
A Scatter Search Algorithm for the Split Delivery
Vehicle Routing Problem

Campos,V., Corberán, A., Mota, E.

Dep. Estadística i Investigació Operativa. Universitat de València. Spain
Corresponding author: mota@uv.es

Abstract. In this paper we present a metaheuristic procedure constructed for the
special case of the Vehicle Routing Problem in which the demands of the
clients can be split, i.e., any client can be serviced by more than one vehicle.
The proposed algorithm, based on the scatter search methodology, produces a
feasible solution using the minimum number of vehicles. The results obtained
compare with the best results known up to date on a set of instances previously
published in the literature.

1 Introduction

In this paper we consider a variant of the Vehicle Routing Problem (VRP) in which
the demand of any client can be serviced by more than one vehicle, the Split Delivery
Vehicle Routing Problem (SDVRP). This relaxation of the classical VRP was first
proposed by Dror and Trudeau ([9] and [10]), who showed that important savings on
the total solution cost could be obtained as well as a reduction in the total number of
vehicles used in the solution by allowing clients to be serviced by more than one
vehicle. They also showed that this problem is also NP-hard. The SDVRP has
received great attention in the last years.

Mullaseril, Dror and Leung [18] studied the problem of distributing feed to cattle at

a large livestock ranch in Arizona. They modelled this problem as an arc routing one
(in fact, as a Capacitated Rural Postman Problem with split deliveries and time
windows). The about 100.000 head of cattle are fed each day, within a specified time
window, by six trucks that deliver feed to the large pens connected by a road network.
Sometimes, the last pen on a route does not receive its full load and another truck,
servicing a different route, has to visit it again in order to complete the load. The
computational experiments showed that allowing split deliveries produced a
significant reduction in the total distance travelled by the vehicles in most of the
considered situations.

In 1998, Sierksma and Tijssen [19] presented another application. The problem

was to schedule the helicopter flights from an airport near Amsterdam to 51 off-shore
platforms in the North Sea in order to exchange the employees, which work every
other week. A person leaving a platform is exchanged for another person arriving for
working at the same platform. The helicopters have a fixed capacity and, because of
fuel constraints, a maximum flying distance for each route. The problem was

2 Campos,V., Corberán, A., Mota, E.

modelled as a Split Delivery Vehicle Routing Problem, in which the total number of
exchanges at a given platform could be done by more than one helicopter.

More details about the above applications, as well as some comments on their

resolution and results, can be found in the recent paper by Chen, Golden and Wasil
[6]. Moreover, that paper also mentions another interesting application by Song, Lee
and Kim [20] related to the distribution of newspapers from printing plants to agents
in Seul (South Korea).

 Dror, Laporte and Trudeau [8] proposed a branch and bound algorithm based on an
integer and linear SDVRP formulation, to which several classes of new valid
inequalities were added. The procedure was tested on three small instances up to 20
clients and varying client demands. The SDVRP was studied from a polyhedral point
of view in [5]. Based on the partial description of the SDVRP polyhedron, the same
authors implemented a branch and cut algorithm capable of solving some medium
size instances up to 51 clients. The strengthened linear relaxation produces a good
lower bound to the optimal solution value.

In their original work, Dror and Trudeau ([9], [10]) propose a two stage procedure

that first obtains a feasible VRP solution and then improves it using, among others,
specific routines such as the route addition and k-split interchanges. The Route
addition routine consists of creating a new route to service a client whose demand is
split in several routes if the total distance is reduced. A k-split interchange considers a
client i with demand di and removes i from all the routes that service it. Then, the
routine considers all subsets of routes having a “residual” capacity greater than di and
computes the total insertion cost of client i into all the routes of the subset. Finally,
the subset leading to the least insertion cost is chosen and the interchange takes place.
These basic but important procedures have also been used in successive heuristic and
metaheuristic procedures later on. In order to test their algorithm, Dror and Trudeau
selected three basic instances with 75, 115 and 150 clients, with randomly generated
demands from six different scenarios, expressed as a fraction of the vehicle capacity.
The same pattern has been used since then, so most of the published and available test
instances are generated from known VRP instances, varying the demands of the
clients. In two cases, as far as we know, other instances are proposed: in [3] some of
the Solomon instances are used and in [6] the authors propose new and geometric
instances. However the published computational results do not always allow an easy
comparison.

In [11], Frizzell and Giffin studied the SDVRP with time windows but on a special

network (the clients are located on a grid) and proposed a constructive heuristic
followed by some improvement procedures (1-0 exchanges and 1-1 interchanges) that
will be described later.

A Tabu Search procedure was developed by Archetti, Hertz and Speranza [1]. It

produces an initial feasible solution using the GENIUS algorithm for the TSP ([12]).
In the Tabu Search phase moves are made according to two procedures: one orders
the routes servicing client i according to the saving obtained by removing i, while the
other looks for the “best neighbor” solution of the current one. In a final and

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 3

improvement phase, GENIUS is applied to each individual route. A variant of this
algorithm (SPLITABU) consists of applying 2-opt and node interchange procedures
each time the best solution encountered so far is improved. This variant produces
better results and is denoted as SPLTABU-DT.

Archetti, Savelsbergh and Speranza [4] use the above Tabu Search procedure to

identify parts of the solution space that are likely to contain high quality solutions.
Once a set of promising routes is selected, an integer program (a route-based
formulation for the SDVRP) is run trying to obtain improved feasible solutions.

In a recent paper, Chen, Golden and Wasil [6] propose a procedure that first

constructs a feasible VRP solution using the Clarke and Wright [7] savings algorithm.
The solution of an integer program provides then the optimal reallocation of the
endpoints of a route in order to maximize the total savings. The program is run for a
maximum time of T seconds, with a given neighbour list for each endpoint that is a
function of the number of endpoints, and the best feasible solution found is saved.
Then, using the feasible solution as the initial one, a new program is run, with a larger
size for the neighbour list and a smaller limit for the running time. To the final and
best solution obtained, a variable length record-to-record travel algorithm [16] that
considers 1-0 exchanges, 1-1 interchanges and 2-opt moves, is applied.

 Before closing this introduction, we should mention some structural properties of
the problem. In [9] Dror and Trudeau showed that “if the cost matrix satisfies the
triangle inequality, then there exists an optimal solution to the SDVRP where no two
routes have more than one client with a split demand in common”. Archetti,
Savelsbergh and Speranza ([2]) define by ni the number of vehicles servicing client i
and by ni – 1 the number of splits at client i. Then they show that when the cost matrix
satisfies the triangle inequality there exists an optimal solution to the SDVRP where
the total number of splits (the sum of the number of splits of every client) is less than
the number of routes.

Moreover, Archetti, Savelsbergh and Speranza addressed in [3] the question: To
split or not to split? They showed first that, assuming that all the distances among
clients and the depot satisfy the triangle inequality, the ratio between the minimum
number of routes required to satisfy the client demands in a VRP solution over the
minimum number in a SDVRP solution is always less than or equal to 2. They also
proved that this bound is tight. In what refers to the ratio between optimal solution
values, the same authors showed in [2] that the same bound applies. So, allowing
splitting the demands may produce important savings both in the total number of
vehicles used and in the total solution cost, as already pointed out by Dror and
Trudeau. Moreover, Archetti, Savelsbergh and Speranza conducted an empirical study
of the last mentioned ratio, as a function of client’s location and client’s demand,
concluding: Cost’s reductions seem to be due to the ability to reduce the number of
routes, without a dependence on client’s locations, and mainly depend on the relation
between mean demand and vehicle capacity and on the variance of the demands. They
obtained the largest benefits when the mean demand is greater than half the vehicle
capacity but less than three quarters of the vehicle capacity. Our own computational
study also points to this direction.

4 Campos,V., Corberán, A., Mota, E.

 The paper is organized as follows: in Section 2 the problem is defined and some
notation is presented. Section 3 describes the main features of the proposed
metaheuristic and in Section 4 we present the computational results. Conclusions and
future work are summarized in Section 5.

2 Problem definition and notation

The Vehicle Routing Problem with Split Demands is defined on an undirected and
complete graph G = (V, E), where V = {0,1,2,…n} is the set of vertices (vertex 0
denotes the depot and 1,…,n represent the set of clients). Each edge e = (i,j) has an
associated cost or distance ce between clients i and j. Moreover, each vertex has a
known demand di (d0=0) and there is a fleet of identical vehicles of capacity Q
located at the depot. A feasible solution consists of a set of routes, each one beginning
and ending at the depot, such that:

• The demand of every client is satisfied, and
• The sum of the demands serviced by any vehicle does not exceed its capacity Q

 The SDVRP version defined above is a very difficult problem that presents an
outstanding characteristic that makes it different from the classical VRP: there is
always a feasible solution using the minimum number of vehicles k. It is easy to see
that this minimum number corresponds to the smallest integer greater than or equal to
Σi di /Q. This is not always true if the demand of a client can not be split, since in this
case the minimum number of vehicles corresponds to the optimal solution of a Bin
Packing Problem.

 To the usual and explicit objective of minimizing the total solution cost, we add the
implicit one of minimizing the number of vehicles used in the solution. We consider
that this is a very important objective, since in most of the practical applications
involving several vehicles there is a fixed cost associated to each used vehicle.
Moreover, the total fixed cost of a fleet is usually greater than the total and variable
cost of a feasible solution. This variable cost usually depends on the total distance
travelled by the fleet. Note that a term in the objective function penalizing the excess
of vehicles could be added, or bicriteria techniques could also be taken into account,
since it is possible in some instances to decrease the total cost by increasing the
number of vehicles. Instead we propose a Scatter Search procedure, following the
framework presented in [14] and [15], which generates a population of feasible
solutions with the minimum number of vehicles.

3 A Scatter Search Procedure

In this section we describe the main features of a Scatter Search procedure designed
for the SDVRP. This is, as far as we know, the first time that such a technique is

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 5

applied to this routing problem. Figure 1 presents a schematic summary of the overall
procedure. The main characteristics and particularities introduced by the authors are
briefly described in the next subsections.

Figure 1: Scheme of a Scatter Search procedure

3.1 Creating a Population

We have adapted two standard VRP heuristic procedures to the split demands case in
order to obtain SDVRP feasible solutions. The first one, called here Big Tour, uses
the Lin and Kernighan [17] heuristic to build a giant tour through the n clients and the
depot. From this tour it is always possible to obtain k routes and, thus, a feasible
SDVRP solution: Let us first renumber the clients so that the TSP tour is 0-1-2-… -(n-
1)-n-0. The first vehicle leaves the depot using edge (0,1) and services, successively,
clients 1,2,… up to client i1 for which the total demand serviced by this first route is at
least equal to the vehicle’s capacity. Client i1 is either completely serviced or its
demand is split between routes 1 and 2. In the first case, edges (i1,0) and (0, i1+1) are
added, corresponding to the last edge in route 1 and the first one in route 2. In the
second case edge (i1,0) is added twice and route 2 continues using edge (i1,i1+1). The

Stop if RefSet is
unchanged or Max.
Iterations reached

Population

RefSet R

Diversification Generator

Repeat until |P|= PSize

Improvement

Solution Combination
Method

Factibility
 +

 Improvement
Creation or Update of RefSet

Pairs not Combined before

Pool

6 Campos,V., Corberán, A., Mota, E.

feasible solution finally obtained satisfies the two structural properties mentioned in
the introduction, i.e., the total number of splits is less than the number of routes and
any two routes have, at most, one client in common. We can take into account the
difference between the total capacity k Q of the vehicles’ fleet and the total demand of
the clients and adjust the load in each vehicle to an average load so that the solution
finally obtained uses k balanced (in terms of load) routes. In this way, we avoid
obtaining a solution having k-1 routes with load Q and a last route with usually a very
small load.

The same Big Tour is used to generate additional solutions, all of them following

the same sequence of clients but starting each one at a different client, i.e., the second
feasible solution (for instance) could use as the first edge in the first route edge (0, 2)
and then edge (2, 3) and so on. The last edge in route k would then be edge (1, 0).
However, in order to obtain solutions that differ substantially, the starting clients are
selected in a nonconsecutive order.

The second procedure is a modified and accelerated version of the classical Clarke

and Wright parallel savings algorithm [7]. According to this procedure, from an initial
solution consisting of n return trips to each client, the best available saving, computed
as sij = c0i + c0j – λ cij , is used to merge the single routes (0,i,0) and (0,j,0) into a new
route (0,i,j,0) and the procedure is repeated until no merge is feasible, in terms of
vehicle capacity, or there are no more available savings. For each client, its
neighborhood is computed as the subset of its closest clients, and only these savings
are calculated. We allow to split the demand of a client l only when the best available
saving corresponds to merging a given route r with a return trip from client l and the
total demand exceeds the vehicle capacity Q; in this case, part of the demand of client
l is serviced in route r and we maintain a return trip from client l with the unsatisfied
demand. In order to limit the complexity of the procedure, any client is serviced by, at
most, two vehicles. This procedure does not guarantee a feasible solution using the
minimum number of vehicles but in all our computational experiences, feasible
solutions using k vehicles are obtained. In order to generate more than one solution,
we prohibit half of the savings used in a solution when computing the next one.
Savings are prohibited with probabilities directly proportional to the frequency of use
of each saving in the previously generated solutions.

Finally, we have also implemented a sequential version of Clarke and Wright

savings algorithm [7] in which routes are generated one after the other. Thus, the
procedure has always just one active route which grows by adding new clients either
to the first serviced client or to the last one (the two “endpoints” of the route). In this
case, only the demand of the last client added to the route can be split, but the number
of vehicles that may service this client is not limited. Savings are again computed, for
a pair of clients i and j as sij = c0i + c0j – λ cij and, in both versions, different values of
parameter λ are considered in order to diversify the solutions. We have chosen λ=1,
0.6 and 0.4.

We have tested the quality of the feasible solutions obtained by these three

procedures on the set of test instances used in this paper, after applying to each
feasible solution the improvement procedures described next. Table 1 shows the

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 7

average values on 50 solutions obtained for each instance by the three constructive
algorithms and Figure 2 summarizes the results obtained. These results indicate that
the values of feasible solutions obtained by the sequential version are always worst
than the values obtained by the other two procedures, which are similar.

Instance class Big Tour Sequential CW Parallel CW

OD 10160398,7 12167770,7 9863394,7
0.01-0.1 8196954,3 9405272,8 8160844,3
0.1-0.3 17922662,7 22271986,9 17572631,2
0.1-0.5 24246567,9 29550626,9 24172589,7
0.1-0.9 37063229,9 41902227,9 37405057,9
0.3-0.7 37575097,1 42143493,7 38055871,1
0.7-0.9 58107028,0 66310339,9 60157794,6

Table 1: Average values for three constructive algorithms for the SDVRP

We have decided then to discard the sequential version of Clarke and Wright

savings algorithm and use procedure Big Tour to generate half of the population of
feasible solutions, of size P, and generate the remaining feasible solutions using the
parallel version of the Clarke and Wright heuristic.

0,0E+00

1,0E+07

2,0E+07

3,0E+07

4,0E+07

5,0E+07

6,0E+07

7,0E+07

o a b c d e f

Instance Class

A
ve

ra
ge

 v
al

ue
s

 (5
0

so
lu

tio
ns

 o
n

ea
ch

 in
st

an
ce

)

BIGTOUR
CW_SEQ
CW_PAR

Figure 2: Quality comparison for the three constructive heuristics

3.2 Improving a Feasible Solution

A local search phase is applied to each solution in the original population in order to
reduce its cost, if possible. We have implemented procedures for client moves, such
as the 1-0 exchanges, tried first and consisting of shifting one client from one route to

8 Campos,V., Corberán, A., Mota, E.

another route, and 1-1 interchanges, consisting of interchanging one client from a
route with another client in another route. These moves are applied to every non split
client. We have also implemented two-split changes, that take a client out from every
route visiting it and look for a pair of routes that, jointly, could service its demand
(two-split changes are a particular case of the k-split changes, first introduced by Dror
and Trudeau in [9]. Finally, 2-2 interchanges are checked. With them, we try to
interchange one edge of a route with another from another route. When such
improvements are no longer possible, the routes in the solution are re-optimized using
a 2-opt procedure or the more complex Lin and Kernighan algorithm. The same
procedures are applied to a feasible solution entering the reference set, as described in
the next subsection.

3.3 The Reference Set

The P feasible solutions in the population are ordered according to the cost and b of
them are selected to be in the reference set. One half corresponds to the best feasible
solutions and the remaining solutions add the necessary diversity to this set, since
they correspond to those solutions in the population that are the most different when
compared to the best ones. As a measure of the difference between two solutions we
compute the total number of edges in one solution but not in the other. Each pair of
solutions in the reference set is combined to produce another solution that enters the
set only when its cost is greater than the cost of the worst solution, which is
eliminated. The overall procedure stops when, after every possible combination (one
iteration), no new feasible solution enters in the reference set or a maximum number
of iterations, previously fixed, is reached.

In our computational experiments, we have tested different population’s sizes

combined with the size of the Reference Set. As expected, solutions’ quality improves
as P and b increase, although at cost of greater computing times. Accordingly, we
have chosen P=150 and b=25 as the final values for the computational experiences
and comparisons.

3.4 The Combination Method

We have devised a procedure that captures the essential characteristics of a feasible
SDVRP solution and tries to maintain those that could be satisfied by the good
solutions. In order to do that, for each solution in the reference set we define a set of
critical clients, consisting of:

1. all its split clients,
2. all the clients in routes with just 1 or 2 clients,
3. the client whose removal from a route produces the greatest saving cost, for each

route with at least 3 clients, and finally
4. every client such that at least one among its three closest neighbours belongs to a

different route.

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 9

 When combining feasible solutions A and B in the reference set we consider, in
turn, a critical client in A, in classes 1 to 3 above, and we move this client, thus
modifying solution A, following the recommendation for this same client in solution
B. If it is a split client in B, we consider that there is no recommendation and so we
take the next critical client in A. If it is not, we consider its two adjacent clients, say α
and β, in B and we locate these clients in solution A. If clients α and β are two
consecutive clients in the same route in solution A, we understand that solution B
recommends to insert the critical client between α and β; otherwise, the critical client
is moved to the “best recommended” position, i.e., inserted after client α or inserted
before client β. In order to simplify the combination procedure and since the moves
already performed may produce a route overload, to move a client to an already
unfeasible route is prohibited. Note that combining solutions B and A is also possible
and produces a different combination.

 When all the critical clients of A have been considered, the combination method has
produced a new and maybe unfeasible solution because of the load in each route. A
routine is then applied that considers some moves aimed at obtaining a feasible
solution.

 Each time a feasible solution is obtained as a combination of two solutions in the
reference set, the improve procedures described in subsection 3.2 are applied. Once
all the possible comparisons have been considered, if no new solution enters the
reference set, instead of finishing the overall procedure at this moment, we augment
the set of critical clients of each solution in the reference set by including those in
case 4 above and we run all the possible combinations once again. The new
neighborhood created for each solution replaces the usual rebuilding phase. If a
feasible solution enters now the Reference Set, the procedure continues, otherwise we
stop it. The procedure considers also the combinations already performed so that
repetitions are avoided and only pairs of feasible solutions not yet considered are
combined.

4 Computational Experiments

We present the results obtained by the Scatter Search procedure on a set of instances
following the proposal made by Dror and Trudeau. We have repeated the generation
parameters used by Archetti, Hertz and Speranza [1] so that the results can be
compared.

4.1 The Instances

In order to test our algorithm, we have considered the same set of instances used by
Archetti, Hertz and Speranza [1]. They generated the instances starting from the VRP
problems 1 to 5, 11 and 12 taken from [13], which have between 50 and 199 clients
and satisfy the triangle inequality, and computed the demands of the customers in the
following way. First, two parameters α and γ (α ≤ γ) are chosen in the interval [0, 1].
Then, the demand di of customer i is set equal to di = α Q+δ (γ−α) Q, where δ is a

10 Campos,V., Corberán, A., Mota, E.

random number in [0, 1]. As in [9], Archetti, Hertz and Speranza have considered the
following combinations of parameters (α, γ): (0.01, 0.1), (0.1, 0.3), (0.1, 0.5), (0.1,
0.9), (0.3, 0.7) and (0.7, 0.9). The procedure is equivalent to generate the demands of
an instance in the interval (αQ, γQ). Considering also the case where the original
demands are not changed (represented as O.D. in the tables), a total of 49 instances
are obtained.

4.2 Computational Results

Computational results on the whole set of instances are shown in Table 4 in the
Appendix, which compares the results obtained by the Scatter Search procedure with
those obtained with two Tabu Search (TS) algorithms presented in [1]. Other
characteristics of the feasible solutions are also included in the table. The first two
columns show the instance name, which also indicates the number of clients, and the
values of α and γ and thus, the corresponding interval where demands have been
generated. Instances in the first seven rows have original demands (denoted by O.D.).
Column 3 presents the best value (z) obtained by our Scatter Search procedure (SS).
A value in bold indicates that this value is at least as good as all the ten values
obtained by applying the SPLITABU and the SPLITABU-DT procedures ([1]). All
the values have been obtained using as distance between clients i and j the cost cij:

()22)()(10000 jijiij yyxxroundc −+−= (1)

 Column 4 indicates the number of vehicles in the feasible solution obtained (k),

which corresponds always to the minimum number. Total time in seconds is presented
in column 5 (T). The procedure was implemented in C and run on a PC Pentium IV,
1Gb Ram, CPU 2.40 GHz. The minimum solution value (zmin) among the five
executions that each instance is run with SPLITABU and SPLITABU-DT is shown in
columns 6 and 9, respectively. Similarly, columns 7 and 10 present the average
solution value for the 5 runs (zmean). Columns 8 and 11 give the average times, in
seconds of a PC Pentium IV, 256 Mb Ram, CPU 2.40 GHz. Finally, column 12 gives
the number of vehicles in the feasible solution as presented in a previous version of
[4].

Table 2 summarizes the results shown in Table 4; it gives the average number of

vehicles used (k), the average solution cost (z) and the average computing time in
seconds (t) on each subset of 7 instances grouped by a given interval of client’s
demand. Last row shows the addition of the average number of vehicles and average
running times. Again, best average values are denoted in bold. Figure 3 illustrates the
behavior of the three metaheuristics.

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 11

SS-SDVRP SP-TABU SP-TABU-DT
k z t k z t k z t

O.D. 9.7 916.4 295.8 9.7 957.1 420.0 9.7 930.4 138.5
.01-.1 6.0 755.9 517.7 NA 818.1 197.1 NA 786.0 121.1
.1-.3 22.5 1677.5 208.8 24.7 1759.0 418.7 24.7 1709.2 228.5
.1-.5 33.3 2326.6 155.2 37.5 2407.4 827.6 37.5 2357.2 607.9
.1-.9 55.0 3613.1 112.2 63.5 3674.7 1035.9 63.5 3548.2 1087.9
.3-.7 56.3 3704.0 72.5 61.0 3830.3 826.4 61.0 3621.1 1285.3
.7-.9 92.0 5757.6 47.9 94.8 5837.2 4108.3 94.8 5565.9 5325.2

Total 268.8 1410.1 291.2 291.2 8794.4

Table 2: A summary

Algorithms Comparison

0,0

1000,0

2000,0

3000,0

4000,0

5000,0

6000,0

7000,0

0,0 20,0 40,0 60,0 80,0 100,0

vehicles

co
st

SS-SDVRP
SP-TABU
SP-TABU-DT

Figure 3: Number of vehicles used by the SS and TS metaheuristics

Considering the original demands, the quality of the solutions obtained with the SS
algorithm is better, although at a greater computational effort. Every solution uses the
minimum number of vehicles. Note that the values obtained by the Scatter Search
algorithm were produced maintaining all the parameters unchanged for all the
instances and with only one execution per instance. The number of vehicles used is
not available, (NA), for both TS methods on the second group of instances and the
solutions obtained by the SS are also better than the best solutions obtained with the
TS procedures. When the demand is generated in the interval (0.1Q, 0.3Q) the
solution’s quality is also better in the case of the SS algorithm. The number of
vehicles in the solutions obtained with the Tabu Search procedures is no longer the
minimum one and the difference reaches 3 vehicles in 2 out of 6 instances. On the
instances with demands in (0.1Q, 0.5Q) the SS produce worst solutions than the best

12 Campos,V., Corberán, A., Mota, E.

ones obtained in the 5 runs of the two TS procedures, although on average the
behavior of the SS algorithm is still slightly better (see Table 2) and it uses 4.2
vehicles less on average. On the remaining instances, the SS solutions are worse than
the ones obtained with the TS procedures. Clearly our algorithm does not perform
well on this kind of instances with big demands. This could be explained by the fact
that the SS algorithm is designed to find solutions with the minimum number of
vehicles while the TS algorithms minimize the total distance traveled. Note that the
solutions obtained with the TS methods always use a bigger number of vehicles that,
in some cases increases up to 14 vehicles, as in instance p5-199 with demands in
(0.1Q, 0.9Q).

Finally, comparisons on all the instances with the results presented in [4] and [6]

were not possible since the instances and other significant details were not available
to the authors. Though in [6] the general characteristics of the instances are
maintained as in [1], the instances themselves are different. However a comparison is
possible among the SS, Tabu_DT and the Chen et al. algorithm on 6 of the instances
with original demands. Results are summarized in Table 3. Columns z and t show the
solution value and the time used to obtain it in the case of the SS and the Chen et al.’s
procedure. In the case of the Tabu-DT algorithm, column z shows the value of the
best solution obtained in 5 executions of the algorithm, while t shows the average
computing time. Times shown for the Chen et al.’s procedure are obtained in a slower
machine (PC Pentium IV, 512 Mb Ram, CPU 1.70 Ghz). As it can be seen, the best
results are obtained by the SS and the Chen et al.’s procedure, although this last
method is faster than ours.

SS-SDVRP SP-TABU-DT EMIP+VRTR Number
Clients z t z t z t

50 524.61 49.7 530.65 13.0 524.61 1.8 (3.4)
75 829.01 166.6 845.82 36.0 840.18 4.0 (57.0)
100 819.56 192.4 833.35 58.0 819.56 3.7 (126.5)
120 1042.11 270.3 1053.54 38.0 1043.18 5.6 (136.4)
150 1045.22 527.1 1064.38 389.0 1041.99 10.0 (308.0)
199 1324.73 588.3 1339.98 386.0 1307.40 18.1 (618.5)

Table 3: Comparison on the instances with original demands

Note however that a time limit is a parameter in that procedure and that greater

CPU times were given to the algorithm in order to compare in [6] its results with the
Tabu-DT procedure. Therefore, we have include in brackets the average CPU times,
used in [6] for solving instances of similar sizes when the client’s demands are
generated in the range (0.1Q, 0.3Q). These average CPU times are the second best
times given in [6] for the six scenarios considered.

A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem 13

5 Conclusions and Further Research

The first results obtained with the Scatter Search procedure indicate that it is able to
obtain very good feasible solutions with the minimum number of vehicles within
reasonable computing times. When the demands are well over half the capacity of the
vehicle, the values of the solutions are not so good, because our procedure was not
initially designed for these situations. The set of published and available instances is
limited and quite small. In the future, we want to work on the elaboration of bigger
test instances that will be publicly available and include some other refinements to the
procedure. Among them, another generator of feasible solutions and more procedures
to be applied to the unfeasible solutions produced in the combination phase.

Acknowledgments Authors want to acknowledge the support of the Spanish
Ministerio de Educación y Ciencia, through grants MTM 2006-14961-C05-02 and
TIN2006-02696. We are also grateful to C. Archetti and M.G. Speranza that kindly
facilitated the instances used in the computational experiences.

References

1. Archetti, C., Hertz, A., Speranza, M.G.: A tabu search algorithm for the split delivery vehicle
routing problem. Transportation Science 40 (2006) 64 -73.

2. Archetti, C., Savelsbergh, M.W.P., Speranza, M.G.: Worst-case analysis for split delivery
vehicle routing problems. Transportation Science 40 (2006) 226-234.

3. Archetti, C., Savelsbergh, M.W.P., Speranza, M.G.: To Split or Not to Split: That is the
Question. Transportation Research. To appear.

4. Archetti, C., Savelsbergh, M.W.P., Speranza, M.G.: An Optimization-Based Heuristic for the
Split Delivery Vehicle Routing Problem. Submitted to Transportation Science.

5. Belenguer, J.M., Martínez, M.C., Mota, E.: A lower bound for the split delivery vehicle
routing problem. Operations Research 48 (2000) 801-810.

6. Chen, S., Golden, B. and Wasil, E.: The Split Delivery Vehicle Routing Problem:
Applications, algorithms, test problems and computational results. Networks 49 (2007) 318-
329.

7. Clarke, G., Wright, J.V.: Scheduling of vehicles from a central depot to a number of delivery
points. Operations Research 12 (1964) 568-581.

8. Dror, M., Laporte, G., Trudeau, P.: Vehicle Routing with Split Deliveries. Discrete Applied
Mathematics 50 (1994) 239-254.

9. Dror, M., Trudeau, P.: Savings by split delivery routing. Transportation Science 23 (1989)
141-145.

10. Dror, M., Trudeau, P.: Split Delivery Routing. Naval Research Logistics 37 (1990) 383-
402.

11. Frizzell, P.W., Giffin, J.W.: The split delivery vehicle routing problem with time windows
and grid network distances. Computers and Operations Research 22 (1995) 655-667.

14 Campos,V., Corberán, A., Mota, E.

12. Gendreau, M., Hertz, A., Laporte, G.: New insertion and postoptimization procedures for
the travelling salesman problem. Operations Research 40 (1992) 1086-1094.

13. Gendreau, M., Hertz, A., Laporte, G.: A tabu search heuristic for the vehicle routing
problem. Management Science 40 (1994) 1276–1290.

14. Glover, F.: A template for scatter search and path relinking. In Hao, J.-K., Lutton, E.,
Schoenauer, M., Snyers, D. (eds.), Artificial Evolution. Lecture Notes in Computer Science
1363 (1998) 13-54.

15. Laguna, M., Martí, R.: Scatter Search – Methodology and implementations in C. Kluwer
Academic Publishers, Boston (2003)

16. Li, F., Golden, B. and Wasil, E.: Very large-scale vehicle routing: New test problems,
algorithms and results. Computers and Operations Research 32 (2005) 1197-1212.

17. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the travelling salesman
problem. Operations Research 21 (1973) 498-516

18. Mullaseril, P.A., Dror, M., Leung, J.: Split-delivery routing in livestock feed distribution.
Journal of the Operational Research Society 48 (1997) 107-116.

19. Sierksma, G., Tijssen, G.A.: Routing helicopters for crew exchanges on off-shore locations.
Annals of Operations Research 76 (1998) 261-286

20. Song, S., Lee, K. and Kim, G.: A practical approach to solving a newspaper logistic
problem using a digital map. Comput. Ind. Eng. 43 (2002) 315-330.

APPENDIX

Table 4. Computational results on the whole set of instances

Inst. Dem. SS SP-TABU SP-TABU-DT

 z k T zmin zmean T zmin zmean T k
p1-50 O.D. 5246113 5 49.7 5276751 5300570 17 5306520 5335535 13 5
p2-75 O.D. 8290121 10 166.5 8404529 8516729 64 8458221 8495410 36 10
p3-100 O.D. 8294477 8 276.1 8341357 8461844 60 8333566 8356191 58 8
p4-150 O.D. 10452237 12 527.1 10570279 10621988 440 10643847 10698369 389 12
p5-199 O.D. 13247325 16 588.3 13573455 13678177 1900 13399777 13428515 386 16
p6-120 O.D. 10421158 7 270.3 10763753 10847331 40 10535425 10560148 38 7
p7-100 O.D. 8195581 10 192.4 8195581 8226045 86 8195581 8253184 49 NA

p1-50 .01-0.1 4607896 3 51.8 4607896 4638532 9 4607896 4637571 5 NA
p2-75 .01-0.1 5969872 4 144.0 6041186 6076579 42 6016174 6052376 13 NA
p3-100 .01-0.1 7268078 5 272.1 7572459 7727881 59 7374514 7522012 31 NA
p4-150 .01-0.1 8712624 8 743.3 8864415 8949843 258 8819995 8909533 173 NA
p5-199 .01-0.1 10231356 10 1874.8 10452620 10735985 754 10478739 10562679 526 NA
p6-120 .01-0.1 9765696 6 370.9 10641948 10957537 61 10760897 10846959 42 NA
p7-100 .01-0.1 6359953 5 166.5 6407126 6628037 71 6358865 6487359 58 NA

p1-50 0.1-0.3 7410565 10 66.4 7507084 7644041 27 7515968 7614021 22 11
p2-75 0.1-0.3 10718694 15 143.8 10835052 10990297 78 10879305 10953225 45 16
p3-100 0.1-0.3 13975030 20 305.1 14189700 14288683 122 14193762 14248114 96 22
p4-150 0.1-0.3 19372005 29 326.6 19284742 19406720 545 19079235 19182459 393 32
p5-199 0.1-0.3 24331737 38 32.1 24120235 24199773 1224 23780537 23841545 755 41
p6-120 0.1-0.3 27425985 23 380.8 28520739 29009898 516 29145714 29187092 143 26
p7-100 0.1-0.3 14188103 20 206.3 14531928 14709592 85 14379543 14620077 146 v

p1-50 0.1-0.5 9978334 15 87.1 9940561 10076838 56 9972128 10086663 28 16
p2-75 0.1-0.5 14635982 22 126.8 14407823 14501086 71 14321606 14436243 123 24
p3-100 0.1-0.5 19080227 29 225.2 18788510 18878331 206 18857414 18947210 136 33
p4-150 0.1-0.5 26499703 43 21.3 26168532 26340901 564 26089113 26327126 739 49
p5-199 0.1-0.5 32919600 56 31.2 32765665 32981871 3811 32473125 32844723 2668 63
p6-120 0.1-0.5 39796717 34 329.0 41231758 41667801 259 41311259 42061210 268 40
p7-100 0.1-0.5 19953407 29 266.5 19924980 20300366 188 19815453 20299948 293 NA

16

Inst. Dem. SS SP-TABU SP-TABU-DT
 z k T zmin zmean T zmin zmean T k
p1-50 0.1-0.9 15543768 25 92.6 14815710 14939233 34 14438367 14699221 61 26
p2-75 0.1-0.9 21823368 37 119.9 21131636 21212778 311 21072124 21244269 193 41
p3-100 0.1-0.9 28942137 48 177.9 28116117 28266122 412 27467515 27940774 649 56
p4-150 0.1-0.9 40628821 71 50.4 39785729 40062807 1822 38497320 39097249 2278 84
p5-199 0.1-0.9 50745658 93 50.7 50058905 50396524 2598 47374671 48538254 3297 107
p6-120 0.1-0.9 63573283 56 20.6 65072461 65603347 1037 62596720 65839735 878 67
p7-100 0.1-0.9 31663064 48 272.7 31192745 31580865 523 30105041 31015273 260 NA

p1-50 0.3-0.7 15321944 25 92.4 14941462 15093118 52 14870198 14969009 49 26
p2-75 0.3-0.7 22288975 37 11.1 21666219 21759879 184 21497382 21605050 129 39
p3-100 0.3-0.7 29863298 49 17.0 28958054 29147859 454 27642538 28704954 810 53
p4-150 0.3-0.7 41856832 73 23.0 41228032 41467544 1512 39671062 40396994 3008 80
p5-199 0.3-0.7 52650121 96 327.3 53329707 53689192 2279 50014512 51028379 3566 103
p6-120 0.3-0.7 64810943 58 20.5 67207650 68663390 477 64330110 66395522 659 65
p7-100 0.3-0.7 32487607 49 16.0 31631372 32220334 411 28821235 30380225 778 NA

p1-50 0.7-0.9 23124751 40 5.8 21733326 21763923 160 21483778 21652085 106 42
p2-75 0.7-0.9 33878605 60 10.5 32184116 32294627 437 31381780 31806415 869 61
p3-100 0.7-0.9 45761339 80 38.3 43619465 43687723 1891 42788332 43023114 1398 82
p4-150 0.7-0.9 64794550 119 30.5 63345083 63542058 8783 60998678 61963577 10223 123
p5-199 0.7-0.9 83237230 158 215.0 82071543 83439543 11347 76761141 79446339 21849 162
p6-120 0.7-0.9 101583160 95 20.4 103067404 105505745 2033 100726022 103040778 1826 99
p7-100 0.7-0.9 50652558 80 13.8 49334893 49607513 1865 47735921 48677857 1004 NA

