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Abstract. In this paper we present a metaheuristic procedure constructed for the 
special case of the Vehicle Routing Problem in which the demands of the 
clients can be split, i.e., any client can be serviced by more than one vehicle. 
The proposed algorithm, based on the scatter search methodology, produces a 
feasible solution using the minimum number of vehicles. The results obtained 
compare with the best results known up to date on a set of instances previously 
published in the literature. 

1 Introduction 

In this paper we consider a variant of the Vehicle Routing Problem (VRP) in which 
the demand of any client can be serviced by more than one vehicle, the Split Delivery 
Vehicle Routing Problem (SDVRP). This relaxation of the classical VRP was first 
proposed by Dror and Trudeau ([9] and [10]), who showed that important savings on 
the total solution cost could be obtained as well as a reduction in the total number of 
vehicles used in the solution by allowing clients to be serviced by more than one 
vehicle. They also showed that this problem is also NP-hard. The SDVRP has 
received great attention in the last years. 

 
Mullaseril, Dror and Leung [18] studied the problem of distributing feed to cattle at 

a large livestock ranch in Arizona. They modelled this problem as an arc routing one 
(in fact, as a Capacitated Rural Postman Problem with split deliveries and time 
windows). The about 100.000 head of cattle are fed each day, within a specified time 
window, by six trucks that deliver feed to the large pens connected by a road network. 
Sometimes, the last pen on a route does not receive its full load and another truck, 
servicing a different route, has to visit it again in order to complete the load. The 
computational experiments showed that allowing split deliveries produced a 
significant reduction in the total distance travelled by the vehicles in most of the 
considered situations. 

 
In 1998, Sierksma and Tijssen [19] presented another application. The problem 

was to schedule the helicopter flights from an airport near Amsterdam to 51 off-shore 
platforms in the North Sea in order to exchange the employees, which work every 
other week. A person leaving a platform is exchanged for another person arriving for 
working at the same platform. The helicopters have a fixed capacity and, because of 
fuel constraints, a maximum flying distance for each route. The problem was 
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modelled as a Split Delivery Vehicle Routing Problem, in which the total number of 
exchanges at a given platform could be done by more than one helicopter.  

 
More details about the above applications, as well as some comments on their 

resolution and results, can be found in the recent paper by Chen, Golden and Wasil 
[6]. Moreover, that paper also mentions another interesting application by Song, Lee 
and Kim [20] related to the distribution of newspapers from printing plants to agents 
in Seul (South Korea). 

 
    Dror, Laporte and Trudeau [8] proposed a branch and bound algorithm based on an 
integer and linear SDVRP formulation, to which several classes of new valid 
inequalities were added. The procedure was tested on three small instances up to 20 
clients and varying client demands. The SDVRP was studied from a polyhedral point 
of view in [5]. Based on the partial description of the SDVRP polyhedron, the same 
authors implemented a branch and cut algorithm capable of solving some medium 
size instances up to 51 clients. The strengthened linear relaxation produces a good 
lower bound to the optimal solution value. 

 
In their original work, Dror and Trudeau ([9], [10]) propose a two stage procedure 

that first obtains a feasible VRP solution and then improves it using, among others, 
specific routines such as the route addition and k-split interchanges. The Route 
addition routine consists of creating a new route to service a client whose demand is 
split in several routes if the total distance is reduced. A k-split interchange considers a 
client i with demand di and removes i from all the routes that service it. Then, the 
routine considers all subsets of routes having a “residual” capacity greater than di and 
computes the total insertion cost of client i into all the routes of the subset. Finally, 
the subset leading to the least insertion cost is chosen and the interchange takes place. 
These basic but important procedures have also been used in successive heuristic and 
metaheuristic procedures later on. In order to test their algorithm, Dror and Trudeau 
selected three basic instances with 75, 115 and 150 clients, with randomly generated 
demands from six different scenarios, expressed as a fraction of the vehicle capacity. 
The same pattern has been used since then, so most of the published and available test 
instances are generated from known VRP instances, varying the demands of the 
clients. In two cases, as far as we know, other instances are proposed: in [3] some of 
the Solomon instances are used and in [6] the authors propose new and geometric 
instances. However the published computational results do not always allow an easy 
comparison.  

 
In [11], Frizzell and Giffin studied the SDVRP with time windows but on a special 

network (the clients are located on a grid) and proposed a constructive heuristic 
followed by some improvement procedures (1-0 exchanges and 1-1 interchanges) that 
will be described later. 

 
A Tabu Search procedure was developed by Archetti, Hertz and Speranza [1]. It 

produces an initial feasible solution using the GENIUS algorithm for the TSP ([12]). 
In the Tabu Search phase moves are made according to two procedures: one orders 
the routes servicing client i according to the saving obtained by removing i, while the 
other looks for the “best neighbor” solution of the current one. In a final and 
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improvement phase, GENIUS is applied to each individual route. A variant of this 
algorithm (SPLITABU) consists of applying 2-opt and node interchange procedures 
each time the best solution encountered so far is improved. This variant produces 
better results and is denoted as SPLTABU-DT. 

 
Archetti, Savelsbergh and Speranza [4] use the above Tabu Search procedure to 

identify parts of the solution space that are likely to contain high quality solutions. 
Once a set of promising routes is selected, an integer program (a route-based 
formulation for the SDVRP) is run trying to obtain improved feasible solutions. 

 
In a recent paper, Chen, Golden and Wasil [6] propose a procedure that first 

constructs a feasible VRP solution using the Clarke and Wright [7] savings algorithm. 
The solution of an integer program provides then the optimal reallocation of the 
endpoints of a route in order to maximize the total savings. The program is run for a 
maximum time of T seconds, with a given neighbour list for each endpoint that is a 
function of the number of endpoints, and the best feasible solution found is saved. 
Then, using the feasible solution as the initial one, a new program is run, with a larger 
size for the neighbour list and a smaller limit for the running time. To the final and 
best solution obtained, a variable length record-to-record travel algorithm [16] that 
considers 1-0 exchanges, 1-1 interchanges and 2-opt moves, is applied. 

 
 Before closing this introduction, we should mention some structural properties of 
the problem. In [9] Dror and Trudeau showed that “if the cost matrix satisfies the 
triangle inequality, then there exists an optimal solution to the SDVRP where no two 
routes have more than one client with a split demand in common”. Archetti, 
Savelsbergh and Speranza ([2]) define by ni the number of vehicles servicing client i 
and by ni – 1 the number of splits at client i. Then they show that when the cost matrix 
satisfies the triangle inequality there exists an optimal solution to the SDVRP where 
the total number of splits (the sum of the number of splits of every client) is less than 
the number of routes. 
 

Moreover, Archetti, Savelsbergh and Speranza addressed in [3] the question: To 
split or not to split? They showed first that, assuming that all the distances among 
clients and the depot satisfy the triangle inequality, the ratio between the minimum 
number of routes required to satisfy the client demands in a VRP solution over the 
minimum number in a SDVRP solution is always less than or equal to 2. They also 
proved that this bound is tight. In what refers to the ratio between optimal solution 
values, the same authors showed in [2] that the same bound applies. So, allowing 
splitting the demands may produce important savings both in the total number of 
vehicles used and in the total solution cost, as already pointed out by Dror and 
Trudeau. Moreover, Archetti, Savelsbergh and Speranza conducted an empirical study 
of the last mentioned ratio, as a function of client’s location and client’s demand, 
concluding: Cost’s reductions seem to be due to the ability to reduce the number of 
routes, without a dependence on client’s locations, and mainly depend on the relation 
between mean demand and vehicle capacity and on the variance of the demands. They 
obtained the largest benefits when the mean demand is greater than half the vehicle 
capacity but less than three quarters of the vehicle capacity. Our own computational 
study also points to this direction. 
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 The paper is organized as follows: in Section 2 the problem is defined and some 
notation is presented. Section 3 describes the main features of the proposed 
metaheuristic and in Section 4 we present the computational results. Conclusions and 
future work are summarized in Section 5. 
 

2 Problem definition and notation 

The Vehicle Routing Problem with Split Demands is defined on an undirected and 
complete graph G = (V, E), where V = {0,1,2,…n} is the set of vertices (vertex 0 
denotes the depot and 1,…,n represent the set of clients). Each edge e = (i,j) has an 
associated cost or distance ce between clients i and j. Moreover, each vertex has a 
known demand di (d0=0) and there is a fleet of identical vehicles of capacity Q 
located at the depot. A feasible solution consists of a set of routes, each one beginning 
and ending at the depot, such that: 

 
• The demand of every client is satisfied, and 
• The sum of the demands serviced by any vehicle does not exceed its capacity Q 
 
     The SDVRP version defined above is a very difficult problem that presents an 
outstanding characteristic that makes it different from the classical VRP: there is 
always a feasible solution using the minimum number of vehicles k. It is easy to see 
that this minimum number corresponds to the smallest integer greater than or equal to 
Σi di /Q. This is not always true if the demand of a client can not be split, since in this 
case the minimum number of vehicles corresponds to the optimal solution of a Bin 
Packing Problem. 
 
 To the usual and explicit objective of minimizing the total solution cost, we add the 
implicit one of minimizing the number of vehicles used in the solution. We consider 
that this is a very important objective, since in most of the practical applications 
involving several vehicles there is a fixed cost associated to each used vehicle. 
Moreover, the total fixed cost of a fleet is usually greater than the total and variable 
cost of a feasible solution. This variable cost usually depends on the total distance 
travelled by the fleet. Note that a term in the objective function penalizing the excess 
of vehicles could be added, or bicriteria techniques could also be taken into account, 
since it is possible in some instances to decrease the total cost by increasing the 
number of vehicles. Instead we propose a Scatter Search procedure, following the 
framework presented in [14] and [15], which generates a population of feasible 
solutions with the minimum number of vehicles. 

3 A Scatter Search Procedure 

In this section we describe the main features of a Scatter Search procedure designed 
for the SDVRP. This is, as far as we know, the first time that such a technique is 
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applied to this routing problem. Figure 1 presents a schematic summary of the overall 
procedure. The main characteristics and particularities introduced by the authors are 
briefly described in the next subsections. 

 
 

 

Figure 1: Scheme of a Scatter Search procedure 

3.1 Creating a Population 

We have adapted two standard VRP heuristic procedures to the split demands case in 
order to obtain SDVRP feasible solutions. The first one, called here Big Tour, uses 
the Lin and Kernighan [17] heuristic to build a giant tour through the n clients and the 
depot. From this tour it is always possible to obtain k routes and, thus, a feasible 
SDVRP solution: Let us first renumber the clients so that the TSP tour is 0-1-2-… -(n-
1)-n-0. The first vehicle leaves the depot using edge (0,1) and services, successively, 
clients 1,2,… up to client i1 for which the total demand serviced by this first route is at 
least equal to the vehicle’s capacity. Client i1 is either completely serviced or its 
demand is split between routes 1 and 2. In the first case, edges (i1,0) and (0, i1+1) are 
added, corresponding to the last edge in route 1 and the first one in route 2. In the 
second case edge (i1,0) is added twice and route 2 continues using edge (i1,i1+1). The 
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feasible solution finally obtained satisfies the two structural properties mentioned in 
the introduction, i.e., the total number of splits is less than the number of routes and 
any two routes have, at most, one client in common. We can take into account the 
difference between the total capacity k Q of the vehicles’ fleet and the total demand of 
the clients and adjust the load in each vehicle to an average load so that the solution 
finally obtained uses k balanced (in terms of load) routes. In this way, we avoid 
obtaining a solution having k-1 routes with load Q and a last route with usually a very 
small load. 

 
The same Big Tour is used to generate additional solutions, all of them following 

the same sequence of clients but starting each one at a different client, i.e., the second 
feasible solution (for instance) could use as the first edge in the first route edge (0, 2) 
and then edge (2, 3) and so on. The last edge in route k would then be edge (1, 0). 
However, in order to obtain solutions that differ substantially, the starting clients are 
selected in a nonconsecutive order. 

 
The second procedure is a modified and accelerated version of the classical Clarke 

and Wright parallel savings algorithm [7]. According to this procedure, from an initial 
solution consisting of n return trips to each client, the best available saving, computed 
as sij = c0i + c0j – λ cij , is used to merge the single routes (0,i,0) and (0,j,0) into a new 
route (0,i,j,0) and the procedure is repeated until no merge is feasible, in terms of 
vehicle capacity, or there are no more available savings. For each client, its 
neighborhood is computed as the subset of its closest clients, and only these savings 
are calculated. We allow to split the demand of a client l only when the best available 
saving corresponds to merging a given route r with a return trip from client l and the 
total demand exceeds the vehicle capacity Q; in this case, part of the demand of client 
l is serviced in route r and we maintain a return trip from client l with the unsatisfied 
demand. In order to limit the complexity of the procedure, any client is serviced by, at 
most, two vehicles. This procedure does not guarantee a feasible solution using the 
minimum number of vehicles but in all our computational experiences, feasible 
solutions using k vehicles are obtained. In order to generate more than one solution, 
we prohibit half of the savings used in a solution when computing the next one. 
Savings are prohibited with probabilities directly proportional to the frequency of use 
of each saving in the previously generated solutions.  

 
Finally, we have also implemented a sequential version of Clarke and Wright 

savings algorithm [7] in which routes are generated one after the other. Thus, the 
procedure has always just one active route which grows by adding new clients either 
to the first serviced client or to the last one (the two “endpoints” of the route). In this 
case, only the demand of the last client added to the route can be split, but the number 
of vehicles that may service this client is not limited. Savings are again computed, for 
a pair of clients i and j as sij = c0i + c0j – λ cij and, in both versions, different values of 
parameter λ are considered in order to diversify the solutions. We have chosen λ=1, 
0.6 and 0.4. 

 
We have tested the quality of the feasible solutions obtained by these three 

procedures on the set of test instances used in this paper, after applying to each 
feasible solution the improvement procedures described next. Table 1 shows the 
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average values on 50 solutions obtained for each instance by the three constructive 
algorithms and Figure 2 summarizes the results obtained. These results indicate that 
the values of feasible solutions obtained by the sequential version are always worst 
than the values obtained by the other two procedures, which are similar. 

 
 
Instance class Big Tour Sequential CW Parallel CW 

OD 10160398,7 12167770,7 9863394,7 
0.01-0.1 8196954,3 9405272,8 8160844,3 
0.1-0.3 17922662,7 22271986,9 17572631,2 
0.1-0.5 24246567,9 29550626,9 24172589,7 
0.1-0.9 37063229,9 41902227,9 37405057,9 
0.3-0.7 37575097,1 42143493,7 38055871,1 
0.7-0.9 58107028,0 66310339,9 60157794,6 

 
Table 1: Average values for three constructive algorithms for the SDVRP 

 
 
We have decided then to discard the sequential version of Clarke and Wright 

savings algorithm and use procedure Big Tour to generate half of the population of 
feasible solutions, of size P, and generate the remaining feasible solutions using the 
parallel version of the Clarke and Wright heuristic. 
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Figure 2: Quality comparison for the three constructive heuristics 

3.2 Improving a Feasible Solution 

A local search phase is applied to each solution in the original population in order to 
reduce its cost, if possible. We have implemented procedures for client moves, such 
as the 1-0 exchanges, tried first and consisting of shifting one client from one route to 
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another route, and 1-1 interchanges, consisting of interchanging one client from a 
route with another client in another route. These moves are applied to every non split 
client. We have also implemented two-split changes, that take a client out from every 
route visiting it and look for a pair of routes that, jointly, could service its demand 
(two-split changes are a particular case of the k-split changes, first introduced by Dror 
and Trudeau in [9]. Finally, 2-2 interchanges are checked. With them, we try to 
interchange one edge of a route with another from another route. When such 
improvements are no longer possible, the routes in the solution are re-optimized using 
a 2-opt procedure or the more complex Lin and Kernighan algorithm. The same 
procedures are applied to a feasible solution entering the reference set, as described in 
the next subsection. 

3.3 The Reference Set 

The P feasible solutions in the population are ordered according to the cost and b of 
them are selected to be in the reference set. One half corresponds to the best feasible 
solutions and the remaining solutions add the necessary diversity to this set, since 
they correspond to those solutions in the population that are the most different when 
compared to the best ones. As a measure of the difference between two solutions we 
compute the total number of edges in one solution but not in the other. Each pair of 
solutions in the reference set is combined to produce another solution that enters the 
set only when its cost is greater than the cost of the worst solution, which is 
eliminated. The overall procedure stops when, after every possible combination (one 
iteration), no new feasible solution enters in the reference set or a maximum number 
of iterations, previously fixed, is reached.  

 
In our computational experiments, we have tested different population’s sizes 

combined with the size of the Reference Set. As expected, solutions’ quality improves 
as P and b increase, although at cost of greater computing times. Accordingly, we 
have chosen P=150 and b=25 as the final values for the computational experiences 
and comparisons. 

3.4 The Combination Method 

We have devised a procedure that captures the essential characteristics of a feasible 
SDVRP solution and tries to maintain those that could be satisfied by the good 
solutions. In order to do that, for each solution in the reference set we define a set of 
critical clients, consisting of: 

 
1. all its split clients, 
2. all the clients in routes with just 1 or 2 clients, 
3. the client whose removal from a route produces the greatest saving cost, for each 

route with at least 3 clients, and finally 
4. every client such that at least one among its three closest neighbours belongs to a 

different route. 
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 When combining feasible solutions A and B in the reference set we consider, in 
turn, a critical client in A, in classes 1 to 3 above, and we move this client, thus 
modifying solution A, following the recommendation for this same client in solution 
B. If it is a split client in B, we consider that there is no recommendation and so we 
take the next critical client in A. If it is not, we consider its two adjacent clients, say α 
and β, in B and we locate these clients in solution A. If clients α and β are two 
consecutive clients in the same route in solution A, we understand that solution B 
recommends to insert the critical client between α and β; otherwise, the critical client 
is moved to the “best recommended” position, i.e., inserted after client α or inserted 
before client β. In order to simplify the combination procedure and since the moves 
already performed may produce a route overload, to move a client to an already 
unfeasible route is prohibited. Note that combining solutions B and A is also possible 
and produces a different combination. 
 
   When all the critical clients of A have been considered, the combination method has 
produced a new and maybe unfeasible solution because of the load in each route. A 
routine is then applied that considers some moves aimed at obtaining a feasible 
solution. 
 
   Each time a feasible solution is obtained as a combination of two solutions in the 
reference set, the improve procedures described in subsection 3.2 are applied. Once 
all the possible comparisons have been considered, if no new solution enters the 
reference set, instead of finishing the overall procedure at this moment, we augment 
the set of critical clients of each solution in the reference set by including those in 
case 4 above and we run all the possible combinations once again. The new 
neighborhood created for each solution replaces the usual rebuilding phase. If a 
feasible solution enters now the Reference Set, the procedure continues, otherwise we 
stop it. The procedure considers also the combinations already performed so that 
repetitions are avoided and only pairs of feasible solutions not yet considered are 
combined. 

4 Computational Experiments 

We present the results obtained by the Scatter Search procedure on a set of instances 
following the proposal made by Dror and Trudeau. We have repeated the generation 
parameters used by Archetti, Hertz and Speranza [1] so that the results can be 
compared.  

4.1 The Instances 

In order to test our algorithm, we have considered the same set of instances used by 
Archetti, Hertz and Speranza [1]. They generated the instances starting from the VRP 
problems 1 to 5, 11 and 12 taken from [13], which have between 50 and 199 clients 
and satisfy the triangle inequality, and computed the demands of the customers in the 
following way. First, two parameters α and γ (α ≤ γ) are chosen in the interval [0, 1]. 
Then, the demand di of customer i is set equal to di = α Q+δ (γ−α) Q, where δ is a 



10      Campos,V., Corberán, A., Mota, E. 

random number in [0, 1]. As in [9], Archetti, Hertz and Speranza have considered the 
following combinations of parameters (α, γ): (0.01, 0.1), (0.1, 0.3), (0.1, 0.5), (0.1, 
0.9), (0.3, 0.7) and (0.7, 0.9). The procedure is equivalent to generate the demands of 
an instance in the interval (αQ, γQ). Considering also the case where the original 
demands are not changed (represented as O.D. in the tables), a total of 49 instances 
are obtained. 

4.2 Computational Results 

Computational results on the whole set of instances are shown in Table 4 in the 
Appendix, which compares the results obtained by the Scatter Search procedure with 
those obtained with two Tabu Search (TS) algorithms presented in [1]. Other 
characteristics of the feasible solutions are also included in the table. The first two 
columns show the instance name, which also indicates the number of clients, and the 
values of α and γ and thus, the corresponding interval where demands have been 
generated. Instances in the first seven rows have original demands (denoted by O.D.). 
Column 3 presents the best value (z) obtained by our Scatter Search procedure (SS). 
A value in bold indicates that this value is at least as good as all the ten values 
obtained by applying the SPLITABU and the SPLITABU-DT procedures ([1]). All 
the values have been obtained using as distance between clients i and j the cost cij: 

 

( )22 )()(10000 jijiij yyxxroundc −+−=  (1) 

   
 Column 4 indicates the number of vehicles in the feasible solution obtained (k), 

which corresponds always to the minimum number. Total time in seconds is presented 
in column 5 (T). The procedure was implemented in C and run on a PC Pentium IV, 
1Gb Ram, CPU 2.40 GHz. The minimum solution value (zmin) among the five 
executions that each instance is run with SPLITABU and SPLITABU-DT is shown in 
columns 6 and 9, respectively. Similarly, columns 7 and 10 present the average 
solution value for the 5 runs (zmean). Columns 8 and 11 give the average times, in 
seconds of a PC Pentium IV, 256 Mb Ram, CPU 2.40 GHz. Finally, column 12 gives 
the number of vehicles in the feasible solution as presented in a previous version of 
[4]. 

 
Table 2 summarizes the results shown in Table 4; it gives the average number of 

vehicles used (k), the average solution cost (z) and the average computing time in 
seconds (t) on each subset of 7 instances grouped by a given interval of client’s 
demand. Last row shows the addition of the average number of vehicles and average 
running times. Again, best average values are denoted in bold. Figure 3 illustrates the 
behavior of the three metaheuristics. 
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SS-SDVRP SP-TABU SP-TABU-DT  
k z t k z t k z t 

O.D. 9.7 916.4 295.8 9.7 957.1 420.0 9.7 930.4 138.5 
.01-.1 6.0 755.9 517.7 NA 818.1 197.1 NA 786.0 121.1 
.1-.3 22.5 1677.5 208.8 24.7 1759.0 418.7 24.7 1709.2 228.5 
.1-.5 33.3 2326.6 155.2 37.5 2407.4 827.6 37.5 2357.2 607.9 
.1-.9 55.0 3613.1 112.2 63.5 3674.7 1035.9 63.5 3548.2 1087.9 
.3-.7 56.3 3704.0 72.5 61.0 3830.3 826.4 61.0 3621.1 1285.3 
.7-.9 92.0 5757.6 47.9 94.8 5837.2 4108.3 94.8 5565.9 5325.2 

Total 268.8  1410.1 291.2   291.2  8794.4 
 

Table 2: A summary 
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Figure 3: Number of vehicles used by the SS and TS metaheuristics 
 
 

Considering the original demands, the quality of the solutions obtained with the SS 
algorithm is better, although at a greater computational effort. Every solution uses the 
minimum number of vehicles. Note that the values obtained by the Scatter Search 
algorithm were produced maintaining all the parameters unchanged for all the 
instances and with only one execution per instance. The number of vehicles used is 
not available, (NA), for both TS methods on the second group of instances and the 
solutions obtained by the SS are also better than the best solutions obtained with the 
TS procedures. When the demand is generated in the interval (0.1Q, 0.3Q) the 
solution’s quality is also better in the case of the SS algorithm. The number of 
vehicles in the solutions obtained with the Tabu Search procedures is no longer the 
minimum one and the difference reaches 3 vehicles in 2 out of 6 instances. On the 
instances with demands in (0.1Q, 0.5Q) the SS produce worst solutions than the best 
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ones obtained in the 5 runs of the two TS procedures, although on average the 
behavior of the SS algorithm is still slightly better (see Table 2) and it uses 4.2 
vehicles less on average. On the remaining instances, the SS solutions are worse than 
the ones obtained with the TS procedures. Clearly our algorithm does not perform 
well on this kind of instances with big demands. This could be explained by the fact 
that the SS algorithm is designed to find solutions with the minimum number of 
vehicles while the TS algorithms minimize the total distance traveled. Note that the 
solutions obtained with the TS methods always use a bigger number of vehicles that, 
in some cases increases up to 14 vehicles, as in instance p5-199 with demands in 
(0.1Q, 0.9Q). 

 
Finally, comparisons on all the instances with the results presented in [4] and [6] 

were not possible since the instances and other significant details were not available 
to the authors. Though in [6] the general characteristics of the instances are 
maintained as in [1], the instances themselves are different. However a comparison is 
possible among the SS, Tabu_DT and the Chen et al. algorithm on 6 of the instances 
with original demands. Results are summarized in Table 3. Columns z and t show the 
solution value and the time used to obtain it in the case of the SS and the Chen et al.’s 
procedure. In the case of the Tabu-DT algorithm, column z shows the value of the 
best solution obtained in 5 executions of the algorithm, while t shows the average 
computing time. Times shown for the Chen et al.’s procedure are obtained in a slower 
machine (PC Pentium IV, 512 Mb Ram, CPU 1.70 Ghz). As it can be seen, the best 
results are obtained by the SS and the Chen et al.’s procedure, although this last 
method is faster than ours.  
 
 
 

SS-SDVRP SP-TABU-DT EMIP+VRTR Number 
Clients z t z t z t 

50 524.61 49.7 530.65 13.0 524.61 1.8 (3.4) 
75 829.01 166.6 845.82 36.0 840.18 4.0 (57.0) 
100 819.56 192.4 833.35 58.0 819.56 3.7 (126.5) 
120 1042.11 270.3 1053.54 38.0 1043.18 5.6 (136.4) 
150 1045.22 527.1 1064.38 389.0 1041.99 10.0 (308.0) 
199 1324.73 588.3 1339.98 386.0 1307.40 18.1 (618.5) 

Table 3: Comparison on the instances with original demands 

 
Note however that a time limit is a parameter in that procedure and that greater 

CPU times were given to the algorithm in order to compare in [6] its results with the 
Tabu-DT procedure. Therefore, we have include in brackets the average CPU times, 
used in [6] for solving instances of similar sizes when the client’s demands are 
generated in the range (0.1Q, 0.3Q). These average CPU times are the second best 
times given in [6] for the six scenarios considered. 
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5 Conclusions and Further Research 

The first results obtained with the Scatter Search procedure indicate that it is able to 
obtain very good feasible solutions with the minimum number of vehicles within 
reasonable computing times. When the demands are well over half the capacity of the 
vehicle, the values of the solutions are not so good, because our procedure was not 
initially designed for these situations. The set of published and available instances is 
limited and quite small. In the future, we want to work on the elaboration of bigger 
test instances that will be publicly available and include some other refinements to the 
procedure. Among them, another generator of feasible solutions and more procedures 
to be applied to the unfeasible solutions produced in the combination phase. 
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APPENDIX 

Table 4.  Computational results on the whole set of instances 

 
Inst. Dem. SS SP-TABU SP-TABU-DT  

  z k T zmin zmean T zmin zmean T k 
p1-50 O.D. 5246113 5 49.7 5276751 5300570 17 5306520 5335535 13 5 
p2-75 O.D. 8290121 10 166.5 8404529 8516729 64 8458221 8495410 36 10 
p3-100 O.D. 8294477 8 276.1 8341357 8461844 60 8333566 8356191 58 8 
p4-150 O.D. 10452237 12 527.1 10570279 10621988 440 10643847 10698369 389 12 
p5-199 O.D. 13247325 16 588.3 13573455 13678177 1900 13399777 13428515 386 16 
p6-120 O.D. 10421158 7 270.3 10763753 10847331 40 10535425 10560148 38 7 
p7-100 O.D. 8195581 10 192.4 8195581 8226045 86 8195581 8253184 49 NA 

p1-50 .01-0.1 4607896 3 51.8 4607896 4638532 9 4607896 4637571 5 NA 
p2-75 .01-0.1 5969872 4 144.0 6041186 6076579 42 6016174 6052376 13 NA 
p3-100 .01-0.1 7268078 5 272.1 7572459 7727881 59 7374514 7522012 31 NA 
p4-150 .01-0.1 8712624 8 743.3 8864415 8949843 258 8819995 8909533 173 NA 
p5-199 .01-0.1 10231356 10 1874.8 10452620 10735985 754 10478739 10562679 526 NA 
p6-120 .01-0.1 9765696 6 370.9 10641948 10957537 61 10760897 10846959 42 NA 
p7-100 .01-0.1 6359953 5 166.5 6407126 6628037 71 6358865 6487359 58 NA 

p1-50 0.1-0.3 7410565 10 66.4 7507084 7644041 27 7515968 7614021 22 11 
p2-75 0.1-0.3 10718694 15 143.8 10835052 10990297 78 10879305 10953225 45 16 
p3-100 0.1-0.3 13975030 20 305.1 14189700 14288683 122 14193762 14248114 96 22 
p4-150 0.1-0.3 19372005 29 326.6 19284742 19406720 545 19079235 19182459 393 32 
p5-199 0.1-0.3 24331737 38 32.1 24120235 24199773 1224 23780537 23841545 755 41 
p6-120 0.1-0.3 27425985 23 380.8 28520739 29009898 516 29145714 29187092 143 26 
p7-100 0.1-0.3 14188103 20 206.3 14531928 14709592 85 14379543 14620077 146 v 

p1-50 0.1-0.5 9978334 15 87.1 9940561 10076838 56 9972128 10086663 28 16 
p2-75 0.1-0.5 14635982 22 126.8 14407823 14501086 71 14321606 14436243 123 24 
p3-100 0.1-0.5 19080227 29 225.2 18788510 18878331 206 18857414 18947210 136 33 
p4-150 0.1-0.5 26499703 43 21.3 26168532 26340901 564 26089113 26327126 739 49 
p5-199 0.1-0.5 32919600 56 31.2 32765665 32981871 3811 32473125 32844723 2668 63 
p6-120 0.1-0.5 39796717 34 329.0 41231758 41667801 259 41311259 42061210 268 40 
p7-100 0.1-0.5 19953407 29 266.5 19924980 20300366 188 19815453 20299948 293 NA 
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Inst. Dem. SS SP-TABU SP-TABU-DT  
  z k T zmin zmean T zmin zmean T k 
p1-50 0.1-0.9 15543768 25 92.6 14815710 14939233 34 14438367 14699221 61 26 
p2-75 0.1-0.9 21823368 37 119.9 21131636 21212778 311 21072124 21244269 193 41 
p3-100 0.1-0.9 28942137 48 177.9 28116117 28266122 412 27467515 27940774 649 56 
p4-150 0.1-0.9 40628821 71 50.4 39785729 40062807 1822 38497320 39097249 2278 84 
p5-199 0.1-0.9 50745658 93 50.7 50058905 50396524 2598 47374671 48538254 3297 107 
p6-120 0.1-0.9 63573283 56 20.6 65072461 65603347 1037 62596720 65839735 878 67 
p7-100 0.1-0.9 31663064 48 272.7 31192745 31580865 523 30105041 31015273 260 NA 

p1-50 0.3-0.7 15321944 25 92.4 14941462 15093118 52 14870198 14969009 49 26 
p2-75 0.3-0.7 22288975 37 11.1 21666219 21759879 184 21497382 21605050 129 39 
p3-100 0.3-0.7 29863298 49 17.0 28958054 29147859 454 27642538 28704954 810 53 
p4-150 0.3-0.7 41856832 73 23.0 41228032 41467544 1512 39671062 40396994 3008 80 
p5-199 0.3-0.7 52650121 96 327.3 53329707 53689192 2279 50014512 51028379 3566 103 
p6-120 0.3-0.7 64810943 58 20.5 67207650 68663390 477 64330110 66395522 659 65 
p7-100 0.3-0.7 32487607 49 16.0 31631372 32220334 411 28821235 30380225 778 NA 

p1-50 0.7-0.9 23124751 40 5.8 21733326 21763923 160 21483778 21652085 106 42 
p2-75 0.7-0.9 33878605 60 10.5 32184116 32294627 437 31381780 31806415 869 61 
p3-100 0.7-0.9 45761339 80 38.3 43619465 43687723 1891 42788332 43023114 1398 82 
p4-150 0.7-0.9 64794550 119 30.5 63345083 63542058 8783 60998678 61963577 10223 123 
p5-199 0.7-0.9 83237230 158 215.0 82071543 83439543 11347 76761141 79446339 21849 162 
p6-120 0.7-0.9 101583160 95 20.4 103067404 105505745 2033 100726022 103040778 1826 99 
p7-100 0.7-0.9 50652558 80 13.8 49334893 49607513 1865 47735921 48677857 1004 NA 

 


