VR contains the set of vertices incident to the required
edges. Furthermore, as it is usual when the subgraph induced by the required vertices and
links is not connected, we first transform the original graph in order to simplify both the
problem structure and the formulation. This transformation is done in a similar way to
that of Christofides et al. (1981) for the undirected RPP (see Eiselt, Gendreau & Laporte,
1995, for an illustration of the procedure). The graph resulting from this transformation
is such that all its vertices are required ones as well as its edges, i.e., V \ VR = ∅ and
E \ER = ∅. Then, we will assume that the MGRP is defined on a strongly connected mixed
graph G = (V, E, A) := (VR, ER, AR ∪ANR).

We will use the same notation as in [5] and [4]. Let GR = G(V,E, AR) be the graph
obtained by deleting in G all the non required arcs ANR. In general, graph GR is not
connected. Let p be the number of connected components of GR and let V1, V2, . . . , Vp be the
vertex sets corresponding to the p connected components of GR, which will be called R-sets,
with V1 ∪ . . . ∪ Vp = V . We will represent by Ci = G(Vi), i = 1, . . . , p, the subgraphs of G
induced by the R-sets and they will be referred to as R-connected components. Notice that
every isolated required vertex is a R-connected component of G. Given two disjoint sets of
vertices S1, S2 ⊂ V and a set S ⊂ V , we denote:

(S1 : S2) = {(i, j) ∈ E ∪A : i ∈ S1, j ∈ S2 or i ∈ S2, j ∈ S1}
δ(S) = (S : V \ S) (called link cut-set of G defined by S)
A+(S) = A(S : V \ S)
A−(S) = A(V \ S : S)
E(S) = E(S : V \ S)

The above sets are defined in a similar way referring to required links only and to non-required
arcs only: A+

R(S), A−NR(S), δR(S), etc. Given x ∈ IR|E∪A| and given T ⊂ E∪A, x(T ) denotes∑
e∈T xe.

A tour for the MGRP is a family F of links of G such that the graph (V,EF ∪ AF )
contains all the required links and vertices and a closed walk traversing each copy of each
link exactly once (i.e., is an Eulerian graph), where EF ∪AF is obtained by considering each
copy of a link in F as a different element.

Applying the necessary and sufficient conditions for a connected mixed graph to be Eu-
lerian ([9]), we can state that F is a tour for the MGRP when the following conditions are
satisfied:

• F contains all the required links,
• Graph (V, EF ∪AF ) is connected,
• Graph (V, EF ∪AF ) is even, i.e., every vertex is incident to an even number of links,

3



• Graph (V, EF ∪ AF ) is balanced, i.e., for every S ⊂ V , the difference between the
number of arcs in A+(S) (leaving S) and the number of arcs in A−(S) (entering S) is
less than or equal to the number of edges in E(S) (balanced-set condition for set S).

The family of links obtained from any tour for the MGRP by deleting one copy of every
link in E ∪ AR is called a semitour for the MGRP. Although in [5] and [4] the MGRP is
formulated with respect to semitours, in this paper and for the sake of simplicity, we will
always consider MGRP tours. Associated to each MGRP tour there is an integer incidence
vector y = (ye : e ∈ E∪A) ∈ IR|E∪A|, where ye denotes the number of times a link e ∈ E∪A
appears in the tour. If it is necessary to make an explicit reference to the direction in which
a required link is traversed, we will use yij instead of ye. A vertex v ∈ V will be called R-odd
if it is incident to an odd number of required likes, otherwise it will be called R-even. Note
that every isolated required vertex is R-even.

It is easy to see that the set of tours for the MGRP is then the set of vectors y ∈ IR|E∪A|

satisfying
yij ≥ 0 and integer, ∀(i, j) ∈ ANR (1)
yij ≥ 1 and integer, ∀(i, j) ∈ AR (2)
ye ≥ 1 and integer, ∀e ∈ ER (3)
y(δ({i})) ≡ 0 mod 2, ∀i ∈ V : i is R− even (4)
y(δ({i})) ≡ 1 mod 2, ∀i ∈ V : i is R− odd (5)

y(A+(S)) ≥ 1, ∀S = ∪k∈QVk, Q ⊂ {1, . . . , p} (6)
y(A+(S))− y(A−(S)) ≤ y(E(S)), ∀S ⊂ V (7)

where (2) and (3) imply that all the required links are in the solution, (4) and (5) and (6)
assure that the resulting graph will be even and connected, respectively, and (7) that the
balanced-set conditions will be satisfied. This formulation of the MGRP will be denoted by
F1 and (with respect to semitours) was the one used in [5] and [4].

Consider now a set S ⊂ V such that E(S) = ∅. Then the balanced-set condition corre-
sponding to S and S̄ = V \ S imply the so called symmetry equation y(A+(S)) = y(A−(S)).
Hence, the above formulation includes an equation associated with each set S ⊂ V with
E(S) = ∅. Although most of these equations will be linearly dependent, if we consider
the q subgraphs of G induced by the required edges, it can be shown that any q−1 of the
corresponding symmetry equations are linearly independent. In [5] these equations

y(A+(Ki)) = y(A−(Ki)), i = 1, 2, . . . , q (8)

are referred to as the system equations, where K1,K2, . . . , Kq denote the sets of vertices of
the connected components of the graph (V, E). Note that some sets Ki could consist of a
single vertex, that each set Ki is contained in a set Vj and that E(Vj) = ∅, ∀j.

Alternatively, if we choose the sufficient conditions for a mixed graph to be Eulerian ([9],
[7]), F is a tour for the MGRP if

• F contains all the required links
• Graph (V, EF ∪AF ) is connected,
• Graph (V, EF ∪AF ) is even,
• Graph (V, AF ) is symmetric, i.e., the number of arcs entering every vertex is equal to

the number of arcs leaving it.
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Note that if every vertex is symmetric, the number of arcs entering any S ⊂ V should
also be equal to the number of arcs leaving it.

The above conditions can be used to formulate the problem by associating two variables
xij and xji to each edge e = (i, j), representing the number of times edge e is traversed in
the corresponding direction. Then, the set of tours for the MGRP, according to this second
formulation, called F2 in what follows, is the set of vectors x ∈ IR2|E|+|A| satisfying

xij ≥ 0 and integer, ∀(i, j) ∈ ANR (9)
xij ≥ 1 and integer, ∀(i, j) ∈ AR (10)

xij , xji ≥ 0 and integer, ∀e = (i, j) ∈ ER (11)
xij + xji ≥ 1, ∀e = (i, j) ∈ ER (12)

x(A+(S)) ≥ 1, ∀S = ∪k∈QVk, Q ⊂ {1, . . . , p} (13)

x(A+(i)) +
∑

j : (i, j) ∈ ER

xij = x(A−(i)) +
∑

j : (i, j) ∈ ER

xji, ∀i ∈ V (14)

where (10) and (12) imply that all the required links are in the solution, (13) assure that the
resulting graph will be connected and (14) that the symmetry conditions will be satisfied.
Note that integrality and symmetry conditions imply that the resulting graph will be even.

In what follows, we show that formulations F1 and F2 are equivalent. Let x be a solution
to F2 and define ye = xij + xji, ∀e = (i, j) ∈ ER and yij = xij , ∀(i, j) ∈ A. Then, constraints
(9)-(12) imply constraints (1)-(3). Furthermore, since x induces a connected and symmetric
graph, y defines an even and connected graph. And given that every vertex is symmetric with
respect to x, a symmetry equation holds for each cut (S : V \S) and, therefore, the balanced-
set condition with respect to y is satisfied for each S. Thus, from any feasible solution to
F2 we can obtain a feasible solution to F1 with the same cost. Conversely, consider now
a solution to F1: it induces an even, connected and balanced mixed graph. Edmonds and
Johnson (1973) proposed a method of assigning a direction to the edges of an even and
balanced mixed graph in order to obtain, with the same cost, a symmetric directed graph.
Thus, from any feasible solution to F1 we can obtain a feasible solution to F2 with the same
cost.

3 Lower Bounds from Linear Programming Based Methods

Once we have proved that both (integer) formulations are equivalent, we are now interested
in comparing them in order to obtain lower bounds for the MGRP using Linear Program-
ming based methods. To do this the integrality conditions in F1 and F2 must be removed.
Furthermore, constraints (4) and (5) in F1 are not linear and there is not a linear expression
of them without using integer variables. Hence, these constraints should also be removed.
However, it is easy to see that for each R-odd vertex i, y(δ(i)) ≥ |δR(i)|+ 1 must hold. In a
similar way, given an R-odd cutset δ(S) (a cutset containing an odd number of required links),
the following inequalities, called R-odd cut inequalities, must be satisfied by any solution y
to F1 (see [5])

y(δ(S)) ≥ |δR(S)|+ 1, ∀δ(S) R-odd cutset (15)
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On the other hand, once the integrality conditions have been removed from F2, symmetry
conditions (14) alone do not longer guarantee that all the vertices will be even. However,
constraints (15) should also be satisfied by any solution x to F2.

Therefore, we will call LPF1 the following linear relaxation of F1

yij ≥ 0, ∀(i, j) ∈ ANR (16)
yij ≥ 1, ∀(i, j) ∈ AR (17)
ye ≥ 1, ∀e ∈ ER (18)

y(A+(S)) ≥ 1, ∀S = ∪k∈QVk, Q ⊂ {1, . . . , p} (19)
y(A+(S))− y(A−(S)) ≤ y(E(S)), ∀S ⊂ V (20)

y(δ(S)) ≥ |δR(S)|+ 1, ∀δ(S) R-odd cutset (21)

and LPF2 the following linear relaxation of F2

xij ≥ 0, ∀(i, j) ∈ ANR (22)
xij ≥ 1, ∀(i, j) ∈ AR (23)

xij , xji ≥ 0, ∀e = (i, j) ∈ ER (24)
xij + xji ≥ 1, ∀e = (i, j) ∈ ER (25)

x(A+(S)) ≥ 1, ∀S = ∪k∈QVk, Q ⊂ {1, . . . , p} (26)
x(δ(S)) ≥ |δR(S)|+ 1, ∀δ(S) R-odd cutset (27)

x(A+(i)) +
∑

j : (i, j) ∈ ER

xij = x(A−(i)) +
∑

j : (i, j) ∈ ER

xji, ∀i ∈ V (28)

3.1 Initial Lower Bounds

Note that constraints (19)-(21) in LPF1 and (26)-(27) in LPF2 are exponential in number.
Therefore, only a subset of them can be explicitly added to the LP’s to be solved. As in [5] and
[4], we define the following initial LP relaxation, LP0F1, corresponding to LPF1 containing

- the system equations (8)

- one connectivity inequality (19) for each R-set

- one balanced-set inequality (20) for each ‘unbalanced’ vertex

- one R-odd cut inequality (21) for each R-odd ‘balanced’ vertex,

where an unbalanced vertex i is a vertex for which |E(i)| < |A+
R(i)| − |A−R(i)| or |E(i)| <

|A−R(i)| − |A+
R(i)|.

In a similar way we define LP0F2 (corresponding to LPF2) as the LP containing

- one connectivity inequality (26) for each R-set

- one R-odd cut inequality (27) for each R-odd ‘balanced’ vertex

- one symmetry equation (28) for each vertex.
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In what follows, we show that LP0F2 is stronger that LP0F1. Consider a feasible solution
x to LP0F2 and define again ye = xij + xji, ∀e = (i, j) ∈ ER and yij = xij , ∀(i, j) ∈ A. If x
satisfies the symmetry constraints (28) for every vertex, y satisfies all the system equations
and also the balanced-set constraints (20) for each vertex. Then, from any feasible solution
to LP0F2 we obtain a feasible solution to LP0F1 with the same cost. However, the converse
is not true, as the following example shows. The graph in Figure 1, in which all the links
are required, represents a feasible solution to LP0F1 (although the balanced-set conditions
are not satisfied for every subset S of vertices). However, there is no way of directing the
edges so as, with the same cost, obtaining a symmetric graph. Therefore, the lower bound
obtained using LP0F1 cannot be greater than the lower bound obtained using LP0F2. This
fact is reflected in column LB0 in the tables in Section 4.

h h h

h h h

6 66

Figure 1: Feasible solution to LP0F1

3.2 Lower Bounds in Polynomial Time

Since there is, as already mentioned, an exponential number of inequalities in some of the
families defining LPF1 and LPF2, not all of them can be explicitly included in a LP to be
solved. One alternative in order to solve these programs is to use the following iterative pro-
cess, called cutting-plane algorithm. To begin with, compute the solution of an LP consisting
of a small subset of inequalities (in our case, those in LP0F1 and LP0F2). Then, look for
inequalities, not in the current LP, that are violated by its optimal solution. If one or more
violated inequalities are detected, add them to the current LP and solve it again; otherwise,
terminate. This process needs to solve the ‘separation problem’, i.e., the identification of
those inequalities that are violated by the current LP solution. This problem is solved in
practice using a different algorithm for each class of valid inequalities. An exact separation
algorithm for a given class of inequalities is a routine that, having an LP solution as input,
outputs one or more violated inequalities in that class, whenever there are violated inequali-
ties. A heuristic separation algorithm works in a similar way, but it may fail to detect violated
inequalities in the class.

The separation problems associated with connectivity and R-odd cut inequalities are
solvable in polynomial time by means of max-flow calculations and the Padberg & Rao (1982)
procedure to find minimum odd cut-sets. Nobert & Picard (1996) showed that identifying
violated balanced-set inequalities for the MCPP can also be solved in polynomial time. This
result is easily extended to the MGRP. Therefore, LPF1 and LPF2 can be solved in polynomial
time (assuming that a Linear Programming polynomial time algorithm is used).

In what follows, we will show that these two linear problems are equivalent. As before,
it is easy to see that the set of feasible solutions to LPF2 is included in that of LPF1.
Consider now a (possibly fractional) feasible solution y to LPF1. Let Gy be the weighted
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graph with vertex set V , link set {e ∈ E ∪ A : ye > 0} and link-weights ye. The question is
how to assign a direction to the edges of Gy in order to obtain a directed graph satisfying
the symmetry equations. To do this, we first solve a flow problem on an undirected graph
H = (VH , EH), where VH = V ∪{0, n+1} (0 and n+1 are two extra vertices). The set of edges
EH includes all the edges in E, with an associated capacity ye, plus one edge from vertex 0
to every vertex i ∈ V with capacity y0i = max{d(i), 0}, where d(i) = y(A−(i)) − y(A+(i)),
and one edge from each i ∈ V to vertex n+1 with capacity yi,n+1 = max{−d(i), 0}. Let
P =

∑

d(i)>0

d(i) =
∑

d(i)<0

−d(i).

Compute a maximum flow in H from vertex 0 to vertex n+1. Since y satisfies all the
balanced-set inequalities, the flow equals P (otherwise, as it is shown in [1], a balanced-set
inequality violated by y would exist). Hence, this implies that it is possible to satisfy all the
supplies (d(i) > 0) and demands (d(i) < 0) of the vertices in Gy, computed with respect to
its arcs, using only its edges.

Now, let G(A) be the weighted graph induced by the arcs in Gy. From the optimal
solution f to the above flow problem,

• if the optimal flow through a given edge e is 0, add to G(A) two arcs, in opposite
directions, each one with weight ye/2.

• if the optimal flow through an edge equals its capacity, add to G(A) one arc with weight
ye in the direction given by the flow.

• if the optimal flow fe through an edge e = (i, j) is less than its capacity, add to G(A)
one arc in the direction given by the flow, with weight fe. Add also two more arcs (i, j)
and (j, i) with weights equal to (ye − fe)/2.

The resulting graph is symmetric and has the same cost as Gy. Note that the above
process is equivalent to construct a feasible solution x to LPF2 by defining xij = yij for all
arcs (i, j) in A and xij = (ye + fe)/2 and xji = (ye − fe)/2 for every edge e = (i, j), if (i, j)
is the direction given by the flow. Therefore, from a feasible solution y to LPF1 we have
obtained a feasible solution x to LPF2 with the same cost.

Hence, LPF1 and LPF2 are equivalent and the bounds obtained from them (column LBpol
in tables) are equal, as it can also be seen from the computational experiments.

3.3 Improving the Bounds

In the previous Section, the cutting-plane algorithm uses only the inequalities that appear
in LPF1 and LPF2. Furthermore, these inequalities belong to classes that can be separated
in polynomial time. However, the cutting-plane methodology allows the addition of any
other valid inequality (one that is satisfied by all the feasible solutions) in order to improve
the bound. The polyhedron associated to the MGRP solutions defined by F1, MGRP(G),
has been studied in [4] and [5]. Besides connectivity, R-odd cut and balanced-set inequali-
ties, other families of facet-inducing inequalities are also described: (standard) K-C, K-C02,
(standard) Honeycomb and Honeycomb02.

Since no exact polynomial algorithm is known for the separation problems of all these
latter inequalities, in the cutting-plane procedure described in [4], heuristic procedures were
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used to find violated inequalities of these classes. This cutting-plane algorithm has also been
used here in order to get a better lower bound. Hence, in what follows we will represent by
LBF1 the lower bound obtained using the cutting-plane procedure described in [4].

Although the polyhedron associated to the MGRP solutions defined by F2 has not
been explicitly studied, it should share most of the characteristics associated to polyhedron
MGRP(G). Consider a feasible solution x to F2. As before, by adding the two x-variables
corresponding to each edge e = (i, j), we obtain a solution y to F1. Solution y should satisfy
all the valid inequalities known for MGRP(G). Let F (y) =

∑
ceye ≥ b be such an inequality.

It is easy to see that the inequality F (x) =
∑

ce(xij + xji) ≥ b is valid for x. Then, standard
K-C, K-C02, standard Honeycomb and Honeycomb02 inequalities can be slightly modified
in order to be valid inequalities for the MGRP solutions defined by F2. The corresponding
separation procedures have been also modified and used to obtain a better lower bound LBF2

by means of the cutting-plane algorithm based on formulation F2.

It is not known wether the inequalities mentioned in this section can or not be separated
in polynomial time, but our guess is that these problems are NP-hard. The use of heuristic
algorithms to find violated inequalities of these classes implies that, although from a theo-
retical point of view bounds LBF1 and LBF2 could be equal, in practice they can provide
different values. The computational results shown in the next section confirm this fact.

4 Computational Testing

In this Section we present the computational experiments conducted and the results obtained
using the cutting-plane algorithms described in the previous sections.

4.1 The Instances

In order to study in depth the differences between the two formulations, we have generated
several sets of instances corresponding to some of the more important arc routing problems
on mixed graphs, the MCPP, MRPP and MGRP. Let us begin with a description of the
procedure used to generate these sets of instances.

On one hand, we have used graphs modelling the real street network of the Spanish towns
of Albaida, Madrigueras and Aldaya. Graphs of Albaida and Madrigueras are undirected
graphs having 116 vertices and 174 edges and 196 vertices and 316 edges, respectively. Al-
though the Aldaya real street network corresponds to a mixed graph having 214 vertices and
224 edges and 127 arcs, here it will be considered as an undirected graph with 351 edges.

From these graphs, we first generate MCPP instances in the following way. All the edges
in E are read in sequential order and some of them are transformed into an arc with a
given probability p. If edge (i, j) is selected to be transformed into an arc, an orientation
(i, j) or (j, i) is assigned with probability 0.5. Finally, if the number of strongly connected
components is greater than one, some arcs are transformed back into edges to obtain a strongly
connected graph. From each graph (Albaida, Madrigueras and Aldaya) and for each value
of p ∈ {0.3, 0.5, 0.7} we have generated three different instances. As an example, albaC3A,
albaC3B and albaC3C are the three corresponding to the Albaida graph and p = 0.3 (‘C’
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means Chinese). Then, we have 27 instances for the MCPP.

A similar process is used to generate instances for the MRPP and for the MGRP. Again,
each edge is transformed into an arc with probability p ∈ {0.3, 0.5, 0.7} and labelled as
‘required’ with probability q ∈ {0.3, 0.5, 0.7}. At this point we have an instance for the
MGRP if we consider all the vertices as ‘required’. In order to obtain an instance for the
MRPP in which all the vertices are incident with required links, we iteratively select a link e
with one end-point that is not incident with a ‘required’ link and label it as ‘required’ with
the same probability q. This second step is repeated until all the vertices in V are incident
with, at least, one ‘required’ link. From each graph (Albaida, Madrigueras and Aldaya), and
for each value of parameters p ∈ {0.3, 0.5, 0.7} and q ∈ {0.3, 0.5, 0.7}, we have generated
27 instances, named albaR33 to aldaR77 (‘R’ means Rural), for the MRPP and 27 other
instances, named albaG33 to aldaG77 (‘G’ means General), for the MGRP.

On the other hand, in order to test the bounds on larger MRPP and MGRP instances,
we decided to generate new random graphs. We first randomly selected 500 vertices in a
1000×1000 square. Edges were then generated as pairs of vertices i and j, with costs defined
by cij = bbij + 1

2c, where bij are the Euclidean distances. This is the same cost function
proposed in the TSPLIB (see [14]). In order to obtain graphs with a structure similar to
that of real street networks, we did not generate edges completely at random. Indeed, we
proceeded as follows. Let d (degree) be a parameter. Add an edge from each vertex i to its
d nearest vertices. Then remove those edges (i, j) for which cij ≥ 0.98(cik + ckj), for some
(i, k) and (k, j). Some of the remaining edges are then considered as ‘required’ with a given
probability q. If the resulting graph is non connected, edges in the d shortest trees spanning
the connected components are also added and labelled as ‘non required’. At this point and
as before, if we consider all the vertices as ‘required’, we have an undirected GRP instance.
Otherwise, to obtain an undirected RPP instance, the simplification procedure mentioned in
Section 2 is applied. In both cases, from the undirected graphs, mixed instances are obtained
as described above, where edges are transformed into arcs using a given probability p. By
combining values {4, 5} for parameter d and values {0.25, 0.50, 0.75} for parameters q and
p, we have generated 18 MRPP instances, named R422 (meaning ‘Rural’, d = 4, q = 0.25,
p = 0.25) to R577 and 18 MGRP instances, named G422 to G577.

4.2 Computational Results

The algorithms have been coded in C and ran on a PC with a 2000 MHz. Pentium IV
processor. Tables 1 to 11 show the computational results obtained for the instances described
above.

All the tables contain two rows for each instance, presenting the results obtained from
formulations F1 and F2. Columns labelled ‘p’, ‘VR’ and ‘E∪A’ represent, respectively, the
number of R-sets, the number of (required) vertices and the number of links of each instance.
Column ‘LB0’ shows the initial lower bound (see Section 3.1). Columns ‘LBpol’ and ‘Tpol’
present the bound obtained with the cutting-plane algorithm using only the inequalities
that are known to be separated in polynomial time (see Section 3.2) and the time used in
seconds, respectively. Next columns ‘LB’ and ‘Time’ give, respectively, the lower bound and
the corresponding time in seconds obtained with the cutting-plane algorithms described in
Section 3.3. These two last columns are not shown for the MCPP instances because the
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additional valid inequalities used to obtain the final bound LB do not apply when all the
links are required. An ‘*’ means than an optimal solution (not only the optimal value) has
been obtained. Finally, column ‘Dev’ shows the percentage deviation of the LB bound from
the optimal value. Note that when a cutting-plane algorithm finishes before the optimal
solution is reached, we can resort to the branch-and-bound option of CPLEX. If the integer
solution is a feasible solution, it is optimal. Otherwise, some inequalities violated by the
integer solution can be detected and added to the last LP and the process continues. This is
the procedure that, when needed, has been applied here to obtain the optimal solutions.

From the 27 MCPP instances reported in Tables 1 to 3 it is clear that the initial lower
bound (LB0) corresponding to F2 is much better than that of F1, as it should be the case,
since it has been proved that LP0F2 is stronger than LP0F1. Moreover, the corresponding
polynomial bounds (LBpol) are obviously equal, although the cutting-plane procedure based
on F1 is in general more time consuming. In any case, both algorithms obtain the optimal
solutions of these medium-size instances within a few seconds.

The above comments are also valid for the MRPP instances in Table 4 to 6. Note also
that the polynomial lower bounds from F1 and F2 equal here the optimal values in 20 out
of the 27 instances and that the final bound LB is better than LBpol since, within similar
computing times, it obtains the previous 20 optimal values and 3 new ones. As expected,
bounds LB from formulations F1 and F2 are similar. Finally, with respect to the times needed
to compute LBpol and LB, note that both algorithms require a similar computational effort.

With respect to the MGRP instances in Tables 7 to 9 note that, when bound LBpol does
not reach an optimal solution, the final bound LB is better than bound LBpol and that the
improvement is similar with both formulations.

In order to get a deeper understanding of the differences between the two formulations,
we decided to generate larger MRPP and MGRP instances, as described above. Some of the
generated instances are really big, having up to 245 R-sets, 500 vertices and 1339 links. We
think that these are the biggest instances published so far.

To our surprise, the polynomial cutting-plane algorithms are able to optimally solve 9 out
of the 18 MRPP instances and 6 out of the 18 MGRP instances, but these are those instances
having the smaller number of R-sets. Note that in order to solve these instances it would not
be necessary to look for inequalities that up to now can not be separated in polynomial time.
However, if we include (through heuristics) some of these inequalities, as the final bound LB
does, the optimal solution is also obtained with usually less computational effort and in some
cases this effort is greatly reduced. The final bound LB improves on the polynomial bound
LBpol in those instances for which the latter can not reach the optimal solution.

Finally, as mentioned at the end of Section 3.3, there are some differences between LBF1

and LBF2 but, as we expected, they are minimal. The small differences reported may be just
due to differences in the sequence of the LP solutions found. With respect to the computing
times, note that the LP’s solved by the cutting-plane algorithm based on formulation F1 are
smaller, since only one variable per edge is defined in F1, while the algorithm based on F2
does not require the identification of balanced-set inequalities at each iteration. Although
on most of the instances the second algorithm terminates earlier, there are big differences
between the effort taken by each algorithm on some of them. For example, in instances G422
and G522 in which the number of R-sets and required edges is big, the algorithm based on
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F1 is faster than that based on F2.

5 Conclusions

We summarize in this final section the conclusions of the comparison between the two pro-
posed formulations for arc routing problems on mixed graphs. With respect to the initial
bounds, it has been shown that LP0F2 dominates the initial bound obtained from formulation
F1. Furthermore, the former can be easily obtained and the computational results show that
it is much better than bound LP0F1. Then, if we are interested in a simple and good bound
in order to test, for example, the quality of a feasible solution provided by a heuristic, we
think that bound LP0F2 should be our first choice.

Polynomial bounds LBpol obtained from formulations F1 and F2 have been shown to
be equal, though the algorithm based on F2 is usually faster since it only needs to identify
inequalities in two classes.

As for the inequalities included in the bound, it pays to look (heuristically) for K-C, K-
C02, Honeycomb and Honeycomb02 inequalities, since in both formulations the final bound
LB improves on the polynomial bound, taking into account the values obtained and the
computational times.

Bounds LBF1 and LBF2 obtained using the cutting-plane procedures from formulations
F1 and F2 are generally equal. With respect to the algorithms providing them, we would like
to point to two main differences. While, on one hand, the algorithm based on F1 deals with
only one variable per edge and therefore the LP’s to be solved are smaller, that based on F2
does not require the identification of balanced-set inequalities at each iteration and therefore
it is easier to code and should be faster. However, although in some instances this latter
algorithm terminates earlier, there is no a common trend with respect to the time needed to
compute LBF1 and LBF2. Indeed, there are big differences between the effort taken by each
algorithm on some instances.

Finally, as mentioned in Section 4.2, when a cutting-plane algorithm finishes before the
optimal solution is reached, it is possible to invoke the branch-and-bound option of CPLEX
in order to get an integer solution. In this case, an advantage of using formulation F2 is that
when the integer solution is connected it is an optimal solution. This is not true if we use
formulation F1, since in this case the integer solution should also be even and balanced.
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p VR E∪A LB0 LBpol Tpol Dev (%)

albaC3A F1 14800 16380∗ 4.4
albaC3A F2 15575 16380∗ 5.8
albaC3B F1 1 116 174 14990 17256∗ 6.6
albaC3B F2 16306 17256∗ 6.8
albaC3C F1 15310 19518∗ 5.3
albaC3C F2 18834 19518∗ 4.1

albaC5A F1 19336 24568∗ 5.3
albaC5A F2 23882 24568∗ 1.6
albaC5B F1 1 116 174 15754 18216∗ 2.1
albaC5B F2 17444 18216∗ 1.9
albaC5C F1 17245 21340∗ 2.1
albaC5C F2 20914 21340∗ 1.9

albaC7A F1 16715 19328∗ 1.4
albaC7A F2 18906 19328∗ 1.3
albaC7B F1 1 116 174 20430 25462∗ 1.1
albaC7B F2 25076 25462∗ 0.7
albaC7C F1 16183 20560∗ 3.1
albaC7C F2 20047 20560∗ 1.9

Table 1: MCPP instances from Albaida graph

p VR E∪A LB0 LBpol Tpol Dev (%)

madrC3A F1 28165 31610∗ 19
madrC3A F2 31110 31610∗ 1.8
madrC3B F1 1 196 316 28245 31115∗ 15
madrC3B F2 30580 31115∗ 5.4
madrC3C F1 29385 35140∗ 14
madrC3C F2 34730 35140∗ 3.2

madrC5A F1 31445 38355∗ 9.1
madrC5A F2 37820 38355∗ 1.8
madrC5B F1 1 196 316 32605 41085∗ 6.7
madrC5B F2 40975 41085∗ 0.9
madrC5C F1 31780 39730∗ 9.5
madrC5C F2 39435 39730∗ 0.9

madrC7A F1 40505 52735∗ 3.3
madrC7A F2 52572.5 52735∗ 0.5
madrC7B F1 1 196 316 37120 44540∗ 4.3
madrC7B F2 44360 44540∗ 0.7
madrC7C F1 34445 41210∗ 5.0
madrC7C F2 40790 41210∗ 3.4

Table 2: MCPP instances from Madrigueras graph
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p VR E∪A LB0 LBpol Tpol Dev (%)

aldaC3A F1 41966 44422∗ 10
aldaC3A F2 43230 44422∗ 6.1
aldaC3B F1 1 214 351 42508 47480∗ 13
aldaC3B F2 46623.5 47480∗ 3.6
aldaC3C F1 42101 47344∗ 9.8
aldaC3C F2 46824.5 47344∗ 2.1

aldaC5A F1 45680 54143∗ 6.9
aldaC5A F2 53508 54143∗ 1.1
aldaC5B F1 1 214 351 52108 64108∗ 14
aldaC5B F2 63708 64108∗ 1.5
aldaC5C F1 48595 55999∗ 5.7
aldaC5C F2 55280.5 55999∗ 0.9

aldaC7A F1 55272 64479∗ 9.5
aldaC7A F2 64197 64479∗ 3.1
aldaC7B F1 1 214 351 66289 77849∗ 6.0
aldaC7B F2 77591 77849∗ 1.1
aldaC7C F1 53780 67013∗ 6.5
aldaC7C F2 66681.5 67013∗ 1.6

Table 3: MCPP instances from Aldaya graph

p VR E∪A LB0 LBpol Tpol LB Time Dev (%)

albaR33 F1 24 10457 11300 1.8 11300 2.5 0.21
albaR33 F2 24 10482 11300 1.5 11300 3.2 0.21
albaR35 F1 30 116 174 13581.5 15710 0.6 15749∗ 1.3
albaR35 F2 30 15026 15710 0.4 15734 0.7 0.09
albaR37 F1 24 11272 12982 1.0 13000∗ 1.0
albaR37 F2 24 11802 12982 0.7 13000∗ 1.0

albaR53 F1 19 11489 12608∗ 1.4 12608∗ 1.1
albaR53 F2 19 11865 12608∗ 0.8 12608∗ 1.2
albaR55 F1 13 116 174 11038 12520∗ 1.0 12520∗ 0.9
albaR55 F2 13 11958 12520∗ 0.8 12520∗ 1.1
albaR57 F1 12 13369 15619∗ 2.6 15619∗ 2.7
albaR57 F2 12 14871 15619∗ 2.1 15619∗ 3.1

albaR73 F1 8 13521 15301∗ 1.9 15301∗ 1.8
albaR73 F2 8 14875 15301∗ 0.9 15301∗ 1.3
albaR75 F1 2 116 174 13897 16550 2.2 16550 2.1 0.12
albaR75 F2 2 15929 16550 1.1 16550 1.6 0.12
albaR77 F1 5 13916.5 16358∗ 0.9 16358∗ 0.8
albaR77 F2 5 15639.5 16358∗ 0.7 16358∗ 0.9

Table 4: MRPP instances from Albaida graph
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p VR E∪A LB0 LBpol Tpol LB Time Dev (%)

madrR33 F1 49 18947.5 20570∗ 2.2 20570∗ 2.8
madrR33 F2 49 19760 20570∗ 1.7 20570∗ 2.4
madrR35 F1 48 196 316 21315 23100∗ 0.9 23100∗ 1.4
madrR35 F2 48 22440 23100∗ 0.6 23100∗ 1.0
madrR37 F1 39 24937.5 26740∗ 0.8 26740∗ 0.9
madrR37 F2 39 26517.5 26740∗ 0.4 26740∗ 0.9

madrR53 F1 25 19803.7 21255∗ 1.3 21255∗ 1.4
madrR53 F2 25 20587.5 21255∗ 0.7 21255∗ 1.0
madrR55 F1 19 196 316 26460 32390∗ 2.2 32390∗ 2.4
madrR55 F2 19 32140 32390∗ 0.6 32390∗ 1.0
madrR57 F1 20 30035 34455∗ 1.5 34455∗ 1.7
madrR57 F2 20 34195 34455∗ 0.5 34455∗ 0.8

madrR73 F1 5 23410 26047.5 11 26047.5 8.8 0.12
madrR73 F2 5 24947.5 26047.5 4.4 26047.5 5.7 0.12
madrR75 F1 4 196 316 30650 39235∗ 4.9 39235∗ 4.8
madrR75 F2 4 38895 39235∗ 0.5 39235∗ 0.7
madrR77 F1 5 29875 32470∗ 1.2 32470∗ 1.2
madrR77 F2 5 31690 32470∗ 0.9 32470∗ 1.2

Table 5: MRPP instances from Madrigueras graph

p VR E∪A LB0 LBpol Tpol LB Time Dev (%)

aldaR33 F1 52 28782.8 31404∗ 4.6 31404∗ 7.4
aldaR33 F2 52 30356.3 31404∗ 3.8 31404∗ 5.2
aldaR35 F1 52 214 351 37264 41395∗ 1.0 41395∗ 1.7
aldaR35 F2 52 40895 41395∗ 0.5 41395∗ 1.4
aldaR37 F1 38 34410 37029 1.8 37029 2.7 0.03
aldaR37 F2 38 35949 37029 1.4 37029 2.7 0.03

aldaR53 F1 35 28506 30384.5 8.5 30392∗ 2.0
aldaR53 F2 35 29501 30384.5 8.3 30392∗ 2.9
aldaR55 F1 21 214 351 33849 36565∗ 2.4 36565∗ 2.3
aldaR55 F2 21 35877 36565∗ 1.6 36565∗ 2.3
aldaR57 F1 22 38425 42841∗ 1.4 42841∗ 1.5
aldaR57 F2 22 42455 42841∗ 0.7 42841∗ 1.0

aldaR73 F1 10 31610 34115∗ 3.9 34115∗ 3.0
aldaR73 F2 10 33304 34115∗ 3.1 34115∗ 3.5
aldaR75 F1 1 214 351 36610 40816∗ 6.1 40816∗ 6.0
aldaR75 F2 1 39974 40816∗ 1.6 40816∗ 2.3
aldaR77 F1 6 55006 64739∗ 3.7 64739∗ 3.7
aldaR77 F2 6 64614 64739∗ 0.6 64739∗ 0.7

Table 6: MRPP instances from Aldaya graph
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p VR E∪A LB0 LBpol Tpol LB Time Dev (%)

albaG33 F1 66 10120 11792.7 1.2 11796∗ 2.2
albaG33 F2 66 10272 11792.7 0.9 11796∗ 2.4
albaG35 F1 68 116 174 8890 11146 2.1 11166 2.9 0.16
albaG35 F2 68 9075 11146 1.5 11166 3.0 0.16
albaG37 F1 72 14613 17583 0.7 17651.6 2.2 0.06
albaG37 F2 72 14757 17583 0.7 17651 3.0 0.06

albaG53 F1 35 10107 11551∗ 0.6 11551∗ 0.6
albaG53 F2 35 10595 11551∗ 0.6 11551∗ 1.0
albaG55 F1 28 116 174 13357 14393 0.7 14445 0.7 0.14
albaG55 F2 28 13915 14393 0.5 14445 0.7 0.14
albaG57 F1 34 15475 17124∗ 1.3 17124∗ 1.3
albaG57 F2 34 16406 17124∗ 0.9 17124∗ 1.5

albaG73 F1 13 12550 14030∗ 1.0 14030∗ 1.0
albaG73 F2 13 13142 14030∗ 0.5 14030∗ 0.7
albaG75 F1 12 116 174 14235 16109∗ 1.3 16109∗ 1.3
albaG75 F2 12 15271 16109∗ 0.7 16109∗ 0.8
albaG77 F1 7 16052 18182∗ 1.3 18182∗ 1.2
albaG77 F2 7 17458 18182∗ 0.9 18182∗ 1.3

Table 7: MGRP instances from Albaida graph

p VR E∪A LB0 LBpol Tpol LB Time Dev (%)

madrG33 F1 104 16740 17573.7 5.8 17631.7 112 0.83
madrG33 F2 104 16915 17573.7 4.8 17623.2 79 0.88
madrG35 F1 97 196 316 20425 21675 1.5 21735 5.3 0.30
madrG35 F2 97 21020 21675 0.6 21735 6.0 0.30
madrG37 F1 99 22555 23830 0.5 23853.3 2.5 0.03
madrG37 F2 99 23110 23830 0.3 23853.3 2.6 0.03

madrG53 F1 44 20235 21747.5 8.8 21785∗ 2.2
madrG53 F2 44 20822.5 21747.5 4.8 21785∗ 1.8
madrG55 F1 45 196 316 23437.5 26301.2 1.8 26338.7 3.5 0.06
madrG55 F2 45 25695 26301.2 0.8 26342.5 3.0 0.05
madrG57 F1 41 25070 27700∗ 2.1 27700∗ 2.9
madrG57 F2 41 27600 27700∗ 0.8 27700∗ 1.7

madrG73 F1 14 23297.5 26365∗ 3.9 26365∗ 4.0
madrG73 F2 14 25707.5 26365∗ 2.3 26365∗ 4.6
madrG75 F1 7 196 316 27315 33320 3.7 33355∗ 4.1
madrG75 F2 7 32697.5 33320 0.7 33355∗ 1.0
madrG77 F1 10 32420 35405∗ 2.4 35405∗ 2.4
madrG77 F2 10 35031.2 35405∗ 0.9 35405∗ 1.2

Table 8: MGRP instances from Madrigueras graph
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p VR E∪A LB0 LBpol Tpol LB Time Dev (%)

aldaG33 F1 109 24178.5 24980.7 5.3 25050.5 29 0.64
aldaG33 F2 109 24231 24980.7 3.1 25050.5 21 0.64
aldaG35 F1 100 214 351 28842 31446 1.9 31652 11 0.66
aldaG35 F2 100 29982 31446 1.6 31652 13 0.66
aldaG37 F1 105 28315 31480 1.3 31538 9.8 0.01
aldaG37 F2 105 28919 31480 1.0 31538 9.7 0.01

aldaG53 F1 39 32146 36197 7.1 36213∗ 10
aldaG53 F2 39 35286 36197 4.1 36209 9.0 0.01
aldaG55 F1 51 214 351 33055 36903∗ 2.4 36903∗ 2.5
aldaG55 F2 51 36017.5 36903∗ 1.0 36903∗ 2.0
aldaG57 F1 35 38366.5 40832∗ 1.4 40832∗ 1.9
aldaG57 F2 35 40611 40832∗ 0.5 40832∗ 1.2

aldaG73 F1 9 34020 36995∗ 4.1 36995∗ 3.5
aldaG73 F2 9 35956 36995∗ 1.3 36995∗ 2.9
aldaG75 F1 6 214 351 39761 47228∗ 6.4 47228∗ 6.2
aldaG75 F2 6 46329 47228∗ 3.6 47228∗ 4.8
aldaG77 F1 10 38655 41730∗ 1.5 41730∗ 1.6
aldaG77 F2 10 41197 41730∗ 0.7 41730∗ 0.9

Table 9: MGRP instances from Aldaya graph
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p VR E∪A LB0 LBpol Tpol LB Time Dev (%)

R422 F1 18005.5 18992.6 14.7 19009.7 45.1 0.03
R422 F2 18099 18992.6 15.8 19009.3 120 0.03
R425 F1 102 357 884 20828 22211.5 3.9 22234∗ 11.0
R425 F2 21404 22211.5 4.3 22234∗ 12.7
R427 F1 29328 30615 1.9 30615 8.2 0.11
R427 F2 30242.5 30615 2.2 30615 10.0 0.11

R452 F1 27321 29359.5 726 29359.5 716 0.01
R452 F2 28264 29359.5 3042 29359.5 426 0.01
R455 F1 23 465 1055 33112.2 35862.5 25.3 35862.5 28.8 0.09
R455 F2 34916.3 35862.5 24.9 35862.5 27.3 0.09
R457 F1 45038 49155 26.2 49162∗ 22.6
R457 F2 48441 49155 12.5 49162∗ 13.5

R472 F1 37642.5 40744∗ 328 40744∗ 304
R472 F2 39839 40744∗ 188 40744∗ 91.6
R475 F1 3 498 1114 43872.5 49972∗ 111 49972∗ 109
R475 F2 49174.5 49972∗ 9.8 49972∗ 9.7
R477 F1 59846.5 66481∗ 23.9 66481∗ 23.7
R477 F2 66068 66481∗ 4.3 66481∗ 4.1

R522 F1 21249.7 22287.6 76.8 22292.5 135 0.12
R522 F2 21429 22287.6 273 22292.5 105 0.12
R525 F1 79 388 1106 25537.3 26669∗ 26.1 26669∗ 92.4
R525 F2 25965.8 26669∗ 75.8 26669∗ 64.1
R527 F1 33867 36003.5 2.6 36038.4 46.0 0.09
R527 F2 35231.5 36003.5 3.9 36038.2 44.0 0.09

R552 F1 34343.5 35958∗ 757 35958∗ 541
R552 F2 34895.2 35958∗ 4106 35958∗ 672
R555 F1 7 488 1318 40408.6 42951 32.6 42951 33.4 0.01
R555 F2 42217.5 42951 245 42951 99.0 0.01
R557 F1 54120 57096∗ 8.0 57096∗ 8.4
R557 F2 56745.5 57096∗ 5.8 57096∗ 6.0

R572 F1 48479 50304∗ 68.6 50304∗ 68.9
R572 F2 49261.9 50304∗ 30.2 50304∗ 40.6
R575 F1 1 498 1326 53508 57880∗ 362 57880∗ 365
R575 F2 56971.5 57880∗ 28.9 57880∗ 25.1
R577 F1 65212.5 71769∗ 60.1 71769∗ 61.5
R577 F2 71267.5 71769∗ 12.6 71769∗ 11.9

Table 10: Random MRPP instances
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p VR E∪A LB0 LBpol Tpol LB Time Dev (%)

G422 F1 20536 21934.3 36.7 21990.8 2384 0.62
G422 F2 20552.7 21934.3 72.3 21987.5 4964 0.63
G425 F1 245 500 1105 23520.5 25793.3 20.4 25827.6 731 0.41
G425 F2 24057 25793.3 26.4 25827.5 588 0.41
G427 F1 27252 29492 13.8 29513 699 0.31
G427 F2 27572 29492 20.4 29517.2 731 0.30

G452 F1 29829 32667 36.6 32672∗ 30.4
G452 F2 31362.5 32667 13.5 32672∗ 21.4
G455 F1 58 500 1118 33118.7 35963.5 189 35998.6 118 0.05
G455 F2 34951.1 35963.5 436 35998.6 183 0.05
G457 F1 40666.5 43025 6.6 43035∗ 11.0
G457 F2 42352 43025 4.3 43035∗ 8.0

G472 F1 37471.5 39725 974 39725 251 0.00
G472 F2 38601.5 39725 1932 39725 788 0.00
G475 F1 5 500 1116 42556.5 50307∗ 75.9 50307∗ 71.1
G475 F2 49573.5 50307∗ 15 50307∗ 17.2
G477 F1 52060.5 57952∗ 21.4 57952∗ 22.6
G477 F2 57374 57952∗ 16.6 57952∗ 14.3

G522 F1 22762 24372.0 206 24490.3 3734 0.55
G522 F2 22963.5 24371.9 129 24478.5 6480 0.59
G525 F1 191 500 1301 25729.5 26602.2 10.7 26651.2 183 0.32
G525 F2 25829.2 26602.2 11.5 26650.5 219 0.32
G527 F1 31177 32774.5 8.8 32802 129 0.08
G527 F2 31485 32774.5 7.3 32802 114 0.08

G552 F1 34683 36394∗ 411 36394∗ 230
G552 F2 35464.5 36394∗ 85.6 36394∗ 88.3
G555 F1 19 500 1339 41229.5 43243.5 19.3 43268 19.2 0.00
G555 F2 42573.8 43243.5 8.8 43268 7.9 0.00
G557 F1 54019 57414∗ 14.7 57414∗ 14.7
G557 F2 57084 57414∗ 6.2 57414∗ 6.5

G572 F1 48360.5 50058∗ 1787 50058∗ 609
G572 F2 48908.5 50058∗ 217 50058∗ 112
G575 F1 3 500 1329 53296 61128∗ 1384 61128∗ 1033
G575 F2 60242 61128∗ 82.5 61128∗ 48.2
G577 F1 71266 79352 79.6 79359∗ 87.6
G577 F2 79123.5 79352 5.4 79359∗ 6.9

Table 11: Random MGRP instances
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