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Glossary

Bayes Estimator: A function ω∗ = ω∗(D) of data D, to be used as a proxy for the unknown
value of the parameter vector ω. It is obtained by minimizing the posterior expectation
of a loss function, L(ω̃,ω), defined to measure the consequences of using ω̃ as a proxy
for the true value of ω.

Bayes Factor: Given dataD generated by the probability model {p(D |ω),ω ∈ Ω} and a prior
distribution p(ω), the Bayes FactorB01 = B01(D) for Ω0 ⊂ Ω against Ω1 ⊂ Ω, is the in-
tegrated likelihood ratio p(D |Ω0)/p(D |Ω1), where p(D |Ωi) =

∫
Ωi
p(D |ω)p(ω)dω.

Bayes’ Theorem: Given data D generated by the probability model {p(D |ω),ω ∈ Ω} and a
prior distribution p(ω), the posterior distribution ofω is p(ω |D) ∝ p(D |ω)p(ω). The
proportionality constant is {

∫
Ω p(D |ω)p(ω)dω}−1.

Credible Region: Given data D, a posterior q-credible region for ω ∈ Ω is a subset R of Ω
with posterior probability q, so that

∫
R p(ω |D)dω = q. Likewise, a posterior q-credible

region for x ∈ X is a subset R of X with posterior predictive probability q, so that∫
R p(x |D)dx = q.

Exchangeability: The random vectors {x1, . . . ,xn} are exchangeable if their joint distribu-
tion is invariant under permutations. An infinite sequence {xj} of random vectors is
exchangeable if all its finite subsequences are exchangeable. If {x1, . . . ,xn} is a ran-
dom sample from some probability model, and hence the xj’s are independent given the
model parameter, then the random vectors {x1, . . . ,xn} are necessarily exchangeable.

Expected Information: The expected information from dataD ∈ D generated by a probability
model {p(D |ω),ω ∈ Ω}, about a function θ = θ(ω) of the parameter vector ω, is a
functional of the prior distribution p(ω), denoted as Iθ{D, p(ω)}. It is defined as the
expected logarithmic divergence ED[

∫
Θ p(θ |D) log{p(θ |D)/p(θ)}dθ] of the marginal

prior of θ, p(θ), from the marginal posterior of θ, p(θ |D).
Likelihood Function: The probability (or probability density) of the observed data D as a

function of the unknown parameter vector ω, l(ω, D) = p(D |ω).
Logarithmic Divergence: The logarithmic divergence of a probability density p̂(x) for the

random vector x ∈ X from its true probability density p(x), is the non-negative number
δ{p̂(x) | p(x)} =

∫
X p(x) log{p(x)/p̂(x)} dx.

Intrinsic Discrepancy Function: Given the probability model{p(D |ω),ω ∈ Ω}, the intrinsic
discrepancy between the parameter values ω1 and ω2 is the minimum logarithmic diver-
gence between the models p(D |ω1) and p(D |ω2), i.e., the symmetric, non-negative,
function d(ω1,ω2) = min(δ{p(D |ω1) | p(D |ω2)}, δ{p(D |ω2) | p(D |ω1)}).

Maximum Likelihood Estimator (MLE): Given data D, the maximum likelihood estimator
of ω ∈ Ω is that value ω̂ ∈ Ω which maximizes the likelihood function l(ω, D).

Outcome space: See Probability Model.

Parameter, Parameter Space: See Representation Theorem.
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Posterior Distribution: A probability distribution on the unknown parameter vector ω ∈ Ω
in the probability model, typically described by its density function p(ω |D), which
conditional on the model, encapsulates the available information about the unknown
value of ω, given the observed data D and the knowledge about ω which the prior
distribution p(ω) might contain. It is obtained by Bayes’ theorem.

Predictive Distribution: If {xj} is a sequence of exchangeable random vectors, the predictive
density of a future element x of the sequence, given n observed values {x1, . . . ,xn}, is
p(x |x1, . . . ,xn) = p(x,x1, . . . ,xn)/p(x1, . . . ,xn). In particular, given a probability
model of the form {p(D |ω),ω ∈ Ω}, with p(D |ω) =

∏
j p(xj |ω), and a prior

distribution p(ω), the posterior predictive density is p(x |D) =
∫
Ω p(x |ω)p(ω |D)dω.

If no data are available, the prior predictive density is p(x) =
∫
Ω p(x |ω)p(ω)dω.

Prior Distribution: A probability distribution on the unknown parameter vector ω ∈ Ω in
the probability model, typically described by its density function p(ω), with p(ω) ≥ 0,∫
Ω p(ω)dω = 1, which encapsulates the available information about the unknown value

ofω. If no prior information is to be utilized, the prior distribution p(ω) may be replaced
by a reference prior function π(ω).

Probability Model: A family of probability distributions ofD ∈ D, typically described by their
density functions {p(D |ω),ω ∈ Ω}, with p(D |ω) ≥ 0 and

∫
D p(D |ω)dD = 1 for

all ω ∈ Ω, which is assumed to contain the probability mechanism which has generated
the observed data D. The set D of possible data values is the outcome space. If data are
a random sample D = {x1, . . . ,xn} of observations xi ∈ X generated from p(x |ω),
then p(D |ω) =

∏
j p(xj |ω) and D = Xn.

Random Sample: See Probability Model.

Reference Prior Function: Given the probability model {p(D |ω),ω ∈ Ω} and a function
φ = φ(ω) of the parameter vectorω, aφ-reference prior is a positive function πφ(ω) to be
used as the prior distribution in Bayes theorem to obtain a reference posterior distribution
for φ. The function πφ(ω) does not necessarily have a finite integral over Ω and, hence,
it is not necessarily a probability distribution.

Reference Posterior Distribution: Given data D and a probability model {p(D |ω),ω ∈ Ω},
which is assumed to have generated D, the reference posterior of a function φ = φ(ω)
of the parameter vector ω is a probability distribution, typically described by its density
function π(φ |D), which encapsulates inferential conclusions on the value of φ, solely
based on the assumed model and the observed dataD. It is obtained from Bayes’theorem
with a φ-reference prior function as a formal prior.

Representation Theorem: If {xj} is an infinite sequence of exchangeable random vectors,
the joint density of any finite subsequence {x1, . . . ,xn} has an integral representation of
the form p(x1, . . . ,xn) =

∫
Ω

∏n
i=1 p(xi |ω) p(ω) dω. Thus, observations {x1, . . . ,xn}

may be treated as a random sample from some distribution p(x |ω), labeled by a param-
eter ω ∈ Ω, which is defined as the limit (as n→∞) of some function of {x1, . . . ,xn},
and there exists a probability distribution p(ω) over the parameter space Ω.

Sufficiency: Given the probability model {p(D |ω),ω ∈ Ω}, a function of the data t = t(D),
is a sufficient statistic if (and only if) there exist functions f and g such that, for any
data set D ∈ D, the likelihood function factorizes in the form l(ω, D) = p(D |ω) =
f(ω, t)g(D). A necessary and sufficient condition for t to be sufficient is that, for any
priorp(ω), the posterior distributionp(ω |D) = p(ω | t) only depends on the data through
the function t = t(D).
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Summary

Statistics is the study of uncertainty. Bayesian statistical methods provide a complete paradigm
for both statistical inference and decision making under uncertainty. Bayesian methods are
firmly based on strict mathematical foundations, providing a coherent methodology which
makes it possible to incorporate relevant initial information, and which solves many of the
difficulties faced by conventional statistical methods. The Bayesian paradigm is based on an
interpretation of probability as a conditional measure of uncertainty which closely matches
the use of the word ‘probability’ in ordinary language. Statistical inference about a quantity of
interest is described as the modification of the uncertainty about its value in the light of evidence,
and Bayes’ theorem specifies how this modification should be made. Bayesian methods may be
applied to complex, richly structured problems, which have been fairly inaccessible to traditional
statistical methods. The special situation, often met in scientific reporting and public decision
making, where the only acceptable information is that which may be deduced from available
documented data, is addressed as an important particular case.

1. Introduction

Scientific experimental or observational results generally consist of (possibly many) sets of data
of the general formD = {x1, . . . ,xn}, where the xi’s are somewhat “homogeneous” (possibly
multidimensional) observations xi. Statistical methods are then typically used to derive con-
clusions on both the nature of the process which has produced those observations, and on the
expected behaviour of future instances of the same process. A central element of any statistical
analysis is the specification of a probability model which is assumed to describe the mechanism
which has generated the observed dataD as a function of a (possibly multidimensional) parame-
terω ∈ Ω, sometimes named the state of nature, about whose value only limited information (if
any) is available. All derived statistical conclusions are obviously conditional on the assumed
probability model.

Unlike most other branches of mathematics, conventional methods of statistical inference suffer
from the lack of an axiomatic basis; as a consequence, their proposed desiderata are often
mutually incompatible, and the analysis of the same data may well lead to incompatible results
when different, apparently intuitive procedures are tried. In marked contrast, the Bayesian
approach to statistical inference is firmly based on axiomatic foundations which provide a
unifying logical structure, and guarantee the mutual consistency of the methods proposed.
Bayesian methods constitute a complete paradigm to statistical inference, a scientific revolution
in Kuhn’s sense.

Bayesian statistics only require the mathematics of probability theory and the interpretation of
probability which most closely corresponds to the standard use of this word in everyday lan-
guage: it is no accident that some of the more important seminal books on Bayesian statistics,
such as the works of de Laplace, de Finetti or Jeffreys, are actually entitled “Probability The-
ory”. The practical consequences of adopting the Bayesian paradigm are far reaching. Indeed,
Bayesian methods (i) reduce statistical inference to problems in probability theory, thereby min-
imizing the need for completely new concepts, and (ii) serve to discriminate among conventional
statistical techniques, by either providing a logical justification to some (and making explicit
the conditions under which they are valid), or proving the logical inconsistency of others.

The main consequence of these foundations is the mathematical need to describe by means
of probability distributions all uncertainties present in the problem. In particular, unknown
parameters in probability models must have a joint probability distribution which describes the
available information about their values; this is often regarded as the more characteristic element
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of a Bayesian approach. Notice that (in sharp contrast to conventional statistics) parameters
are treated as random variables within the Bayesian paradigm. This is not a description of
their variability (parameters are typically fixed unknown quantities) but a description of the
uncertainty about their true values.

An important particular case arises when either no relevant prior information is readily available,
or that information is subjective and an “objective” analysis is desired, one exclusively based
on accepted model assumptions and well-documented data. This is addressed by reference
analysis which uses information-theoretical concepts to derive appropriate reference posterior
distributions, defined to encapsulate inferential conclusions on the quantities of interest solely
based on the supposed model and the observed data.

In this article it is assumed that probability distributions may be described through their proba-
bility density functions, and no distinction is made between a random quantity and the particular
values that it may take. Bold roman fonts are used for observable random vectors (typically
data) and bold greek fonts are used for unobservable random vectors (typically parameters);
lower case is used for variables and upper case for their dominion sets. Moreover, the standard
mathematical convention of referring to functions, say f and g of x ∈ X , respectively by f(x)
and g(x), will be used throughout. Thus, p(θ |C) and p(x |C) respectively represent general
probability densities of the random vectors θ ∈ Θ and x ∈ X under conditions C, so that
p(θ |C) ≥ 0,

∫
Θ p(θ |C) dθ = 1, and p(x |C) ≥ 0,

∫
X p(x |C) dx = 1. This admitedly

unprecise notation will greatly simplify the exposition. If the random vectors are discrete, these
functions naturally become probability mass functions, and integrals over their values become
sums.

Table 1. Notation for common probability density and probability mass functions

Name Probability Density or Probability Mass Function Parameter(s)

Beta Be(x |α, β) = Γ(α+β)
Γ(α)Γ(β) x

α−1(1− x)β−1, x ∈ (0, 1) α > 0, β > 0

Binomial Bi(x |n, θ) =
(
n
x

)
θx(1− θ)n−x, x ∈ {0, . . . , n} n ∈ {1, 2, . . .}, θ ∈ (0, 1)

Exponential Ex(x | θ) = θ e−θx, x > 0 θ > 0

ExpGamma Eg(x |α, β) = αβα

(x+β)α+1
, x > 0 α > 0, β > 0

Gamma Ga(x |α, β) = βα

Γ(α) x
α−1e−βx, x > 0 α > 0, β > 0

NegBinomial Nb(x | r, θ) = θr
(
r+x−1
r−1

)
(1− θ)x, x ∈ {0, 1, . . .} r ∈ {1, 2, . . .}, θ ∈ (0, 1)

Normal Nk(x |µ,Σ) = |Σ|−1/2

(2π)k/2
exp

[
− 1

2 (x− µ)tΣ−1(x− µ)
]
, x ∈ 
k µ ∈ 
k, Σ def. pos.

Poisson Pn(x |λ) = e−λ λx

x!
, x ∈ {0, 1, . . .} λ > 0

Student St(x |µ, σ, α) =
Γ(α+1

2 )
Γ(α2 )

1
σ
√
απ

[
1 + 1

α

(
x−µ
σ

)2
]−(α+1)/2

, x ∈ 
 µ ∈ 
, σ > 0, α > 0

Specific density functions are denoted by appropriate names. Thus, if x is a random quantity
with a normal distribution of mean µ and standard deviation σ, its probability density function
will be denoted N(x |µ, σ). Table 1 contains definitions of other distributions used in this article.
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Bayesian methods make frequent use of the logarithmic divergence, a very general measure
of the goodness of the approximation of a probability density p(x) by another density p̂(x).
The logarithmic divergence of a probability density p̂(x) of the random vector x ∈ X from
its true probability density p(x), is defined as δ{p̂(x) | p(x)} =

∫
X p(x) log{p(x)/p̂(x)} dx.

It may be shown that (i) the logarithmic divergence is non-negative (and it is zero if, and only
if, p̂(x) = p(x) almost everywhere), and (ii) that δ{p̂(x) | p(x)} is invariant under one-to-one
transformations of x.

This article contains a brief summary of the mathematical foundations of Bayesian statistical
methods (Section 2), an overview of the paradigm (Section 3), a description of useful inference
summaries, including estimation and hypothesis testing (Section 4), an explicit discussion of
objective Bayesian methods (Section 5), the detailed analysis of a simplified case study (Sec-
tion 6), and a final discussion which includes pointers to further issues not addressed in the main
text (Section 7).

2. Foundations

A central element of the Bayesian paradigm is the use of probability distributions to describe all
relevant unknown quantities, interpreting the probability of an event as a conditional measure of
uncertainty, on a [0, 1] scale, about the occurrence of the event in some specific conditions. The
limiting extreme values 0 and 1, which are typically inaccessible in applications, respectively
describe impossibility and certainty of the occurrence of the event. This interpretation of
probability includes and extends all other probability interpretations. There are two independent
arguments which prove the mathematical inevitability of the use of probability distributions to
describe uncertainties; these are summarized later in this section.

2.1. Probability as a Measure of Conditional Uncertainty

Bayesian statistics uses the word probability in precisely the same sense in which this word
is used in everyday language, as a conditional measure of uncertainty associated with the
occurrence of a particular event, given the available information and the accepted assumptions.
Thus, Pr(E |C) is a measure of (presumably rational) belief in the occurrence of the event E
under conditions C. It is important to stress that probability is always a function of two
arguments, the eventE whose uncertainty is being measured, and the conditionsC under which
the measurement takes place; “absolute” probabilities do not exist. In typical applications,
one is interested in the probability of some event E given the available data D, the set of
assumptions A which one is prepared to make about the mechanism which has generated the
data, and the relevant contextual knowledgeK which might be available. Thus, Pr(E |D,A,K)
is to be interpreted as a measure of (presumably rational) belief in the occurrence of the eventE,
given dataD, assumptionsA and any other available knowledgeK, as a measure of how “likely”
is the occurrence of E in these conditions. Sometimes, but certainly not always, the probability
of an event under given conditions may be associated with the relative frequency of “similar”
events in “similar” conditions. The following examples are intended to illustrate the use of
probability as a conditional measure of uncertainty.

Probabilistic diagnosis. A human population is known to contain 0.2% of people infected by a
particular virus. A person, randomly selected from that population, is subject to a test which is
known from laboratory data to yield positive results in 98% of infected people and in 1% of non-
infected, so that, if V denotes the event that a person carries the virus and + denotes a positive
result, Pr(+ |V ) = 0.98 and Pr(+ |V ) = 0.01. Suppose that the result of the test turns out to
be positive. Clearly, one is then interested in Pr(V |+, A,K), the probability that the person
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carries the virus, given the positive result, the assumptions A about the probability mechanism
generating the test results, and the available knowledge K of the prevalence of the infection in
the population under study (described here by Pr(V |K) = 0.002). An elementary exercise in
probability algebra, which involves Bayes’ theorem in its simplest form (see Section 3), yields
Pr(V |+, A,K) = 0.164. Notice that the four probabilities involved in the problem have
precisely the same interpretation: they are all conditional measures of uncertainty. Besides,
Pr(V |+, A,K) is both a measure of the uncertainty associated with the event that the particular
person who tested positive is actually infected, and an estimate of the proportion of people in
that population (about 16.4%) that would eventually prove to be infected among those which
yielded a positive test. '

Estimation of a proportion. A survey is conducted to estimate the proportion θ of individuals in a
population who share a given property. A random sample of n elements is analyzed, r of which
are found to possess that property. One is then typically interested in using the results from the
sample to establish regions of [0, 1] where the unknown value of θ may plausibly be expected
to lie; this information is provided by probabilities of the form Pr(a < θ < b | r, n,A,K),
a conditional measure of the uncertainty about the event that θ belongs to (a, b) given the
information provided by the data (r, n), the assumptions A made on the behaviour of the
mechanism which has generated the data (a random sample of n Bernoulli trials), and any
relevant knowledgeK on the values of θ which might be available. For example, after a political
survey in which 720 citizens out of a random sample of 1500 have declared to be in favour of
a particular political measure, one may conclude that Pr(θ < 0.5 | 720, 1500, A,K) = 0.933,
indicating a probability of about 93% that a referendum of that issue would be lost. Similarly,
after a screening test for an infection where 100 people have been tested, none of which has
turned out to be infected, one may conclude that Pr(θ < 0.01 | 0, 100, A,K) = 0.844, or a
probability of about 84% that the proportion of infected people is smaller than 1%. '

Measurement of a physical constant. A team of scientists, intending to establish the unknown
value of a physical constant µ, obtain data D = {x1, . . . , xn} which are considered to be
measurements of µ subject to error. The probabilities of interest are then typically of the form
Pr(a < µ < b |x1, . . . , xn, A,K), the probability that the unknown value of µ (fixed in nature,
but unknown to the scientists) lies within an interval (a, b) given the information provided by the
dataD, the assumptionsAmade on the behaviour of the measurement mechanism, and whatever
knowledge K might be available on the value of the constant µ. Again, those probabilities are
conditional measures of uncertainty which describe the (necessarily probabilistic) conclusions
of the scientists on the true value of µ, given available information and accepted assumptions.
For example, after a classroom experiment to measure the gravitational field with a pendulum,
a student may report (in m/sec2) something like Pr(9.788 < g < 9.829 |D,A,K) = 0.95,
meaning that, under accepted knowledgeK and assumptionsA, the observed dataD indicate that
the true value of g lies within 9.788 and 9.829 with probability 0.95, a conditional uncertainty
measure on a [0,1] scale. This is naturally compatible with the fact that the value of the
gravitational field at the laboratory may well be known with high precision from available
literature or from precise previous experiments, but the student may have been instructed not to
use that information as part of the accepted knowledgeK. Under some conditions, it is also true
that if the same procedure were actually used by many other students with similarly obtained
data sets, their reported intervals would actually cover the true value of g in approximately 95%
of the cases, thus providing some form of calibration for the student’s probability statement
(see Section 5.2). '
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Prediction. An experiment is made to count the number r of times that an eventE takes place in
each of n replications of a well defined situation; it is observed that E does take place ri times
in replication i, and it is desired to forecast the number of times r that E will take place in a
future, similar situation. This is a prediction problem on the value of an observable (discrete)
quantity r, given the information provided by dataD, accepted assumptionsA on the probability
mechanism which generates the ri’s, and any relevant available knowledge K. Hence, simply
the computation of the probabilities {Pr(r | r1, . . . , rn, A,K)}, for r = 0, 1, . . ., is required. For
example, the quality assurance engineer of a firm which produces automobile restraint systems
may report something like Pr(r = 0 | r1 = . . . = r10 = 0, A,K) = 0.953, after observing
that the entire production of airbags in each of n = 10 consecutive months has yielded no
complaints from their clients. This should be regarded as a measure, on a [0, 1] scale, of the
conditional uncertainty, given observed data, accepted assumptions and contextual knowledge,
associated with the event that no airbag complaint will come from next month’s production and,
if conditions remain constant, this is also an estimate of the proportion of months expected to
share this desirable property.

A similar problem may naturally be posed with continuous observables. For instance, after mea-
suring some continuous magnitude in each of n randomly chosen elements within a population,
it may be desired to forecast the proportion of items in the whole population whose magnitude
satisfies some precise specifications. As an example, after measuring the breaking strengths
{x1, . . . , x10} of 10 randomly chosen safety belt webbings to verify whether or not they satisfy
the requirement of remaining above 26 kN, the quality assurance engineer may report something
like Pr(x > 26 |x1, . . . , x10, A,K) = 0.9987. This should be regarded as a measure, on a [0, 1]
scale, of the conditional uncertainty (given observed data, accepted assumptions and contextual
knowledge) associated with the event that a randomly chosen safety belt webbing will support
no less than 26 kN. If production conditions remain constant, it will also be an estimate of the
proportion of safety belts which will conform to this particular specification.

Often, additional information of future observations is provided by related covariates. For in-
stance, after observing the outputs {y1, . . . ,yn} which correspond to a sequence {x1, . . . ,xn}
of different production conditions, it may be desired to forecast the output y which would
correspond to a particular set x of production conditions. For instance, the viscosity of com-
mercial condensated milk is required to be within specified values a and b; after measuring
the viscosities {y1, . . . , yn} which correspond to samples of concentrated milk produced under
different physical conditions {x1, . . . ,xn}, production engineers will require probabilities of
the form Pr(a < y < b |x, (y1,x1), . . . , (yn,xn), A,K). This is a conditional measure of the
uncertainty (always given observed data, accepted assumptions and contextual knowledge) as-
sociated with the event that condensated milk produced under conditions x will actually satisfy
the required viscosity specifications.

'

2.2. Statistical Inference and Decision Theory

Decision theory not only provides a precise methodology to deal with decision problems under
uncertainty, but its solid axiomatic basis also provides a powerful case for the logical force of
the Bayesian approach. We now summarize the basic argument.

A decision problem exists whenever there are two or more possible courses of action; let A be
the class of possible actions. Moreover, for each a ∈ A, let Θa be the set of relevant events
which may affect the result of choosing a, and let c(a,θ) ∈ Ca, θ ∈ Θa, be the consequence of
having chosen action awhen event θ takes place. The class of pairs {(Θa, Ca), a ∈ A} describes
the structure of the decision problem. Without loss of generality, it may be assumed that the
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possible actions are mutually exclusive, for otherwise one would work with the appropriate
Cartesian product.

Different sets of principles have been proposed to capture a minimum collection of logical rules
that could sensibly be required for “rational” decision-making. These all consist of axioms with
a strong intuitive appeal; examples include the transitivity of preferences (if a1 > a2 given C,
and a2 > a3 given C, then a1 > a3 given C), and the sure-thing principle (if a1 > a2 given
C and E, and a1 > a2 given C and E, then a1 > a2 given C). Notice that these rules are not
intended as a description of actual human decision-making, but as a normative set of principles
to be followed by someone who aspires to coherent decision-making.

There are naturally different options for the set of acceptable principles, but all of them lead
basically to the same conclusions, namely:

(i) Preferences among consequences should be measured with a real-valued bounded utility
function U(c) = U(a,θ) which specifies, on some numerical scale, their desirability.

(ii) The uncertainty of relevant events should be measured with a set of probability distributions
{(p(θ |C, a),θ ∈ Θa), a ∈ A} describing their plausibility given the conditionsC under which
the decision must be taken.

(iii) The desirability of the available actions is measured by their corresponding expected utility

U(a |C) =
∫

Θa
U(a,θ) p(θ |C, a) dθ, a ∈ A. (1)

It is often convenient to work in terms of the non-negative loss function defined by

L(a,θ) = sup
a∈A
{U(a,θ)} − U(a,θ), (2)

which directly measures, as a function of θ, the “penalty” for choosing a wrong action. The
relative undesirability of available actions a ∈ A is then measured by their expected loss

L(a |C) =
∫

Θa
L(a,θ) p(θ |C, a) dθ, a ∈ A. (3)

Notice that, in particular, the argument described above establishes the need to quantify the
uncertainty about all relevant unknown quantities (the actual values of the θ’s), and specifies
that this quantification must have the mathematical structure of probability distributions. These
probabilities are conditional on the circumstances C under which the decision is to be taken,
which typically, but not necessarily, include the results D of some relevant experimental or
observational data.

It has been argued that the development described above (which is not questioned when decisions
have to be made) does not apply to problems of statistical inference, where no specific decision
making is envisaged. However, there are two powerful counterarguments to this. Indeed, (i) a
problem of statistical inference is typically considered worth analyzing because it may eventually
help to make sensible decisions (as Ramsey put it in the 1930’s, a lump of arsenic is poisonous
because it may kill someone, not because it has actually killed someone), and (ii) it has been
shown (by Bernardo in the 1970’s) that statistical inference on θ actually has the mathematical
structure of a decision problem, where the class of alternatives is the functional space

A =
{
p(θ |D); p(θ |D) > 0,

∫
Θ
p(θ |D) dθ = 1

}
(4)

of the conditional probability distributions of θ given the data, and the utility function is a
measure of the amount of information about θ which the data may be expected to provide.
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2.3. Exchangeability and Representation Theorem

Available data often take the form of a set {x1, . . . ,xn} of “homogeneous” observations, in
the precise sense that only their values matter and not the order in which they appear. Formally,
this is captured by the notion of exchangeability. The set of random vectors {x1, . . . ,xn} is ex-
changeable if their joint distribution is invariant under permutations. An infinite sequence {xj}
of random vectors is exchangeable if all its finite subsequences are exchangeable. Notice that,
in particular, any random sample from any model is exchangeable in this sense. The concept of
exchangeability, introduced by de Finetti in the 1930’s, is central to modern statistical thinking.
Indeed, the general representation theorem implies that if a set of observations is assumed to be
a subset of an exchangeable sequence, then it constitutes a random sample from some proba-
bility model {p(x |ω),ω ∈ Ω}, x ∈ X , labeled by some parameter vector ω; furthermore this
parameter ω is defined as the limit (as n→∞) of some function of the observations. Available
information about the value of ω in prevailing conditions C is necessarily described by some
probability distribution p(ω |C).
For example, in the case of a sequence {x1, x2, . . .} of dichotomous exchangeable random
quantities xj ∈ {0, 1}, de Finetti’s representation theorem establishes that the joint distribution
of (x1, . . . , xn) has an integral representation of the form

p(x1, . . . , xn |C) =
∫ 1

0

n∏
i=1

θxi(1− θ)1−xi p(θ |C) dθ, θ = lim
n→∞

r

n
, (5)

where r =
∑

xj is the number of positive trials. This is precisely the joint distribution of a set
of (conditionally) independent Bernoulli trials with parameter θ, over which some probability
distribution p(θ |C) is therefore proven to exist. More generally, for sequences of arbitrary
random quantities {x1,x2, . . .}, exchangeability leads to integral representations of the form

p(x1, . . . ,xn |C) =
∫
Ω

n∏
i=1

p(xi |ω) p(ω |C) dω, (6)

where {p(x |ω),ω ∈ Ω} denotes some probability model, ω is the limit as n → ∞ of some
function f(x1, . . . ,xn) of the observations, and p(ω |C) is some probability distribution over Ω.
This formulation includes “nonparametric” (distribution free) modelling, where ω may index,
for instance, all continuous probability distributions on X . Notice that p(ω |C) does not
describe a possible variability of ω (since ω will typically be a fixed unknown vector), but a
description on the uncertainty associated with its actual value.

Under appropriate conditioning, exchangeability is a very general assumption, a powerful ex-
tension of the traditional concept of a random sample. Indeed, many statistical analyses directly
assume data (or subsets of the data) to be a random sample of conditionally independent ob-
servations from some probability model, so that p(x1, . . . ,xn |ω) =

∏n
i=1 p(xi |ω); but any

random sample is exchangeable, since
∏n

i=1 p(xi |ω) is obviously invariant under permuta-
tions. Notice that the observations in a random sample are only independent conditional on the
parameter value ω; as nicely put by Lindley, the mantra that the observations {x1, . . . ,xn} in
a random sample are independent is ridiculous when they are used to infer xn+1. Notice also
that, under exchangeability, the general representation theorem provides an existence theorem
for a probability distribution p(ω |C) on the parameter space Ω, and that this is an argument
which only depends on mathematical probability theory.

Another important consequence of exchangeability is that it provides a formal definition of the
parameterω which labels the model as the limit, as n→∞, of some function f(x1, . . . ,xn) of
the observations; the function f obviously depends both on the assumed model and the chosen

10



parametrization. For instance, in the case of a sequence of Bernoulli trials, the parameter θ is
defined as the limit, as n→∞, of the relative frequency r/n. It follows that, under exchange-
ability, the sentence “the true value of ω” has a well-defined meaning, if only asymptotically
verifiable. Moreover, if two different models have parameters which are functionally related by
their definition, then the corresponding posterior distributions may be meaningfully compared,
for they refer to functionally related quantities. For instance, if a finite subset {x1, . . . , xn} of
an exchangeable sequence of integer observations is assumed to be a random sample from a
Poisson distribution Po(x |λ), so that E[x |λ] = λ, then λ is defined as limn→∞{xn}, where
xn =

∑
j xj/n; similarly, if for some fixed non-zero integer r, the same data are assumed to be

a random sample for a negative binomial Nb(x | r, θ), so that E[x | θ, r] = r(1− θ)/θ, then θ is
defined as limn→∞{r/(xn + r)}. It follows that θ ≡ r/(λ + r) and, hence, θ and r/(λ + r)
may be treated as the same (unknown) quantity whenever this might be needed as, for example,
when comparing the relative merits of these alternative probability models.

3. The Bayesian Paradigm

The statistical analysis of some observed dataD typically begins with some informal descriptive
evaluation, which is used to suggest a tentative, formal probability model {p(D |ω), ω ∈ Ω}
assumed to represent, for some (unknown) value of ω, the probabilistic mechanism which has
generated the observed data D. The arguments outlined in Section 2 establish the logical need
to assess a prior probability distribution p(ω |K) over the parameter space Ω, describing the
available knowledgeK about the value ofω prior to the data being observed. It then follows from
standard probability theory that, if the probability model is correct, all available information
about the value of ω after the data D have been observed is contained in the corresponding
posterior distribution whose probability density, p(ω |D,A,K), is immediately obtained from
Bayes’ theorem,

p(ω |D,A,K) =
p(D |ω) p(ω |K)∫

Ω p(D |ω) p(ω |K) dω
, (7)

where A stands for the assumptions made on the probability model. It is this systematic use of
Bayes’ theorem to incorporate the information provided by the data that justifies the adjective
Bayesian by which the paradigm is usually known. It is obvious from Bayes’ theorem that any
value ofω with zero prior density will have zero posterior density. Thus, it is typically assumed
(by appropriate restriction, if necessary, of the parameter space Ω) that prior distributions
are strictly positive (as Savage put it, keep the mind open, or at least ajar). To simplify the
presentation, the accepted assumptions A and the available knowledge K are often omitted
from the notation, but the fact that all statements about ω given D are also conditional to A
and K should always be kept in mind.

Example 1. (Bayesian inference with a finite parameter space). Let p(D | θ), θ ∈ {θ1, . . . , θm},
be the probability mechanism which is assumed to have generated the observed dataD, so that θ
may only take a finite number of values. Using the finite form of Bayes’ theorem, and omitting
the prevailing conditions from the notation, the posterior probability of θi after data D have
been observed is

Pr(θi |D) =
p(D | θi) Pr(θi)∑m
j=1 p(D | θj) Pr(θj)

, i = 1, . . . ,m. (8)

For any prior distribution p(θ) = {Pr(θ1), . . . ,Pr(θm)} describing available knowledge about
the value of θ, Pr(θi |D) measures how likely should θi be judged, given both the initial
knowledge described by the prior distribution, and the information provided by the data D.
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An important, frequent application of this simple technique is provided by probabilistic diagno-
sis. For example, consider the simple situation where a particular test designed to detect a virus
is known from laboratory research to give a positive result in 98% of infected people and in 1%
of non-infected. Then, the posterior probability that a person who tested positive is infected is
given by Pr(V |+) = (0.98 p)/{0.98 p + 0.01 (1− p)} as a function of p = Pr(V ), the prior
probability of a person being infected (the prevalence of the infection in the population under
study). Figure 1 shows Pr(V |+) as a function of Pr(V ).
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Figure 1. Posterior probability of infection Pr(V |+) given a positive test, as a function of the prior probability
of infection Pr(V ).

Pr(V |+)

Pr(V )

As one would expect, the posterior probability is only zero if the prior probability is zero (so that
it is known that the population is free of infection) and it is only one if the prior probability is one
(so that it is known that the population is universally infected). Notice that if the infection is rare,
then the posterior probability of a randomly chosen person being infected will be relatively low
even if the test is positive. Indeed, for say Pr(V ) = 0.002, one finds Pr(V |+) = 0.164, so that
in a population where only 0.2% of individuals are infected, only 16.4% of those testing positive
within a random sample will actually prove to be infected: most positives would actually be
false positives. '

In this section, we describe in some detail the learning process described by Bayes’ theorem,
discuss its implementation in the presence of nuisance parameters, show how it can be used to
forecast the value of future observations, and analyze its large sample behaviour.

3.1. The Learning Process

In the Bayesian paradigm, the process of learning from the data is systematically implemented by
making use of Bayes’ theorem to combine the available prior information with the information
provided by the data to produce the required posterior distribution. Computation of posterior
densities is often facilitated by noting that Bayes’ theorem may be simply expressed as

p(ω |D) ∝ p(D |ω) p(ω), (9)
(where∝ stands for ‘proportional to’ and where, for simplicity, the accepted assumptionsA and
the available knowledge K have been omitted from the notation), since the missing proportion-
ality constant [

∫
Ω p(D |ω) p(ω) dω]−1 may always be deduced from the fact that p(ω |D), a

probability density, must integrate to one. Hence, to identify the form of a posterior distribution
it suffices to identify a kernel of the corresponding probability density, that is a function k(ω)
such that p(ω |D) = c(D) k(ω) for some c(D) which does not involve ω. In the examples
which follow, this technique will often be used.
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An improper prior function is defined as a positive function π(ω) such that
∫
Ω π(ω) dω is

not finite. Equation (9), the formal expression of Bayes’ theorem, remains technically valid
if p(ω) is replaced by an improper prior function π(ω) provided the proportionality constant
exists, thus leading to a well defined proper posterior density π(ω |D) ∝ p(D |ω)π(ω). It will
later be established (Section 5) that Bayes’ theorem also remains philosophically valid if p(ω)
is replaced by an appropriately chosen reference “noninformative” (typically improper) prior
function π(ω).

Considered as a function of ω, l(ω, D) = p(D |ω) is often referred to as the likelihood
function. Thus, Bayes’ theorem is simply expressed in words by the statement that the posterior
is proportional to the likelihood times the prior. It follows from equation (9) that, provided the
same prior p(ω) is used, two different data sets D1 and D2, with possibly different probability
models p1(D1 |ω) and p2(D2 |ω) but yielding proportional likelihood functions, will produce
identical posterior distributions forω. This immediate consequence of Bayes theorem has been
proposed as an independent principle, the likelihood principle, and it is seen by many as an
obvious requirement for reasonable statistical inference. In particular, for any given prior p(ω),
the posterior distribution does not depend on the set of possible data values, or outcome space.
Notice, however, that the likelihood principle only applies to inferences about the parameter
vector ω once the data have been obtained. Consideration of the outcome space is essential,
for instance, in model criticism, in the design of experiments, in the derivation of predictive
distributions, or (see Section 5) in the construction of objective Bayesian procedures.

Naturally, the terms prior and posterior are only relative to a particular set of data. As one
would expect from the coherence induced by probability theory, if data D = {x1, . . . ,xn} are
sequentially presented, the final result will be the same whether data are globally or sequentially
processed. Indeed, p(ω |x1, . . . ,xi+1) ∝ p(xi+1 |ω) p(ω |x1, . . . ,xi), for i = 1, . . . , n− 1,
so that the “posterior” at a given stage becomes the “prior” at the next.

In most situations, the posterior distribution is “narrower” than the prior so that, in most cases,
p(ω |x1, . . . ,xi+1) will be more concentrated around the true value ofω than p(ω |x1, . . . ,xi).
However, this is not always the case: occasionally, a “surprising” observation will increase,
rather than decrease, the uncertainty about the value of ω. For instance, in probabilistic di-
agnosis, a sharp posterior probability distribution (over the possible causes {ω1, . . . , ωk} of a
syndrome) describing, a “clear” diagnosis of disease ωi (that is, a posterior with a large prob-
ability for ωi) would typically update to a less concentrated posterior probability distribution
over {ω1, . . . , ωk} if a new clinical analysis yielded data which were unlikely under ωi.

For a given probability model, one may find that a particular function of the data t = t(D) is
a sufficient statistic in the sense that, given the model, t(D) contains all information about ω
which is available in D. Formally, t = t(D) is sufficient if (and only if) there exist nonnegative
functions f and g such that the likelihood function may be factorized in the form p(D |ω) =
f(ω, t)g(D). A sufficient statistic always exists, for t(D) = D is obviously sufficient; however,
a much simpler sufficient statistic, with a fixed dimensionality which is independent of the
sample size, often exists. In fact this is known to be the case whenever the probability model
belongs to the generalized exponential family, which includes many of the more frequently used
probability models. It is easily established that if t is sufficient, the posterior distribution of ω
only depends on the data D through t(D), and may be directly computed in terms of p(t |ω),
so that, p(ω |D) = p(ω | t) ∝ p(t |ω) p(ω).

Naturally, for fixed data and model assumptions, different priors lead to different posteriors.
Indeed, Bayes’ theorem may be described as a data-driven probability transformation machine
which maps prior distributions (describing prior knowledge) into posterior distributions (repre-
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senting combined prior and data knowledge). It is important to analyze whether or not sensible
changes in the prior would induce noticeable changes in the posterior. Posterior distributions
based on reference “noninformative” priors play a central role in this sensitivity analysis context.
Investigation of the sensitivity of the posterior to changes in the prior is an important ingredient
of the comprehensive analysis of the sensitivity of the final results to all accepted assumptions
which any responsible statistical study should contain.

Example 2. (Inference on a binomial parameter). If the data D consist of n Bernoulli observa-
tions with parameter θ which contain r positive trials, then p(D | θ, n) = θr(1− θ)n−r, so that
t(D) = {r, n} is sufficient. Suppose that prior knowledge about θ is described by a Beta distri-
bution Be(θ |α, β), so that p(θ |α, β) ∝ θα−1(1− θ)β−1. Using Bayes’ theorem, the posterior
density of θ is p(θ | r, n, α, β) ∝ θr(1− θ)n−r θα−1(1− θ)β−1 ∝ θr+α−1(1− θ)n−r+β−1, the
Beta distribution Be(θ | r + α, n− r + β).
Suppose, for example, that in the light of precedent surveys, available information on the
proportion θ of citizens who would vote for a particular political measure in a referendum is
described by a Beta distribution Be(θ | 50, 50), so that it is judged to be equally likely that the
referendum would be won or lost, and it is judged that the probability that either side wins less
than 60% of the vote is 0.95.
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Figure 2. Prior and posterior densities of the proportion θ of citizens that would vote in favour of a referendum.

p(θ | r, n, α, β) = Be(θ | 730, 790)

p(θ |α, β) = Be(θ | 50, 50)

θ

A random survey of size 1500 is then conducted, where only 720 citizens declare to be in favour
of the proposed measure. Using the results above, the corresponding posterior distribution
is then Be(θ | 770, 830). These prior and posterior densities are plotted in Figure 2; it may
be appreciated that, as one would expect, the effect of the data is to drastically reduce the
initial uncertainty on the value of θ and, hence, on the referendum outcome. More precisely,
Pr(θ < 0.5 | 720, 1500, H,K) = 0.933 (shaded region in Figure 2) so that, after the information
from the survey has been included, the probability that the referendum will be lost should be
judged to be about 93%. '

The general situation where the vector of interest is not the whole parameter vector ω, but
some function θ = θ(ω) of possibly lower dimension than ω, will now be considered. Let D
be some observed data, let {p(D |ω),ω ∈ Ω} be a probability model assumed to describe the
probability mechanism which has generatedD, let p(ω) be a probability distribution describing
any available information on the value ofω, and let θ = θ(ω) ∈ Θ be a function of the original
parameters over whose value inferences based on the dataD are required. Any valid conclusion
on the value of the vector of interest θ will then be contained in its posterior probability
distribution p(θ |D) which is conditional on the observed dataD and will naturally also depend,
although not explicitly shown in the notation, on the assumed model {p(D |ω),ω ∈ Ω}, and
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on the available prior information encapsulated by p(ω). The required posterior distribution
p(θ |D) is found by standard use of probability calculus. Indeed, by Bayes’ theorem, p(ω |D) ∝
p(D |ω) p(ω). Moreover, let λ = λ(ω) ∈ Λ be some other function of the original parameters
such that ψ = {θ,λ} is a one-to-one transformation of ω, and let J(ω) = (∂ψ/∂ω) be the
corresponding Jacobian matrix. Naturally, the introduction of λ is not necessary if θ(ω) is a
one-to-one transformation of ω. Using standard change-of-variable probability techniques, the
posterior density of ψ is

p(ψ |D) = p(θ,λ |D) =
[p(ω |D)
|J(ω) |

]
ω=ω(ψ)

(10)

and the required posterior of θ is the appropriate marginal density, obtained by integration over
the nuisance parameter λ,

p(θ |D) =
∫

Λ
p(θ,λ |D) dλ. (11)

Notice that elimination of unwanted nuisance parameters, a simple integration within the
Bayesian paradigm is, however, a difficult (often polemic) problem for conventional statistics.

Sometimes, the range of possible values of ω is effectively restricted by contextual considera-
tions. Ifω is known to belong to Ωc ⊂ Ω, the prior distribution is only positive in Ωc and, using
Bayes’ theorem, it is immediately found that the restricted posterior is

p(ω |D,ω ∈ Ωc) =
p(ω |D)∫

Ωc p(ω |D)
, ω ∈ Ωc, (12)

and obviously vanishes if ω /∈ Ωc. Thus, to incorporate a restriction on the possible values of
the parameters, it suffices to renormalize the unrestricted posterior distribution to the set Ωc ⊂ Ω
of parameter values which satisfy the required condition. Incorporation of known constraints
on the parameter values, a simple renormalization within the Bayesian pardigm, is another very
difficult problem for conventional statistics.

Example 3. (Inference on normal parameters). Let D = {x1, . . . xn} be a random sample
from a normal distribution N(x |µ, σ). The corresponding likelihood function is immediately
found to be proportional to σ−n exp[−n{s2 + (x − µ)2}/(2σ2)], with nx =

∑
i xi, and

ns2 =
∑

i(xi − x)2. It may be shown (see Section 5) that absence of initial information on
the value of both µ and σ may formally be described by a joint prior function which is uniform
in both µ and log(σ), that is, by the (improper) prior function p(µ, σ) = σ−1. Using Bayes’
theorem, the corresponding joint posterior is

p(µ, σ |D) ∝ σ−(n+1) exp[−n{s2 + (x− µ)2}/(2σ2)]. (13)

Thus, using the Gamma integral in terms of λ = σ−2 to integrate out σ,

p(µ |D) ∝
∫ ∞

0
σ−(n+1) exp

[
− n

2σ2 [s2 + (x− µ)2]
]
dσ ∝ [s2 + (x− µ)2]−n/2, (14)

which is recognized as a kernel of the Student density St(µ |x, s/
√
n− 1, n − 1). Similarly,

integrating out µ,

p(σ |D) ∝
∫ ∞
−∞

σ−(n+1) exp
[
− n

2σ2 [s2 + (x− µ)2]
]
dµ ∝ σ−n exp

[
−ns

2

2σ2

]
. (15)

Changing variables to the precision λ = σ−2 results in p(λ |D) ∝ λ(n−3)/2ens
2λ/2, a kernel of

the Gamma density Ga(λ | (n−1)/2, ns2/2). In terms of the standard deviation σ this becomes
p(σ |D) = p(λ |D)|∂λ/∂σ| = 2σ−3Ga(σ−2 | (n−1)/2, ns2/2), a square-root inverted gamma
density.
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A frequent example of this scenario is provided by laboratory measurements made in conditions
where central limit conditions apply, so that (assuming no experimental bias) those measure-
ments may be treated as a random sample from a normal distribution centered at the quantity µ
which is being measured, and with some (unknown) standard deviation σ. Suppose, for ex-
ample, that in an elementary physics classroom experiment to measure the gravitational field g
with a pendulum, a student has obtained n = 20 measurements of g yielding (in m/sec2) a mean
x = 9.8087, and a standard deviation s = 0.0428. Using no other information, the correspond-
ing posterior distribution is p(g |D) = St(g | 9.8087, 0.0098, 19) represented in Figure 3(a).
In particular, Pr(9.788 < g < 9.829 |D) = 0.95, so that, with the information provided by
this experiment, the gravitational field at the location of the laboratory may be expected to lie
between 9.788 and 9.829 with probability 0.95.
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Figure 3. Posterior density p(g |m, s, n) of the value g of the gravitational field, given n = 20 normal measure-
ments with meanm = 9.8087 and standard deviation s = 0.0428, (a) with no additional information, and (b) with
g restricted to Gc = {g; 9.7803 < g < 9.8322}. Shaded areas represent 95%-credible regions of g.

(a)
p(µ |x, s, n)

g

(b)
p(µ |x, s, n, g ∈ Gc)

g

Formally, the posterior distribution of g should be restricted to g > 0; however, as immediately
obvious from Figure 3a, this would not have any appreciable effect, due to the fact that the
likelihood function is actually concentrated on positive g values.

Suppose now that the student is further instructed to incorporate into the analysis the fact that
the value of the gravitational field g at the laboratory is known to lie between 9.7803 m/sec2

(average value at the Equator) and 9.8322 m/sec2 (average value at the poles). The updated
posterior distribution will the be

p(g |D, g ∈ Gc) =
St(g |m, s/

√
n− 1, n)∫

g∈Gc St(g |m, s/
√
n− 1, n)

, g ∈ Gc, (16)

represented in Figure 3(b), where Gc = {g; 9.7803 < g < 9.8322}. One-dimensional nu-
merical integration may be used to verify that Pr(g > 9.792 |D, g ∈ Gc) = 0.95. Moreover,
if inferences about the standard deviation σ of the measurement procedure are also requested,
the corresponding posterior distribution is found to be p(σ |D) = 2σ−3Ga(σ−2 | 9.5, 0.0183).
This has a mean E[σ |D] = 0.0458 and yields Pr(0.0334 < σ < 0.0642 |D) = 0.95. '
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3.2. Predictive Distributions

Let D = {x1, . . . ,xn}, xi ∈ X , be a set of exchangeable observations, and consider now a
situation where it is desired to predict the value of a future observation x ∈ X generated by
the same random mechanism that has generated the data D. It follows from the foundations
arguments discussed in Section 2 that the solution to this prediction problem is simply encapsu-
lated by the predictive distribution p(x |D) describing the uncertainty on the value that x will
take, given the information provided by D and any other available knowledge. Suppose that
contextual information suggests the assumption that data D may be considered to be a random
sample from a distribution in the family {p(x |ω),ω ∈ Ω}, and let p(ω) be a prior distribu-
tion describing available information on the value of ω. Since p(x |ω, D) = p(x |ω), it then
follows from standard probability theory that p(x |D) =

∫
Ω p(x |ω) p(ω |D) dω, which is an

average of the probability distributions of x conditional on the (unknown) value ofω, weighted
with the posterior distribution of ω given D.

If the assumptions on the probability model are correct, the posterior predictive distribution
p(x |D) will converge, as the sample size increases, to the distribution p(x |ω) which has
generated the data. Indeed, the best technique to assess the quality of the inferences about ω
encapsulated in p(ω |D) is to check against the observed data the predictive distribution p(x |D)
generated by p(ω |D).

Example 4. (Prediction in a Poisson process). Let D = {r1, . . . , rn} be a random sample from
a Poisson distribution Pn(r |λ) with parameter λ, so that p(D |λ) ∝ λte−λn, where t =

∑
ri.

It may be shown (see Section 5) that absence of initial information on the value of λ may be
formally described by the (improper) prior function p(λ) = λ−1/2. Using Bayes’ theorem, the
corresponding posterior is

p(λ |D) ∝ λte−λn λ−1/2 ∝ λt−1/2e−λn, (17)

the kernel of a Gamma density Ga(λ | , t+1/2, n), with mean (t+1/2)/n. The corresponding
predictive distribution is the Poisson-Gamma mixture

p(r |D) =
∫ ∞

0
Pn(r |λ) Ga(λ | , t+ 1

2 , n) dλ =
nt+1/2

Γ(t+ 1/2)
1
r!

Γ(r + t+ 1/2)
(1 + n)r+t+1/2

. (18)

Suppose, for example, that in a firm producing automobile restraint systems, the entire produc-
tion in each of 10 consecutive months has yielded no complaint from their clients. With no
additional information on the average number λ of complaints per month, the quality assurance
department of the firm may report that the probabilities that r complaints will be received in
the next month of production are given by equation (18), with t = 0 and n = 10. In particular,
p(r = 0 |D) = 0.953, p(r = 1 |D) = 0.043, and p(r = 2 |D) = 0.003. Many other situa-
tions may be described with the same model. For instance, if metereological conditions remain
similar in a given area, p(r = 0 |D) = 0.953 would describe the chances of no flash flood next
year, given 10 years without flash floods in the area.

'

Example 5. (Prediction in a Normal process). Consider now prediction of a continuous vari-
able. Let D = {x1, . . . , xn} be a random sample from a normal distribution N(x |µ, σ). As
mentioned in Example 3, absence of initial information on the values of both µ and σ is formally
described by the improper prior function p(µ, σ) = σ−1, and this leads to the joint posterior
density (13). The corresponding (posterior) predictive distribution is

p(x |D) =
∫ ∞

0

∫ ∞
−∞

N(x |µ, σ) p(µ, σ |D) dµdσ = St(x |x, s
√
n+ 1
n− 1

, n− 1). (19)
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If µ is known to be positive, the appropriate prior function will be the restricted function

p(µ, σ) =
{
σ−1 if µ > 0
0 otherwise.

(20)

However, the result in equation (19) will still hold, provided the likelihood function p(D |µ, σ) is
concentrated on positive µ values. Suppose, for example, that in the firm producing automobile
restraint systems, the observed breaking strengths of n = 10 randomly chosen safety belt
webbings have mean x = 28.011 kN and standard deviation s = 0.443 kN, and that the relevant
engineering specification requires breaking strengths to be larger than 26 kN. If data may truly
be assumed to be a random sample from a normal distribution, the likelihood function is only
appreciable for positive µ values, and only the information provided by this small sample is to
be used, then the quality engineer may claim that the probability that a safety belt randomly
chosen from the same batch as the sample tested would satisfy the required specification is
Pr(x > 26 |D) = 0.9987. Besides, if production conditions remain constant, 99.87% of the
safety belt webbings may be expected to have acceptable breaking strengths.

'

3.3. Asymptotic Behaviour

The behaviour of posterior distributions when the sample size is large is now considered. This
is important for, at least, two different reasons: (i) asymptotic results provide useful first-order
approximations when actual samples are relatively large, and (ii) objective Bayesian methods
typically depend on the asymptotic properties of the assumed model. Let D = {x1, . . . ,xn},
x ∈ X , be a random sample of size n from {p(x |ω),ω ∈ Ω}. It may be shown that, as
n → ∞, the posterior distribution p(ω |D) of a discrete parameter ω typically converges to a
degenerate distribution which gives probability one to the true value ofω, and that the posterior
distribution of a continuous parameter ω typically converges to a normal distribution centered
at its maximum likelihood estimate ω̂ (MLE for short), with a variance matrix which decreases
with n as 1/n.

Consider first the situation where Ω = {ω1,ω2, . . .} consists of a countable (possibly in-
finite) set of values, such that the probability model which corresponds to the true parame-
ter value ωt is distinguishable from the others in the sense that the logarithmic divergence
δ{p(x |ωi) | p(x |ωt)} of each of the p(x |ωi) from p(x |ωt) is strictly positive. Taking log-
arithms in Bayes’ theorem, defining zj = log[p(xj |ωi)/p(xj |ωt)], j = 1, . . . , n, and using
the strong law of large numbers on the n conditionally independent and identically distributed
random quantities z1, . . . , zn, it may be shown that

lim
n→∞

p(ωt |x1, . . . ,xn) = 1, lim
n→∞

p(ωi |x1, . . . ,xn) = 0, i �= t. (21)

Thus, under appropriate regularity conditions, the posterior probability of the true parameter
value converges to one as the sample size grows.

Consider now the situation where ω is a k-dimensional continuous parameter. Expressing
Bayes’ theorem as p(ω |x1, . . . ,xn) ∝ exp{log[p(ω)] +

∑n
j=1 log[p(xj |ω)]}, expanding∑

j log[p(xj |ω)] about its maximum (the MLE ω̂), and assuming regularity conditions (to
ensure that terms of order higher than quadratic may be ignored and that the sum of the terms
from the likelihood will dominate the term from the prior) it is found that the posterior density
of ω is the approximate k-variate normal

p(ω |x1, . . . ,xn) ≈ Nk{ω̂,S(D, ω̂)}, S−1(D,ω) =
(
−

n∑
l=1

∂2 log[p(xl |ω)]
∂ωi∂ωj

)
. (22)
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A simpler, but somewhat poorer, approximation may be obtained by using the strong law of
large numbers on the sums in (22) to establish that S−1(D, ω̂) ≈ nF (ω̂), where F (ω) is
Fisher’s information matrix, of general element

F ij(ω) = −
∫
X
p(x |ω)

∂2 log[p(x |ω)]
∂ωi∂ωj

dx, (23)

so that

p(ω |x1, . . . ,xn) ≈ Nk(ω | ω̂, n−1 F−1(ω̂)). (24)

Thus, under appropriate regularity conditions, the posterior probability density of the parameter
vector ω approaches, as the sample size grows, a multivarite normal density centered at the
MLE ω̂, with a variance matrix which decreases with n as n−1 .

Example 2. (Inference on a binomial parameter, continued). Let D = (x1, . . . , xn) con-
sist of n independent Bernoulli trials with parameter θ, so that p(D | θ, n) = θr(1 − θ)n−r.
This likelihood function is maximized at θ̂ = r/n, and Fisher’s information function is
F (θ) = θ−1(1 − θ)−1. Thus, using the results above, the posterior distribution of θ will
be the approximate normal,

p(θ | r, n) ≈ N(θ | θ̂, s(θ̂)/
√
n), s(θ) = {θ(1− θ)}1/2 (25)

with mean θ̂ = r/n and variance θ̂(1 − θ̂)/n. This will provide a reasonable approximation
to the exact posterior if (i) the prior p(θ) is relatively “flat” in the region where the likelihood
function matters, and (ii) both r and n are moderately large. If, say, n = 1500 and r = 720,
this leads to p(θ |D) ≈ N(θ | 0.480, 0.013), and to Pr(θ > 0.5 |D) ≈ 0.940, which may be
compared with the exact value Pr(θ > 0.5 |D) = 0.933 obtained from the posterior distribution
which corresponds to the prior Be(θ | 50, 50). '

It follows from the joint posterior asymptotic behaviour of ω and from the properties of the
multivariate normal distribution that, if the parameter vector is decomposed into ω = (θ,λ),
and Fisher’s information matrix is correspondingly partitioned, so that

F (ω) = F (θ,λ) =
(
F θθ(θ,λ) F θλ(θ,λ)
F λθ(θ,λ) F λλ(θ,λ)

)
(26)

and

S(θ,λ) = F−1(θ,λ) =
(
Sθθ(θ,λ) Sθλ(θ,λ)
Sλθ(θ,λ) Sλλ(θ,λ)

)
, (27)

then the marginal posterior distribution of θ will be

p(θ |D) ≈ N{θ | θ̂, n−1 Sθθ(θ̂, λ̂)}, (28)

while the conditional posterior distribution of λ given θ will be

p(λ |θ, D) ≈ N{λ | λ̂− F−1
λλ (θ, λ̂)F λθ(θ, λ̂)(θ̂ − θ), n−1 F−1

λλ (θ, λ̂)}. (29)

Notice that F−1
λλ = Sλλ if (and only if) F is block diagonal, i.e., if (and only if) θ and λ are

asymptotically independent.

Example 3. (Inference on normal parameters, continued). Let D = (x1, . . . , xn) be a ran-
dom sample from a normal distribution N(x |µ, σ). The corresponding likelihood function
p(D |µ, σ) is maximized at (µ̂, σ̂) = (x, s), and Fisher’s information matrix is diagonal, with
Fµµ = σ−2. Hence, the posterior distribution of µ is approximately N(µ |x, s/√n); this may
be compared with the exact result p(µ |D) = St(µ |x, s/

√
n− 1, n − 1) obtained previously

under the assumption of no prior knowledge. '
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4. Inference Summaries

From a Bayesian viewpoint, the final outcome of a problem of inference about any unknown
quantity is precisely the corresponding posterior distribution. Thus, given some data D and
conditions C, all that can be said about any function ω of the parameters which govern the
model is contained in the posterior distribution p(ω |D,C), and all that can be said about
some function y of future observations from the same model is contained in its posterior
predictive distribution p(y |D,C). As mentioned before, Bayesian inference may technically
be described as a decision problem where the space of available actions is the class of those
posterior probability distributions of the quantity of interest which are compatible with accepted
assumptions.

However, to make it easier for the user to assimilate the appropriate conclusions, it is often
convenient to summarize the information contained in the posterior distribution by (i) providing
values of the quantity of interest which, in the light of the data, are likely to be “close” to its
true value and by (ii) measuring the compatibility of the results with hypothetical values of the
quantity of interest which might have been suggested in the context of the investigation. In this
section, those Bayesian counterparts of traditional estimation and hypothesis testing problems
are briefly considered.

4.1. Estimation

In one or two dimensions, a graph of the posterior probability density of the quantity of in-
terest (or the probability mass function in the discrete case) immediately conveys an intuitive,
“impressionist” summary of the main conclusions which may possibly be drawn on its value.
Indeed, this is greatly appreciated by users, and may be quoted as an important asset of Bayesian
methods. From a plot of its posterior density, the region where (given the data) a univariate
quantity of interest is likely to lie is easily distinguished. For instance, all important conclusions
about the value of the gravitational field in Example 3 are qualitatively available from Figure 3.
However, this does not easily extend to more than two dimensions and, besides, quantitative
conclusions (in a simpler form than that provided by the mathematical expression of the posterior
distribution) are often required.

Point Estimation. Let D be the available data, which are assumed to have been generated by a
probability model {p(D |ω),ω ∈ Ω}, and let θ = θ(ω) ∈ Θ be the quantity of interest. A
point estimator of θ is some function of the data θ̃ = θ̃(D) which could be regarded as an
appropriate proxy for the actual, unknown value of θ. Formally, to choose a point estimate
for θ is a decision problem, where the action space is the class Θ of possible θ values. From
a decision-theoretic perspective, to choose a point estimate θ̃ of some quantity θ is a decision
to act as though θ̃ were θ, not to assert something about the value of θ (although desire to
assert something simple may well be the reason to obtain an estimate). As prescribed by the
foundations of decision theory (Section 2), to solve this decision problem it is necessary to
specify a loss function L(θ̃,θ) measuring the consequences of acting as if the true value of the
quantity of interest was θ̃, when it is actually θ. The expected posterior loss if θ̃ was used is

L[θ̃ |D] =
∫

Θ
L(θ̃,θ) p(θ |D) dθ, (30)

and the corresponding Bayes estimator θ∗ is that function of the data, θ∗ = θ∗(D), which
minimizes this expectation.
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Example 6. (Conventional Bayes estimators). For any given model and data, the Bayes estimator
obviously depends on the chosen loss function. The loss function is context specific, and should
be chosen in terms of the anticipated uses of the estimate; however, a number of conventional
loss functions have been suggested for those situations where no particular uses are envisaged.
These loss functions produce estimates which may be regarded as simple descriptions of the
location of the posterior distribution. For example, if the loss function is quadratic, so that
L(θ̃,θ) = (θ̃ − θ)t(θ̃ − θ), then the Bayes estimator is the posterior mean θ∗ = E[θ |D],
assuming that the mean exists. Similarly, if the loss function is a zero-one function, so that
L(θ̃,θ) = 0 if θ̃ belongs to a ball or radius ε centered in θ and L(θ̃,θ) = 1 otherwise, then the
Bayes estimator θ∗ tends to the posterior mode as the ball radius ε tends to zero, assuming that a
unique mode exists. If θ is univariate and the loss function is linear, so that L(θ̃, θ) = c1(θ̃− θ)
if θ̃ ≥ θ, and L(θ̃, θ) = c2(θ − θ̃) otherwise, then the Bayes estimator is the posterior quantile
of order c2/(c1 + c2), so that Pr[θ < θ∗] = c2/(c1 + c2). In particular, if c1 = c2, the Bayes
estimator is the posterior median. The results derived for linear loss funtions clearly illustrate
the fact that any possible parameter value may turn out be the Bayes estimator: it all depends
on the loss function describing the consequences of the anticipated uses of the estimate. '

Example 7. (Intrinsic estimation). Conventional loss functions are typically non-invariant under
reparametrization, so that the Bayes estimator φ∗ of a one-to-one transformation φ = φ(θ) of
the original parameter θ is not necessarilyφ(θ∗) (the posterior median, which is invariant, is an
interesting exception). Moreover, conventional loss functions focus on the “distance” between
the estimate θ̃ and the true value θ, rather then on the “distance” between the probability models
they label. Intrinsic losses directly focus on how different the probability model p(D |θ,λ) is
from its closest approximation within the family {p(D | θ̃,λi),λi ∈ Λ}, and typically produce
invariant solutions. An attractive example is the intrinsic discrepancy, d(θ̃,θ) defined as the
minimum logarithmic divergence between a probability model labeled by θ and a probability
model labeled by θ̃. When there are no nuisance parameters, this is given by

d(θ̃,θ) = min{δ(θ̃ |θ), δ(θ | θ̃)}, δ(θi |θ) =
∫
T
p(t |θ) log

p(t |θ)
p(t |θi)

dt, (31)

where t = t(D) ∈ T is any sufficient statistic (which may well be the whole data set D). The
definition is easily extended to problems with nuisance parameters; in this case,

δ(θi |ω) = δ(θi |θ,λ) = inf
λi∈Λ

∫
T
p(t |θ,λ) log

p(t |θ,λ)
p(t |θi,λi)

dt (32)

measures the logarithmic divergence from p(t |θ,λ) of its closest approximation with θ = θi,
and the loss function d(θ̃,ω) = min{δ(θ̃ |θ,λ), δ(θ | θ̃,λ)} now depends on the complete
parameter vector ω = (θ,λ). Although not explicitly shown in the notation, the intrinsic
discrepancy function typically depends on the sample size n; indeed, when the data consist of
a random sample D = {x1, . . . ,xn} from some model p(x |θ,λ), then

δ(θi |θ,λ) = n inf
λi∈Λ

∫
X
p(x |θ,λ) log

p(x |θ,λ)
p(x |θi,λi)

dx, (33)

so that the discrepancy associated with the full model is simply n times the discrepancy which
corresponds to a single observation. The intrinsic discrepancy is a symmetric, non-negative loss
function with a direct interpretation in information-theoretical terms as the minimum amount
of information which is expected to be necessary to distinguish between the model p(D |θ,λ)
and its closest approximation within the class {p(D | θ̃,λi),λi ∈ Λ}. Moreover, it is invariant
under one-to-one reparametrization of the parameter of interest θ, and does not depend on the

21



choice of the nuisance parameterλ. The intrinsic estimator is naturally obtained by minimizing
the posterior expected intrinsic discrepancy

d(θ̃ |D) =
∫

Ω
d(θ̃,ω) p(ω |D) dω. (34)

Since the intrinsic discrepancy is invariant under reparametrization, minimizing its posterior
expectation produces invariant estimators. '

Example 2. (Inference on a binomial parameter, continued). In estimation of a binomial pro-
portion θ, given dataD = (n, r) and a Beta prior Be(θ |α, β), the quadratic loss Bayes estimate
(the corresponding posterior mean) isE[θ |D] = (r+α)/(n+α+β), while the quadratic loss
estimate of, say, the log-odds φ(θ) = log[θ/(1− θ)], is E[φ |D] = ψ(r + α)− ψ(n− r + β)
(where ψ(x) = d log[Γ(x)]/dx is the digamma function), which is not equal to φ(E[θ |D]).
The intrinsic loss function in this problem is

d(θ̃, θ) = n min{δ(θ̃ | θ), δ(θ | θ̃)}, δ(θi | θ) = θ log
θ

θi
+ (1− θ) log

1− θ

1− θi
, (35)

and the corresponding intrinsic estimator θ∗ is obtained by minimizing the expected posterior
loss d(θ̃ |D) =

∫
d(θ̃, θ) p(θ |D) dθ. The exact value of θ∗ may be obtained by numerical

minimization, but a very good approximation is given by

θ∗ ≈ 1
2

r + α

n+ α+ β
+

1
2

eψ(r+α)

eψ(r+α) + eψ(n−r+β) . (36)

Since intrinsic estimation is an invariant procedure, the intrinsic estimator of the log-odds will
simply be the log-odds of the intrinsic estimator of θ. As one would expect, when r + α and
n − r + β are both large, all Bayes estimators of any well-behaved function φ(θ) will cluster
around φ(E[θ |D]). '

Interval Estimation. To describe the inferential content of the posterior distribution of the quan-
tity of interest p(θ |D) it is often convenient to quote regions R ⊂ Θ of given probability under
p(θ |D). For example, the identification of regions containing 50%, 90%, 95%, or 99% of the
probability under the posterior may be sufficient to convey the general quantitative messages
implicit in p(θ |D); indeed, this is the intuitive basis of graphical representations of univariate
distributions like those provided by boxplots. Any region R ⊂ Θ such that

∫
R p(θ |D)dθ = q,

so that, given dataD, the true value of θ belongs toRwith probability q, is said to be a posterior
q-credible region of θ. Notice that this provides a direct, immediately intuitive statement about
the unknown quantity of interest θ in probability terms, in marked contrast to the circumlocutory
statements provided by frequentist confidence intervals. Clearly, for any given q there are gen-
erally infinitely many credible regions. A credible region is invariant under reparametrization;
thus, for any q-credible region R of θ, φ(R) is a q-credible region of φ = φ(θ). Sometimes,
credible regions are selected to have minimum size (length, area, volume), resulting in highest
probability density (HPD) regions, where all points in the region have larger probability den-
sity than all points outside. However, HPD regions are not invariant under reparametrization:
the image φ(R) of an HPD region R will be a credible region for φ, but will not generally
be HPD; indeed, there is no compelling reason to restrict attention to HPD credible regions.
Posterior quantiles are often used to derive credible regions. Thus, if θq = θq(D) is the 100q%
posterior quantile of θ, then R = {θ; θ ≤ θq} is a one-sided, typically unique q-credible
region, and it is invariant under reparametrization. Indeed, q-credible regions of the form
R = {θ; θq/2 ≤ θ ≤ θ1−q/2} are easier to compute, and are often quoted in preference to HPD
regions.
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Example 3. (Inference on normal parameters, continued). In the numerical example about
the value of the gravitational field described in Figure 3a, the interval [9.788, 9.829] in the
unrestricted posterior density of g is a HPD, 95%-credible region for g. Similarly, the interval
[9.7803, 9.8322] in Figure 3b is also a 95%-credible region for g, but it is not HPD.

'

The concept of a credible region for a function θ = θ(ω) of the parameter vector is trivially
extended to prediction problems. Thus, a posterior q-credible region for x ∈ X is a subset R
of the outcome space X with posterior predictive probability q, so that

∫
R p(x |D)dx = q.

4.2. Hypothesis Testing

The posterior distribution p(θ |D) of the quantity of interest θ conveys immediate intuitive
information on those values ofθwhich, given the assumed model, may be taken to be compatible
with the observed data D, namely, those with a relatively high probability density. Sometimes,
a restriction θ ∈ Θ0 ⊂ Θ of the possible values of the quantity of interest (where Θ0 may
possibly consists of a single value θ0) is suggested in the course of the investigation as deserving
special consideration, either because restricting θ to Θ0 would greatly simplify the model, or
because there are additional, context specific arguments suggesting that θ ∈ Θ0. Intuitively, the
hypothesisH0 ≡ {θ ∈ Θ0} should be judged to be compatible with the observed dataD if there
are elements in Θ0 with a relatively high posterior density. However, a more precise conclusion
is often required and, once again, this is made possible by adopting a decision-oriented approach.
Formally, testing the hypothesis H0 ≡ {θ ∈ Θ0} is a decision problem where the action space
has only two elements, namely to accept (a0) or to reject (a1) the proposed restriction. To solve
this decision problem, it is necessary to specify an appropriate loss function,L(ai,θ), measuring
the consequences of accepting or rejecting H0 as a function of the actual value θ of the vector
of interest. Notice that this requires the statement of an alternative a1 to accepting H0; this is
only to be expected, for an action is taken not because it is good, but because it is better than
anything else that has been imagined.

Given data D, the optimal action will be to reject H0 if (and only if) the expected posterior
loss of accepting,

∫
Θ L(a0,θ) p(θ |D) dθ, is larger than the expected posterior loss of rejecting,∫

Θ L(a1,θ) p(θ |D) dθ, that is, if (and only if)∫
Θ
[L(a0,θ)− L(a1,θ)] p(θ |D) dθ =

∫
Θ

∆L(θ) p(θ |D) dθ > 0. (37)

Therefore, only the loss difference ∆L(θ) = L(a0,θ)− L(a1,θ), which measures the advan-
tage of rejecting H0 as a function of θ, has to be specified. Thus, as common sense dictates, the
hypothesis H0 should be rejected whenever the expected advantage of rejecting H0 is positive.

A crucial element in the specification of the loss function is a description of what is precisely
meant by rejecting H0. By assumption a0 means to act as if H0 were true, i.e., as if θ ∈ Θ0,
but there are at least two obvious options for the alternative action a1. This may either mean
(i) the negation of H0, that is to act as if θ /∈ Θ0 or, alternatively, it may rather mean (ii) to
reject the simplification implied by H0 and to keep the unrestricted model, θ ∈ Θ, which is true
by assumption. Both options have been analyzed in the literature, although it may be argued
that the problems of scientific data analysis where hypothesis testing procedures are typically
used are better described by the second alternative. Indeed, an established model, identified by
H0 ≡ {θ ∈ Θ0}, is often embedded into a more general model, {θ ∈ Θ,Θ0 ⊂ Θ}, constructed
to include possibly promising departures from H0, and it is required to verify whether presently
available data D are still compatible with θ ∈ Θ0, or whether the extension to θ ∈ Θ is really
required.
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Example 8. (Conventional hypothesis testing). Let p(θ |D), θ ∈ Θ, be the posterior distribution
of the quantity of interest, let a0 be the decision to work under the restriction θ ∈ Θ0 and let a1
be the decision to work under the complementary restriction θ /∈ Θ0. Suppose, moreover,
that the loss structure has the simple, zero-one form given by {L(a0,θ) = 0, L(a1,θ) = 1} if
θ ∈ Θ0 and, similarly, {L(a0,θ) = 1, L(a1,θ) = 0} if θ /∈ Θ0, so that the advantage ∆L(θ)
of rejecting H0 is 1 if θ /∈ Θ0 and it is −1 otherwise. With this loss function it is immediately
found that the optimal action is to reject H0 if (and only if) Pr(θ /∈ Θ0 |D) > Pr(θ ∈ Θ0 |D).
Notice that this formulation requires that Pr(θ ∈ Θ0) > 0, that is, that the hypothesis H0 has a
strictly positive prior probability. If θ is a continuous parameter and Θ0 has zero measure (for
instance if H0 consists of a single point θ0), this requires the use of a non-regular “sharp” prior
concentrating a positive probability mass on Θ0. '

Example 9. (Intrinsic hypothesis testing). Again, let p(θ |D), θ ∈ Θ, be the posterior dis-
tribution of the quantity of interest, and let a0 be the decision to work under the restriction
θ ∈ Θ0, but let a1 now be the decision to keep the general, unrestricted model θ ∈ Θ. In this
case, the advantage ∆L(θ) of rejecting H0 as a function of θ may safely be assumed to have
the form ∆L(θ) = d(Θ0,θ) − d∗, for some d∗ > 0, where (i) d(Θ0,θ) is some measure of
the discrepancy between the assumed model p(D |θ) and its closest approximation within the
class {p(D |θ0),θ0 ∈ Θ0}, such that d(Θ0,θ) = 0 whenever θ ∈ Θ0, and (ii) d∗ is a context
dependent utility constant which measures the (necessarily positive) advantage of being able to
work with the simpler model when it is true. Choices of both d(Θ0,θ) and d∗ which may be
appropriate for general use will now be described.

By similar reasons to those supporting its use in point estimation, an attractive choice for the
function d(Θ0,θ) is an appropriate extension of the intrinsic discrepancy; when there are no
nuisance parameters, this is given by

d(Θ0,θ) = min { inf
θ0∈Θ0

δ(θ0 |θ), inf
θ0∈Θ0

δ(θ |θ0)}, (38)

where δ(θ0 |θ) =
∫
T p(t |θ) log{p(t |θ)/p(t |θ0)}dt, and t = t(D) ∈ T is any sufficient

statistic, which may well be the whole dataset D. As before, if the data D = {x1, . . . ,xn}
consist of a random sample from p(x |θ), then

δ(θ0 |θ) = n

∫
X
p(x |θ) log

p(x |θ)
p(x |θ0)

dx. (39)

Naturally, the loss function d(Θ0,θ) reduces to the intrinsic discrepancy d(θ0,θ) of Example 6
when Θ0 contains a single element θ0. Besides, as in the case of estimation, the definition is
easily extended to problems with nuisance parameters, with

δ(θ0 |θ,λ) = inf
λ0∈Λ

∫
T
p(t |θ,λ) log

p(t |θ,λ)
p(t |θ0,λ0)

dt. (40)

The hypothesis H0 should be rejected if the posterior expected advantage of rejecting is

d(Θ0, D) =
∫

Θ
d(Θ0,θ) p(θ |D)dθ > d∗, (41)

for some d∗ > 0. It is easily verified that the function d(Θ0, D) is nonnegative. Morovever,
if φ = φ(θ) is a one-to-one transformation of θ, then d(φ(Θ0), D) = d(Θ0, D), so that the
expected intrinsic loss of rejecting H0 is invariant under reparametrization.

It may be shown that, as the sample size increases, the expected value of d(Θ0, D) under
sampling tends to one when H0 is true, and tends to infinity otherwise; thus d(Θ0, D) may be
regarded as a continuous, positive measure of how inappropriate (in loss of information units)
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it would be to simplify the model by accepting H0. In traditional language, d(Θ0, D) is a test
statistic for H0 and the hypothesis should be rejected if the value of d(Θ0, D) exceeds some
critical value d∗. In sharp contrast to conventional hypothesis testing, this critical value d∗ is
found to be a context specific, positive utility constant d∗, which may precisely be described
as the number of information units which the decision maker is prepared to lose in order to be
able to work with the simpler model H0, and does not depend on the sampling properties of the
probability model. The procedure may be used with standard, continuous regular priors even in
sharp hypothesis testing, when Θ0 is a zero-measure set (as would be the case if θ is continuous
and Θ0 contains a single point θ0). Naturally, to implement the test, the utility constant d∗

which defines the rejection region must be chosen.

All measurements are based on a comparison with a standard; comparison with the “canon-
ical” problem of testing a value µ = µ0 for the mean of a normal distribution with known
variance (see below) makes it possible to calibrate this information scale. Values of d(Θ0, D)
of about 1 should be regarded as an indication of no evidence against H0, since the expected
value of d(Θ0, D) under H0 is precisely one. Values of d(Θ0, D) of about 2.5, and 5 should
be respectively regarded as an indication of mild evidence against H0, and significant evidence
against H0 since, in the canonical normal problem, these values correspond to the observed
sample mean x respectively lying 2 or 3 posterior standard deviations from the null value µ0.
Notice that, in sharp contrast to frequentist hypothesis testing, where it is hazily recommended
to adjust the significance level for dimensionality and sample size, this provides an absolute
scale (in information units) which remains valid for any sample size and any dimensionality. '

Example 10. (Testing the value of a normal mean). Let the data D = {x1, . . . , xn} be a random
sample from a normal distribution N(x |µ, σ), where σ is assumed to be known, and consider
the “canonical” problem of testing whether these data are or are not compatible with some
specific sharp hypothesis H0 ≡ {µ = µ0} on the value of the mean.

The conventional approach to this problem requires a non-regular prior which places a probabil-
ity mass, say p0, on the value µ0 to be tested, with the remaining 1−p0 probability continuously
distributed over 
. If this prior is chosen to be p(µ |µ �= µ0) = N(µ |µ0, σ0), Bayes theorem
may be used to obtain the corresponding posterior probability,

Pr[µ0 |D,λ] =
B01(D,λ) p0

(1− p0) + p0 B01(D,λ)
, (42)

B01(D,λ) =
(
1 +

n

λ

)1/2
exp

[
−1

2
n

n+ λ
z2

]
, (43)

where z = (x− µ0)/(σ/
√
n) measures, in standard deviations, the distance between x and µ0

and λ = σ2/σ2
0 is the ratio of model to prior variance. The function B01(D,λ), a ratio of

(integrated) likelihood functions, is called the Bayes factor in favour ofH0. With a conventional
zero-one loss function,H0 should be rejected if Pr[µ0 |D,λ] < 1/2. The choices p0 = 1/2 and
λ = 1 or λ = 1/2, describing particular forms of sharp prior knowledge, have been suggested in
the literature for routine use. The conventional approach to sharp hypothesis testing deals with
situations of concentrated prior probability; it assumes important prior knowledge about the
value of µ and, hence, should not be used unless this is an appropriate assumption. Moreover,
as pointed out in the 1950’s by Bartlett, the resulting posterior probability is extremely sensitive
to the specific prior specification. In most applications, H0 is really a hazily defined small
region rather than a point. For moderate sample sizes, the posterior probability Pr[µ0 |D,λ] is
an approximation to the posterior probability Pr[µ0 − ε < µ < µ0 − ε |D,λ] for some small
interval around µ0 which would have been obtained from a regular, continuous prior heavily
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concentrated around µ0; however, this approximation always breaks down for sufficiently large
sample sizes. One consequence (which is immediately apparent from the last two equations)
is that for any fixed value of the pertinent statistic z, the posterior probability of the null,
Pr[µ0 |D,λ], tends to one as n→∞. Far from being specific to this example, this unappealing
behaviour of posterior probabilities based on sharp, non-regular priors (discovered by Lindley
in the 1950’s, and generally known as Lindley’s paradox) is always present in the conventional
Bayesian approach to sharp hypothesis testing.

The intrinsic approach may be used without assuming any sharp prior knowledge. The intrinsic
discrepancy is d(µ0, µ) = n(µ − µ0)2/(2σ2), a simple transformation of the standardized
distance between µ and µ0. As later explained (Section 5), absence of initial information
about the value of µ may formally be described in this problem by the (improper) uniform
prior function p(µ) = 1; Bayes’ theorem may then be used to obtain the corresponding (proper)
posterior distribution, p(µ |D) = N(µ |x, σ/√n). The expected value of d(µ0, µ) with respect
to this posterior is d(µ0, D) = (1 + z2)/2, where z = (x − µ0)/(σ/

√
n) is the standardized

distance between x and µ0. As foretold by the general theory, the expected value of d(µ0, D)
under repeated sampling is one if µ = µ0, and increases linearly with n if µ = µ0. Moreover, in
this canonical example, to reject H0 whenever |z| > 2 or |z| > 3, that is whenever µ0 is 2 or 3
posterior standard deviations away from x, respectively corresponds to rejecting H0 whenever
d(µ0, D) is larger than 2.5, or larger than 5. But the information scale is independent of the
problem, so that rejecting the null whenever its expected discrepancy from the true model is
larger than d∗ = 5 units of information is a general rule (and one which corresponds to the
conventional ‘3σ’ rule in the canonical normal case).

If σ is unknown, the intrinsic discrepancy becomes

d(µ0, µ, σ) =
n

2
log

[
1 +

(µ− µ0

σ

)2]
. (44)

Moreover, as mentioned before, absence of initial information about both µ and σ may be
described by the (improper) prior function p(µ, σ) = σ−1. The intrinsic test statistic d(µ0, D)
is found as the expected value of d(µ0, µ, σ) under the corresponding joint posterior distribution;
this may be exactly expressed in terms of hypergeometric functions, and is approximated by

d(µ0, D) ≈ 1
2

+
n

2
log

(
1 +

t2

n

)
, (45)

where t is the traditional statistic t =
√
n− 1(x − µ0)/s, ns2 =

∑
j(xj − x)2. For instance,

for samples sizes 5, 30 and 1000, and using the utility constant d∗ = 5, the hypothesisH0 would
be rejected whenever |t| is respectively larger than 5.025, 3.240, and 3.007.

'

5. Reference Analysis

Under the Bayesian paradigm, the outcome of any inference problem (the posterior distribution
of the quantity of interest) combines the information provided by the data with relevant available
prior information. In many situations, however, either the available prior information on the
quantity of interest is too vague to warrant the effort required to have it formalized in the form
of a probability distribution, or it is too subjective to be useful in scientific communication
or public decision making. It is therefore important to be able to identify the mathematical
form of a “noninformative” prior, a prior that would have a minimal effect, relative to the data,
on the posterior inference. More formally, suppose that the probability mechanism which has
generated the available dataD is assumed to be p(D |ω), for someω ∈ Ω, and that the quantity
of interest is some real-valued function θ = θ(ω) of the model parameter ω. Without loss
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of generality, it may be assumed that the probability model is of the form p(D | θ,λ), θ ∈ Θ,
λ ∈ Λ, where λ is some appropriately chosen nuisance parameter vector. As described in
Section 3, to obtain the required posterior distribution of the quantity of interest p(θ |D) it is
necessary to specify a joint prior p(θ,λ). It is now required to identify the form of that joint
prior πθ(θ,λ), the θ-reference prior, which would have a minimal effect on the corresponding
posterior distribution of θ,

π(θ |D) ∝
∫

Λ
p(D | θ,λ)πθ(θ,λ) dλ, (46)

a prior which, to use a conventional expression, “would let the data speak for themselves” about
the likely value of θ. Properly defined, reference posterior distributions have an important role
to play in scientific communication, for they provide the answer to a central question in the
sciences: conditional on the assumed model p(D | θ,λ), and on any further assumptions of
the value of θ on which there might be universal agreement, the reference posterior π(θ |D)
should specify what could be said about θ if the only available information about θ were some
well-documented data D.

Much work has been done to formulate “reference” priors which would make the idea described
above mathematically precise. This section concentrates on an information-theoretical based
approach to derive reference distributions which may be argued to provide the most advanced
general procedure available. In the formulation described below, far from ignoring prior knowl-
edge, the reference posterior exploits certain well-defined features of a possible prior, namely
those describing a situation were relevant knowledge about the quantity of interest (beyond
that universally accepted) may be held to be negligible compared to the information about that
quantity which repeated experimentation (from a particular data generating mechanism) might
possibly provide. Reference analysis is appropriate in contexts where the set of inferences
which could be drawn in this possible situation is considered to be pertinent.

Any statistical analysis contains a fair number of subjective elements; these include (among
others) the data selected, the model assumptions, and the choice of the quantities of interest.
Reference analysis may be argued to provide an “objective” Bayesian solution to statistical
inference problems in precisely the same sense that conventional statistical methods claim to
be “objective”: in that the solutions only depend on model assumptions and observed data. The
whole topic of objective Bayesian methods is, however, subject to polemic; interested readers
will find in the bibliography some pointers to the relevant literature.

5.1. Reference Distributions

One parameter. Consider the experiment which consists of the observation of dataD, generated
by a random mechanism p(D | θ) which only depends on a real-valued parameter θ ∈ Θ, and
let t = t(D) ∈ T be any sufficient statistic (which may well be the complete data set D). In
Shannon’s general information theory, the amount of information Iθ{T, p(θ)} which may be
expected to be provided by D, or (equivalently) by t(D), about the value of θ is defined by

Iθ{T, p(θ)} =
∫
T

∫
Θ
p(t, θ) log

p(t, θ)
p(t)p(θ)

dθdt = Et

[ ∫
Θ
p(θ | t) log

p(θ | t)
p(θ)

dθ
]

(47)

the expected logarithmic divergence of the prior from the posterior. This is naturally a func-
tional of the prior p(θ): the larger the prior information, the smaller the information which
the data may be expected to provide. The functional Iθ{T, p(θ)} is concave, non-negative,
and invariant under one-to-one transformations of θ. Consider now the amount of information
Iθ{Tk, p(θ)} about θ which may be expected from the experiment which consists of k condi-
tionally independent replications {t1, . . . , tk} of the original experiment. As k →∞, such an
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experiment would provide any missing information about θ which could possibly be obtained
within this framework; thus, as k →∞, the functional Iθ{Tk, p(θ)} will approach the missing
information about θ associated with the prior p(θ). Intuitively, a θ-“noninformative” prior is one
which maximizes the missing information about θ. Formally, if πk(θ) denotes the prior density
which maximizes Iθ{Tk, p(θ)} in the class P of strictly positive prior distributions which are
compatible with accepted assumptions on the value of θ (which may well be the class of all
strictly positive proper priors) then the θ-reference prior π(θ) is the limit as k →∞ (in a sense
to be made precise) of the sequence of priors {πk(θ), k = 1, 2, . . .}.
Notice that this limiting procedure is not some kind of asymptotic approximation, but an essential
element of the definition of a reference prior. In particular, this definition implies that reference
distributions only depend on the asymptotic behaviour of the assumed probability model, a
feature which greatly simplifies their actual derivation.

Example 11. (Maximum entropy). If θ may only take a finite number of values, so that the
parameter space is Θ = {θ1, . . . , θm} and p(θ) = {p1, . . . , pm}, with pi = Pr(θ = θi), then
the missing information associated to {p1, . . . , pm} may be shown to be

lim
k→∞

Iθ{Tk, p(θ)} = H(p1, . . . , pm) = −
∑m

i=1
pi log(pi), (48)

that is, the entropy of the prior distribution {p1, . . . , pm}.
Thus, in the finite case, the reference prior is that with maximum entropy in the class P of priors
compatible with accepted assumptions. Consequently, the reference prior algorithm contains
“maximum entropy” priors as the particular case which obtains when the parameter space is
finite, the only case where the original concept of entropy (in statistical mechanics, as a measure
of uncertainty) is unambiguous and well-behaved. If, in particular, P contains all priors over
{θ1, . . . , θm}, then the reference prior is the uniform prior, π(θ) = {1/m, . . . , 1/m}. '

Formally, the reference prior function π(θ) of a univariate parameter θ is defined to be the limit
of the sequence of the proper priors πk(θ) which maximize Iθ{Tk, p(θ)} in the precise sense
that, for any value of the sufficient statistic t = t(D), the reference posterior, the pointwise
limit π(θ | t) of the corresponding sequence of posteriors {πk(θ | t)}, may be obtained from
π(θ) by formal use of Bayes theorem, so that π(θ | t) ∝ p(t | θ)π(θ).
Reference prior functions are often simply called reference priors, even though they are usually
not probability distributions. They should not be considered as expressions of belief, but
technical devices to obtain (proper) posterior distributions which are a limiting form of the
posteriors which could have been obtained from possible prior beliefs which were relatively
uninformative with respect to the quantity of interest when compared with the information which
data could provide.

If (i) the sufficient statistic t = t(D) is a consistent estimator θ̃ of a continuous parameter θ,
and (ii) the class P contains all strictly positive priors, then the reference prior may be shown to
have a simple form in terms of any asymptotic approximation to the posterior distribution of θ.
Notice that, by construction, an asymptotic approximation to the posterior does not depend on
the prior. Specifically, if the posterior density p(θ |D) has an asymptotic approximation of the
form p(θ | θ̃, n), the reference prior is simply

π(θ) ∝ p(θ | θ̃, n)
∣∣∣
θ̃=θ

(49)

One-parameter reference priors are shown to be invariant under reparametrization; thus, if
ψ = ψ(θ) is a piecewise one-to-one function of θ, then the ψ-reference prior is simply the
appropriate probability transformation of the θ-reference prior.
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Example 12. (Jeffreys’ prior). If θ is univariate and continuous, and the posterior distribution of θ
given {x1 . . . , xn} is asymptotically normal with standard deviation s(θ̃)/

√
n, then, using (49),

the reference prior function is π(θ) ∝ s(θ)−1. Under regularity conditions (often satisfied in
practice, see Section 3.3), the posterior distribution of θ is asymptotically normal with variance
n−1 F−1(θ̂), where F (θ) is Fisher’s information function and θ̂ is the MLE of θ. Hence, the
reference prior function in these conditions is π(θ) ∝ F (θ)1/2, which is known as Jeffreys’
prior. It follows that the reference prior algorithm contains Jeffreys’ priors as the particular
case which obtains when the probability model only depends on a single continuous univariate
parameter, there are regularity conditions to guarantee asymptotic normality, and there is no
additional information, so that the class of possible priors P contains all strictly positive priors
over Θ. These are precisely the conditions under which there is general agreement on the use
of Jeffreys’ prior as a “noninformative” prior. '

Example 2. (Inference on a binomial parameter, continued). Let dataD = {x1, . . . , xn} consist
of a sequence of n independent Bernoulli trials, so that p(x | θ) = θx(1 − θ)1−x, x ∈ {0, 1};
this is a regular, one-parameter continuous model, whose Fisher’s information function is
F (θ) = θ−1(1−θ)−1. Thus, the reference prior π(θ) is proportional to θ−1/2(1−θ)−1/2, so that
the reference prior is the (proper) Beta distribution Be(θ | 1/2, 1/2). Since the reference algo-
rithm is invariant under reparametrization, the reference prior of φ(θ) = 2 arc sin

√
θ is π(φ) =

π(θ)/|∂φ/∂/θ| = 1; thus, the reference prior is uniform on the variance-stabilizing transfor-
mation φ(θ) = 2arc sin

√
θ, a feature generally true under regularity conditions. In terms of

the original parameter θ, the corresponding reference posterior is Be(θ | r+ 1/2, n− r+ 1/2),
where r =

∑
xj is the number of positive trials.

0.01 0.02 0.03 0.04 0.05

100

200

300

400

500

600

Figure 4. Posterior distribution of the proportion of infected people in the population, given the results of n = 100
tests, none of which were positive.

p(θ | r, n, α, β) = Be(θ | 0.5, 100.5)

θ

Suppose, for example, that n = 100 randomly selected people have been tested for an infection
and that all tested negative, so that r = 0. The reference posterior distribution of the proportion θ
of people infected is then the Beta distribution Be(θ | 0.5, 100.5), represented in Figure 4. It
may well be known that the infection was rare, leading to assume that θ < θ0, for some upper
bound θ0; the (restricted) reference prior would then be of the form π(θ) ∝ θ−1/2(1 − θ)−1/2

if θ < θ0, and zero otherwise. However, provided the likelihood is concentrated in the region
θ < θ0, the corresponding posterior would virtually be identical to Be(θ | 0.5, 100.5). Thus,
just on the basis of the observed experimental results, one may claim that the proportion of
infected people is surely smaller than 5% (for the reference posterior probability of the event
θ > 0.05 is 0.001), that θ is smaller than 0.01 with probability 0.844 (area of the shaded region
in Figure 4), that it is equally likely to be over or below 0.23% (for the median, represented
by a vertical line, is 0.0023), and that the probability that a person randomly chosen from the
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population is infected is 0.005 (the posterior mean, represented in the figure by a black circle),
since Pr(x = 1 | r, n) = E[θ | r, n] = 0.005. If a particular point estimate of θ is required
(say a number to be quoted in the summary headline) the intrinsic estimator suggests itself;
this is found to be θ∗ = 0.0032 (represented in the figure with a white circle). Notice that
the traditional solution to this problem, based on the asymptotic behaviour of the MLE, here
θ̂ = r/n = 0 for any n, makes absolutely no sense in this scenario. '

One nuisance parameter. The extension of the reference prior algorithm to the case of two
parameters follows the usual mathematical procedure of reducing the problem to a sequential
application of the established procedure for the single parameter case. Thus, if the probability
model is p(t | θ, λ), θ ∈ Θ, λ ∈ Λ and a θ-reference prior πθ(θ, λ) is required, the reference
algorithm proceeds in two steps:

(i) Conditional on θ, p(t | θ, λ) only depends on the nuisance parameter λ and, hence, the
one-parameter algorithm may be used to obtain the conditional reference prior π(λ | θ).
(ii) If π(λ | θ) is proper, this may be used to integrate out the nuisance parameter thus ob-
taining the one-parameter integrated model p(t | θ) =

∫
Λ p(t | θ, λ)π(λ | θ) dλ, to which the

one-parameter algorithm may be applied again to obtain π(θ). The θ-reference prior is then
πθ(θ, λ) = π(λ | θ)π(θ), and the required reference posterior is π(θ | t) ∝ p(t | θ)π(θ).
If the conditional reference prior is not proper, then the procedure is performed within an
increasing sequence {Λi} of subsets converging to Λ over which π(λ | θ) is integrable. This
makes it possible to obtain a corresponding sequence of θ-reference posteriors {πi(θ | t} for the
quantity of interest θ, and the required reference posterior is the corresponding pointwise limit
π(θ | t) = limi πi(θ | t). A θ-reference prior is then defined as a positive functionπθ(θ, λ) which
may be formally used in Bayes’ theorem as a prior to obtain the reference posterior, i.e., such
that, for any t ∈ T , π(θ | t) ∝

∫
Λ p(t | θ, λ)πθ(θ, λ) dλ. The approximating sequences should

be consistently chosen within a given model. Thus, given a probability model {p(x |ω),ω ∈ Ω}
an appropriate approximating sequence {Ωi} should be chosen for the whole parameter space Ω;
then, if the analysis is done in terms of, say,ψ = {ψ1, ψ2} ∈ Ψ(Ω), the approximating sequence
should be chosen such that Ψi = ψ(Ωi). A natural approximating sequence in location-scale
problems is {µ, log σ} ∈ [−i, i]2.

The θ-reference prior does not depend on the choice of the nuisance parameter λ; thus, for
any ψ = ψ(θ, λ) such that (θ, ψ) is a one-to-one function of (θ, λ), the θ-reference prior in
terms of (θ, ψ) is simply πθ(θ, ψ) = πθ(θ, λ)/|∂(θ, ψ)/∂(θ, λ)|, the appropriate probability
transformation of the θ-reference prior in terms of (θ, λ). Notice, however, that the reference
prior may depend on the parameter of interest; thus, the θ-reference prior may differ from the
φ-reference prior unless either φ is a piecewise one-to-one transformation of θ, or φ is asymp-
totically independent from θ. This is an expected consequence of the fact that the conditions
under which the missing information about θ is maximized are not generally the same as the
conditions which maximize the missing information about some function φ = φ(θ, λ).
The non-existence of a unique “noninformative prior” which would be appropriate for any
inference problem within a given model was established in the 1970’s by Dawid and Stone,
when they showed that this is incompatible with consistent marginalization. Indeed, if given the
model p(D | θ, λ), the reference posterior of the quantity of interest θ, π(θ |D) = π(θ | t), only
depends on the data through a statistic twhose sampling distribution, p(t | θ, λ) = p(t | θ), only
depends on θ, one would expect the reference posterior to be of the form π(θ | t) ∝ π(θ) p(t | θ)
for some prior π(θ). However, examples were found where this cannot be the case if a unique
joint “noninformative” prior were to be used whatever the quantity of interest might be.
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Example 13. (Regular two dimensional continuous reference prior functions). If the joint pos-
terior distribution of (θ, λ) is asymptotically normal, then the θ-reference prior may be derived
in terms of the corresponding Fisher’s information matrix, F (θ, λ). Indeed, if

F (θ, λ) =
(
Fθθ(θ, λ) Fθλ(θ, λ)
Fθλ(θ, λ) Fλλ(θ, λ)

)
, and S(θ, λ) = F−1(θ, λ), (50)

then the θ-reference prior is πθ(θ, λ) = π(λ | θ)π(θ), where

π(λ | θ) ∝ F
1/2
λλ (θ, λ), λ ∈ Λ. (51)

If π(λ | θ) is proper,

π(θ) ∝ exp {
∫

Λ
π(λ | θ) log[S−1/2

θθ (θ, λ)] dλ}, θ ∈ Θ. (52)

If π(λ | θ) is not proper, integrations are performed on an approximating sequence {Λi} to
obtain a sequence {πi(λ | θ)πi(θ)}, (where πi(λ | θ) is the proper renormalization of π(λ | θ)
to Λi) and the θ-reference prior πθ(θ, λ) is defined as its appropriate limit. Moreover, if (i) both

F
1/2
λλ (θ, λ) and S−1/2

θθ (θ, λ) factorize, so that

S
−1/2
θθ (θ, λ) ∝ fθ(θ) gθ(λ), F

1/2
λλ (θ, λ) ∝ fλ(θ) gλ(λ), (53)

and (ii) the parameters θ and λ are variation independent, so that Λ does not depend on θ, then
the θ-reference prior is simply πθ(θ, λ) = fθ(θ) gλ(λ), even if the conditional reference prior
π(λ | θ) = π(λ) ∝ gλ(λ) (which will not depend on θ) is actually improper.

'

Example 3. (Inference on normal parameters, continued). The information matrix which cor-
responds to a normal model N(x |µ, σ) is

F (µ, σ) =
(
σ−2 0
0 2σ−2

)
, S(µ, σ) = F−1(µ, σ) =

(
σ2 0
0 1

2σ
2

)
; (54)

hence F 1/2
σσ (µ, σ) =

√
2σ−1 = fσ(µ) gσ(σ), with gσ(σ) = σ−1, and thus π(σ |µ) = σ−1.

Similarly, S−1/2
µµ (µ, σ) = σ−1 = fµ(µ) gµ(σ), with fµ(µ) = 1, and thus π(µ) = 1. Therefore,

the µ-reference prior is πµ(µ, σ) = π(σ |µ)π(µ) = σ−1, as already anticipated. Moreover,
as one would expect from the fact that F (µ, σ) is diagonal and also anticipated, it is similarly
found that the σ-reference prior is πσ(µ, σ) = σ−1, the same as πµ(µ, σ).
Suppose, however, that the quantity of interest is not the mean µ or the standard deviation σ,
but the standardized mean φ = µ/σ. Fisher’s information matrix in terms of the parameters φ
and σ is F (φ, σ) = Jt F (µ, σ)J , where J = (∂(µ, σ)/∂(φ, σ)) is the Jacobian of the inverse
transformation; this yields

F (φ, σ) =
(

1 φσ−1

φσ−1 σ−2(2 + φ2)

)
, S(φ, σ) =

(
1 + 1

2φ
2 −1

2φσ

−1
2φσ

1
2σ

2

)
. (55)

Thus, S−1/2
φφ (φ, σ) ∝ (1+ 1

2φ
2)−1/2 and F 1/2

σσ (φ, σ) ∝ σ−1(2+φ2)1/2. Hence, using again the

results in Example 13, πφ(φ, σ) = (1 + 1
2φ

2)−1/2σ−1. In the original parametrization, this is
πφ(µ, σ) = (1 + 1

2(µ/σ)2)−1/2σ−2, which is different from πµ(µ, σ) = πσ(µ, σ). The corre-
sponding reference posterior ofφ is found to beπ(φ |x1, . . . , xn) ∝ (1+1

2φ
2)−1/2 p(t |φ) where

t = (
∑

xj)/(
∑

x2
j)

1/2, a one-dimensional statistic whose sampling distribution, p(t |µ, σ) =
p(t |φ), only depends on φ. Thus, the reference prior algorithm is seen to be consistent under
marginalization.

'

31



Many parameters. The reference algorithm is easily generalized to an arbitrary number of
parameters. If the model is p(t |ω1, . . . , ωm), a joint reference prior

π(θm | θm−1, . . . , θ1)× . . .× π(θ2 | θ1)× π(θ1) (56)

may sequentially be obtained for each ordered parametrization {θ1(ω), . . . , θm(ω)} of interest,
and these are invariant under reparametrization of any of the θi(ω)’s. The choice of the ordered
parametrization {θ1, . . . , θm} precisely describes the particular prior required, namely that
which sequentially maximizes the missing information about each of the θi’s, conditional on
{θ1, . . . , θi−1}, for i = m,m− 1, . . . , 1.

Example 14. (Stein’s paradox). Let D be a random sample from a m-variate normal distri-
bution with mean µ = {µ1, . . . , µm} and unitary variance matrix. The reference prior which
corresponds to any permutation of the µi’s is uniform, and this prior leads indeed to appropriate
reference posterior distributions for any of the µi’s, namely π(µi |D) = N(µi |xi, 1/

√
n).

Suppose, however, that the quantity of interest is θ =
∑

i µ
2
i , the distance of µ to the origin.

As showed by Stein in the 1950’s, the posterior distribution of θ based on that uniform prior
(or in any “flat” proper approximation) has very undesirable properties; this is due to the fact
that a uniform (or nearly uniform) prior, although “noninformative” with respect to each of
the individual µi’s, is actually highly informative on the sum of their squares, introducing a
severe positive bias (Stein’s paradox). However, the reference prior which corresponds to a
parametrization of the form {θ, λ1, . . . , λm−1} produces, for any choice of the nuisance param-
eters λi = λi(µ), the reference posterior π(θ |D) = π(θ | t) ∝ θ−1/2χ2(nt |m,nθ), where
t =

∑
i x

2
i , and this posterior is shown to have the appropriate consistency properties.

'

Far from being specific to Stein’s example, the inappropriate behaviour in problems with many
parameters of specific marginal posterior distributions derived from multivariate “flat” priors
(proper or improper) is indeed very frequent. Hence, lazy, uncritical use of “flat” priors, rather
than the relevant reference priors, is strongly discouraged.

Limited information . Although often used in contexts where no universally agreed prior knowl-
edge about the quantity of interest is available, the reference algorithm may be used to specify
a prior which incorporates any acceptable prior knowledge; it suffices to maximize the missing
information within the class P of priors which is compatible with such accepted knowledge.
Indeed, by progressive incorporation of further restrictions intoP , the reference prior algorithm
becomes a method of (prior) probability assessment. As described below, the problem has a
fairly simple analytical solution when those restrictions take the form of known expected values.
The incorporation of other type of restrictions usually involves numerical computations.

Example 15. (Univariate restricted reference priors). If the probability mechanism which is
assumed to have generated the available data only depends on a univarite continuous parameter
θ ∈ Θ ⊂ 
, and the class P of acceptable priors is a class of proper priors which satisfies some
expected value restrictions, so that

P =
{
p(θ); p(θ) > 0,

∫
Θ
p(θ) dθ = 1,

∫
Θ
gi(θ) p(θ) dθ = βi, i = 1, . . . ,m

}
(57)

then the (restricted) reference prior is

π(θ | P) ∝ π(θ) exp
[∑m

j=1
γi gi(θ)

]
(58)

where π(θ) is the unrestricted reference prior and the γi’s are constants (the corresponding
Lagrange multipliers), to be determined by the restrictions which define P . Suppose, for
instance, that data are considered to be a random sample from a location model centered at θ,
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and that it is further assumed that E[θ] = µ0 and that Var[θ] = σ2
0 . The unrestricted reference

prior for any regular location problem may be shown to be uniform. Thus, the restricted reference
prior must be of the form π(θ | P) ∝ exp{γ1θ+ γ2(θ− µ0)2}, with

∫
Θ θ π(θ | P) dθ = µ0 and∫

Θ(θ−µ0)2 π(θ | P) dθ = σ2
0 . Hence, π(θ | P) is a normal distribution with the specified mean

and variance.
'

5.2. Frequentist Properties

Bayesian methods provide a direct solution to the problems typically posed in statistical infer-
ence; indeed, posterior distributions precisely state what can be said about unknown quantities
of interest given available data and prior knowledge. In particular, unrestricted reference poste-
rior distributions state what could be said if no prior knowledge about the quantities of interest
were available.

A frequentist analysis of the behaviour of Bayesian procedures under repeated sampling may,
however, be illuminating, for this provides some interesting bridges between frequentist and
Bayesian inference. It is found that the frequentist properties of Bayesian reference procedures
are typically excellent, and may be used to provide a form of calibration for reference posterior
probabilities.

Point Estimation. It is generally accepted that, as the sample size increases, a “good” estimator θ̃
of θ ought to get the correct value of θ eventually, that is to be consistent. Under appropriate
regularity conditions, any Bayes estimator φ∗ of any function φ(θ) converges in probability
to φ(θ), so that sequences of Bayes estimators are typically consistent. Indeed, it is known that
if there is a consistent sequence of estimators, then Bayes estimators are consistent. The rate of
convergence is often best for reference Bayes estimators.

It is also generally accepted that a “good” estimator should be admissible, that is, not dominated
by any other estimator in the sense that its expected loss under sampling (conditional to θ)
cannot be larger for all θ values than that corresponding to another estimator. Any proper
Bayes estimator is admissible; moreover, as established by Wald in the 1950’s, a procedure
must be Bayesian (proper or improper) to be admissible. Most published admissibility results
refer to quadratic loss functions, but they often extend to more general loss funtions. Reference
Bayes estimators are typically admissible with respect to intrinsic loss functions.

Notice, however, that many other apparently intuitive frequentist ideas on estimation have been
proved to be potentially misleading. For example, given a sequence of n Bernoulli observations
with parameter θ resulting in r positive trials, the best unbiased estimate of θ2 is found to be
r(r − 1)/{n(n− 1)}, which yields θ̃2 = 0 when r = 1; but to estimate the probability of two
positive trials as zero, when one positive trial has been observed, is not precisely sensible. In
marked contrast, any Bayes reference estimator provides a reasonable answer. For example,
the intrinsic estimator of θ2 is simply (θ∗)2, where θ∗ is the intrinsic estimator of θ described
in Section 4.1. In particular, if r = 1 and n = 2 the intrinsic estimator of θ2 is (as one surely
might expect) (θ∗)2 = 1/4.

Interval Estimation. As the sample size increases, the frequentist coverage probability of a
posterior q-credible region typically converges to q so that, for large samples, Bayesian credible
intervals may (under regularity conditions) be interpreted as approximate frequentist confidence
regions: under repeated sampling, a Bayesian q-credible region of θ based on a large sample will
cover the true value of θ approximately 100q% of times. Detailed results are readily available
for univariate problems. For instance, consider the probability model {p(D |ω),ω ∈ Ω}, let
θ = θ(ω) be any univariate quantity of interest, and let t = t(D) ∈ T be any sufficient statistic.
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If θq(t) denotes the 100q% quantile of the posterior distribution of θ which corresponds to some
unspecified prior, so that

Pr[θ ≤ θq(t) | t] =
∫
θ≤θq(t)

p(θ | t) dθ = q, (59)

then the coverage probability of the q-credible interval {θ; θ ≤ θq(t)},

Pr[θq(t) ≥ θ |ω] =
∫
θq(t)≥θ

p(t |ω) dt, (60)

typically satisfies that Pr[θq(t) ≥ θ |ω] = Pr[θ ≤ θq(t) | t] + O(n−1/2). This asymptotic
approximation is true for all (sufficiently regular) positive priors. However, the approximation
is better, actually O(n−1), for a particular class of priors known as (first-order) probability
matching priors. Reference priors are typically found to be probability matching priors, so that
they provide this improved asymptotic agreement. As a matter of fact, the agreement (in regular
problems) is typically quite good even for relatively small samples.

Example 16. (Product of normal means). Consider the case where independent random sam-
ples {x1, . . . , xn} and {y1, . . . , ym} have respectively been taken from the normal densities
N(x |ω1, 1) and N(y |ω2, 1), and suppose that the quantity of interest is the product of their
means, φ = ω1ω2 (for instance, one may be interested in inferences about the area φ of a
rectangular piece of land, given measurements {xi} and {yj} of its sides). Notice that this
is a simplified version of a very frequent problem in the sciences, where one is interested
in the product of several magnitudes, all of which have been measured with error. Using
the procedure described in Example 13, with the natural approximating sequence induced by
(ω1, ω2) ∈ [−i, i]2, the φ-reference prior is found to be

πφ(ω1, ω2) ∝ (nω2
1 +mω2

2)
−1/2, (61)

very different from the uniform prior πω1(ω1, ω2) = πω2(ω1, ω2) = 1 which should be used
to make objective inferences about either ω1 or ω2. The prior πφ(ω1, ω2) may be shown to
provide approximate agreement between Bayesian credible regions and frequentist confidence
intervals for φ; indeed, this prior was originally suggested by Stein in the 1980’s precisely to
obtain such approximate agreement. The same example was later used by Efron to stress the
fact that, even within a fixed probability model {p(D |ω),ω ∈ Ω}, the prior required to make
objective inferences about some function of the parameters φ = φ(ω) must generally depend
on the function φ.

'

The numerical agreement between reference Bayesian credible regions and frequentist confi-
dence intervals is actually perfect in special circumstances. Indeed, as Lindley pointed out
in the 1950’s, this is the case in those problems of inference which may be transformed to
location-scale problems.

Example 3. (Inference on normal parameters, continued). Let D = {x1, . . . xn} be a random
sample from a normal distribution N(x |µ, σ). As mentioned before, the reference posterior
of the quantity of interest µ is the Student distribution St(µ |x, s/

√
n− 1, n − 1). Thus,

normalizing µ, the posterior distribution of t(µ) =
√
n− 1(x − µ)/s, as a function of µ

given D, is the standard Student St(t | 0, 1, n− 1) with n− 1 degrees of freedom. On the other
hand, this function t is recognized to be precisely the conventional t statistic, whose sampling
distribution is well known to also be standard Student with n−1 degrees of freedom. It follows
that, for all sample sizes, posterior reference credible intervals for µ given the data will be
numerically identical to frequentist confidence intervals based on the sampling distribution of t.
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A similar result is obtained in inferences about the variance. Thus, the reference posterior
distribution of λ = σ−2 is the Gamma distribution Ga(σ−2 | (n − 1)/2, ns2/2) and, hence,
the posterior distribution of r = ns2/σ2, as a function of σ2 given D, is a (central) χ2 with
n − 1 degrees of freedom. But the function r is recognized to be a conventional statistic for
this problem, whose sampling distribution is well known to also be χ2 with n − 1 degrees of
freedom. It follows that, for all sample sizes, posterior reference credible intervals for σ2 (or any
one-to-one function of σ2) given the data will be numerically identical to frequentist confidence
intervals based on the sampling distribution of r. '

6. A Stylized Case Study

To further illustrate the main aspects of Bayesian methods, and to provide a detailed, worked
out example, a simplified version of a problem in engineering is analyzed below.

To study the reliability of a large production batch, n randomly selected items were put to an
expensive, destructive test, yielding D = {x1, . . . , xn} as their observed lifetimes in hours of
continuous use. Context considerations suggested that the lifetime xi of each item could be
assumed to be exponential with hazard rate θ, so that p(xi | θ) = Ex[xi | θ] = θe−θxi , θ > 0,
and that, given θ, the lifetimes of the n items are independent. Quality engineers were interested
in information on the actual value of the hazard rate θ, and on prediction of the lifetime x of
similar items. In particular, they were interested in the compatibility of the observed data with
advertised values of the hazard rate, and on the proportion of items whose lifetime could be
expected to be longer than some required industrial specification.

The statistical analysis of exponential data makes use of the exponential-gamma distribution
Eg(x |α, β), obtained as a continuous mixture of exponentials with a gamma density,

Eg(x |α, β) =
∫ ∞

0
θe−θx Ga(θ |α, β) dθ =

αβα

(x+ β)α+1 x ≥ 0, α > 0, β > 0. (62)

This is a monotonically decreasing density with mode at zero; if α > 1, it has a mean
E[x |α, β] = β/(α− 1). Moreover, tail probabilities have a simple expression; indeed,

Pr[x > t |α, β] =
{ β

β + t

}α
. (63)

Likelihood function. Under the accepted assumptions on the mechanism which generated the
data, p(D | θ) =

∏
j θe

−θxj = θne−θs, which only depends on s =
∑

j xj , the sum of the
observations. Thus, t = (s, n) is a sufficient statistic for this model. The corresponding MLE
estimator is θ̂ = n/s and Fisher’s information function is F (θ) = θ−2. Moreover, the sampling
distribution of s is the Gamma distribution p(s | θ) = Ga(s |n, θ).
The actual data consisted ofn = 25 uncensored observed lifetimes which, in thousands of hours,
yielded a sum s = 41.574, hence a mean x = 1.663, and a MLE θ̂ = 0.601. The standard
deviation of the observed lifetimes was 1.286 and their range was [0.136, 5.591], showing the
large variation (from a few hundred to a few thousand hours) typically observed in exponential
data.

Using the results of Section 3.3, and the form of Fisher’s information function given above, the
asymptotic posterior distribution of θ is p(θ |D) ≈ N(θ | θ̂, θ̂/√n) = N(θ | 0.601, 0.120). This
provided a first, quick approximation to the possible values of θ which, for instance, could be
expected to belong to the interval 0.601±1.96∗0.120, or (0.366, 0.837), with probability close
to 0.95.
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6.1. Objective Bayesian Analysis

The firm was to be audited on behalf of a major client. A report had to be prepared on the
available information on the hazard rate θ exclusively based on the documented data D, as
if this were the only information available. Within a Bayesian framework, this “objective”
analysis (objective in the sense of not using any information beyond that provided by the data
under the assumed model) may be achieved by computing the corresponding reference posterior
distribution.

Reference prior and reference posteriors. The exponential model meets all necessary regularity
conditions. Thus, using the results in Example 12 and the form of Fisher’s information function
mentioned above, the reference prior function (which in this case is also Jeffreys’ prior) is
simply π(θ) ∝ F (θ)1/2 = θ−1. Hence, using Bayes’ theorem, the reference posterior is
π(θ |D) ∝ p(Dθ) θ−1 ∝ θn−1 e−sθ, the kernel of a gamma density, so that

π(θ |D) = Ga(θ |n, s), θ > 0, (64)

which has mean E[θ |D] = n/s (which is also the MLE θ̂), mode (n−1)/s, and standard devia-
tion
√
n/s = θ̂/

√
n. Thus, the reference posterior of the hazard rate was found to be π(θ |D) =

Ga(θ | 25, 41.57) (represented in Figure 5) with mean 0.601, mode 0.577, and standard devi-
ation 0.120. One-dimensional numerical integration further yields Pr[θ < 0.593 |D] = 0.5,
Pr[θ < 0.389 |D] = 0.025 and Pr[θ < 0.859 |D] = 0.975; thus, the median is 0.593, and the
interval (0.389, 0.859) is a 95% reference posterior credible region (shaded area in Figure 5).
The intrinsic estimator (see below) was found to be 0.590 (dashed line in Figure 5).
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Figure 5. Reference posterior density of the hazard rate θ. The shaded region is a 95% credible interval. The
dashed line indicates the position of the intrinsic estimator.

π(θ |D)

θ

Under the accepted assumptions for the probability mechanism which has generated the data,
the reference posterior distribution π(θ |D) = Ga(θ | 25, 41.57) contained all that could be said
about the value of the hazard rate θ on the exclusive basis of the observed data D. Figure 5 and
the numbers quoted above respectively provided useful graphical and numerical summaries,
but the fact that π(θ |D) is the complete answer (necessary for further work on prediction or
decision making) was explained to the engineers by their consultant statistician.

Reference posterior predictive distribution. The reference predictive posterior density of a future
lifetime x is

π(x |D) =
∫ ∞

0
θe−θx Ga(θ |n, s) dθ = Eg(θ |n, s) (65)
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with mean s/(n − 1). Thus, the posterior predictive density of the lifetime of a random item
produced in similar conditions was found to be π(x |D) = Eg(x | 25, 41.57), represented
in Figure 6 against the background of a histogram of the observed data. The mean of this
distribution is 1.732; hence, given data D, the expected lifetime of future similar items is 1.732
thousands of hours. The contract with their client specified a compensation for any item whose
lifetime was smaller than 250 hours. Since

Pr[x < b |D] =
∫ b

0
Eg(x |n, s) = 1−

{ s

s+ b

}n
, (66)

the expected proportion of items with lifetime smaller than 250 hours is Pr[x < 0.250 |D] =
0.139, the shaded area in Figure 6; thus, conditional on accepted assumptions, the engineers
were advised to expect 14% of items to be nonconforming.
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Figure 6. Reference predictive posterior density of lifetimes (in thousands of hours). The shaded region represents
the probability of producing unconforming items, with lifetime smaller than 250 hours. The background is a
histogram of the observed data.
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Calibration. Consider t = t(θ) = (s/n)θ as a function of θ, and its inverse transformation
θ = θ(t) = (n/s)t. Since t = t(θ) is a one-to-one transformation of θ, if Rt is a q-posterior
credible region for t, thenRθ = θ(Rt) is a q-posterior credible region for θ. Moreover, changing
variables, the reference posterior distribution of t = t(θ), as a function of θ conditional
on s, is π(t(θ) |n, s) = π(θ |n, s)/|∂t(θ)/∂θ| = Ga(t |n, n), a gamma density which does
not depend on s. On the other hand, the sampling distribution of the sufficient statistic s is
p(s |n, θ) = Ga(θ |n, θ); therefore, the sampling distribution of t = t(s) = (θ/n)s, as a
function of s conditional to θ, is p(t(s) |n, θ) = p(s |n, θ)/|∂t(s)/∂s| = Ga(t |n, n), which
does not contain θ and is precisely the same gamma density obtained before. It follows that,
for any sample size n, all q-credible reference posterior regions of the hazard rate θ will also
be frequentist confidence regions of level q. Any q-credible reference posterior region has,
given the data, a (rational) degree of belief q of containing the true value of θ; the result just
obtained may be used to provide an exact calibration for this degree of belief. Indeed, for any
θ > 0 and any q ∈ (0, 1), the limiting proportion of q-credible reference posterior regions
which would cover the true value of θ under repeated sampling is precisely equal to q. It was
therefore possible to explain to the engineers that, when reporting that the hazard rate θ of
their production was expected to be within (0.389, 0.859) with probability (rational degree of
belief) 0.95, they could claim this to be a calibrated statement in the sense that hypothetical
replications of the same procedure under controlled conditions, with samples simulated from
any exponential distribution, would yield 95% of regions containing the value from which the
sample was simulated.
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Estimation. The commercial department could use any location measure of the reference pos-
terior distribution of θ as an intuitive estimator θ̃ of the hazard rate θ, but if a particular value
has to be chosen with, say, some legal relevance, this would pose a decision problem for which
an appropriate loss function L(θ̃, θ) would have to be specified. Since no particular decision
was envisaged, but the auditing firm nevertheless required that a particular estimator had to be
quoted in the report, the attractive properties of the intrinsic estimator were invoked to justify
its choice. The intrinsic discrepancy d(θi, θj) between the models Ex(x | θi) and Ex(x | θj) is

d(θi, θj) = min{δ(θi | θj), δ(θj | θi)}, δ(θi | θj) = (θj/θi)− 1− log(θj/θi). (67)

As expected, d(θi, θj) is a symmetric, non-negative concave function, which attains its minimum
value zero if, and only if, θi = θj . The intrinsic estimator of the hazard rate is that θ∗(n, s)
which minimizes the expected reference posterior loss,

d(θ̃ |n, s) = n

∫ ∞
0

d(θ̃, θ) Ga(θ |n, s) dθ. (68)

To a very good approximation (n > 1), this is given by θ∗(n, s) ≈ (2n− 1)/2s, the arithmetic
average of the reference posterior mean and the reference posterior mode, quite close to the
reference posterior median. With the available data, this approximation yielded θ∗ ≈ 0.5893,
while the exact value, found by numerical minimization was θ∗ = 0.5899. It was noticed that,
since intrinsic estimation is an invariant procedure, the intrinsic estimate of any function φ(θ)
of the hazard rate would simply be φ(θ∗).

Hypothesis Testing. A criterion of excellence in this industrial sector described first-rate pro-
duction as one with a hazard rate smaller than 0.4, yielding an expected lifetime larger than
2500 hours. The commercial department was interested in whether or not the data obtained
were compatible with the hypothesis that the actual hazard rate of the firm’s production was
that small. A direct answer was provided by the corresponding reference posterior probability
Pr[θ < 0.4 |D] =

∫ 0.4
0 Ga(θ |n, s) dθ = 0.033, suggesting that the hazard rate of present

production might possibly be around 0.4, but it is actually unlikely to be that low.
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Figure 7. Expected reference posterior intrinsic loss for accepting θ0 as a proxy for the true value of θ. The
minimum is reached at the intrinsic estimator θ∗ = 0.590. Values of θ outside the interval (0.297, 1.170) would
be conventionally rejected.
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Under pressure to provide a quantitative measure of the compatibility of the data with the precise
value θ = θ0 = 0.4, the statistician produced the expected intrinsic discrepancy d(θ0 |n, s) from
accepting θ0 as a proxy for the true value of θ on the basis of data (n, s) by evaluating (69)
at θ̃ = θ0. It was recalled that the expected value of d(θ0 |D) under repeated sampling is
precisely equal to one when θ = θ0, and that a large value of d(θ0 |D) indicates strong evidence
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against θ0. Moreover, using a frequent language in engineering, the statistician explained that
values of d(θ0 |D) = d∗ indicate, for d∗ = 2.5, 5.0 or 8.5, a level of evidence against θ = θ0
comparable to the evidence against a zero mean that would be provided by a normal observationx
which was, respectively, 2, 3 or 4 standard deviations from zero. As indicated in Figure 7, values
of θ0 larger than 1.170 or smaller than 0.297 would be conventionally rejected by a “3σ” normal
criterion. The actual value for θ0 was found to be d(0.4 |D) = 2.01 (equivalent to 1.73σ under
normality). Thus, although there was some evidence suggesting that θ is likely to be larger
than 0.4, the precise value θ = 0.4 could not be definitely rejected on the exclusive basis of the
information provided by the data D.

6.2. Sensitivity Analysis

Although conscious that this information could not be used in the report prepared for the client’s
auditors, the firm’s management was interested in taping their engineers’ inside knowledge to
gather further information on the actual lifetime of their products. This was done by exploring
the consequences on the analysis of (i) introducing that information about the process which
their engineers considered “beyond reasonable doubt” and (ii) introducing an “informed best
guess” based on their experience with the product. The results, analyzed below and encapsulated
in Figure 8, provide an analysis of the sensitivity of the final inferences on θ to changes in the
prior information.

Limited prior information. When questioned by their consultant statistician, the production
engineers claimed to know from past experience that the average lifetime E[x] should be about
2250 hours, and that this average could not possibly be larger than 5000 or smaller than 650.
Since E[x | θ] = θ−1, those statements may directly be put in terms of conditions on the prior
distribution of θ; indeed, working in thousands of hours, they imply E[θ] = (2.25)−1 = 0.444,
and that θ ∈ Θc = (0.20, 1.54). To describe mathematically this knowledgeK1, the statistician
used the corresponding restricted reference prior, that is that prior which maximizes the missing
information about θ within the class of priors which satisfy those conditions. The reference
prior restricted to θ ∈ Θc and E[θ] = µ is the solution of π(θ) ∝ θ−1 e−λθ, subject to the
restrictions θ ∈ Θc and

∫
Θc θ π(θ |K1) dθ = µ. With the available data, this was numerically

found to be π(θ |K1) ∝ θ−1 e−2.088 θ, θ ∈ Θc. Bayes’ theorem was then used to obtain the
corresponding posterior distribution π(θ |D,K1) ∝ p(D | θ)π(θ |K1) ∝ θ24e−43.69 θ, θ ∈ Θc,
a gamma density Ga(θ | 25, 43.69) renormalized to θ ∈ Θc, which is represented by a thin line
in Figure 8. Comparison with the unrestricted reference posterior, described by a solid line,
suggests that, compared with the information provided by the data, the additional knowledgeK1
is relatively unimportant.

Detailed prior information. When further questioned by their consultant statistician, the pro-
duction engineers guessed that the average lifetime is “surely” not larger than 3000 hours; when
requested to be more precise they identified “surely” with a 0.95 subjective degree of belief.
Working in thousands of hours, this implies that Pr[θ > 3−1] = 0.95. Together with their earlier
claim on the expected lifetime, implyingE[θ] = 0.444, this was sufficient to completely specify
a (subjective) prior distribution p(θ |K2). To obtain a tractable form for such a prior, the statis-
tician used a simple numerical routine to fit a restricted gamma distribution to those two state-
ments, and found this to be p(θ |K2) ∝ Ga(θ |α, β), with α = 38.3 and β = 86.3. Moreover,
the statistician derived the corresponding prior predictive distribution p(x |K2) = Eg(x |α, β)
and found that the elicited prior p(θ) would imply, for instance, that Pr[x > 1 |K2] = 0.64,
Pr[x > 3 |K2] = 0.27, and Pr[x > 10 |K2] = 0.01, so that the implied proportion of items
with a lifetime over 1, 3, and 10 thousands of hours were, respectively, 64%, 27%, and 1%. The
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Figure 8. Probability densities of the hazard rate θ. Subjective prior (dotted line), subjective posterior (dashed
line), partially informative reference posterior (thin line) and conventional reference posterior (solid line).
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engineers declared that those numbers agreed with their experience and, hence, the statistician
proceeded to acceptp(θ) = Ga(θ | 38.3, 86.3), represented with a dotted line in Figure 8, as a rea-
sonable description of their prior beliefs. Using Bayes’ theorem, the posterior density which cor-
reponds to a Ga(θ |α, β)prior isp(θ |D) = p(θ |n, s) ∝ θne−θs θα−1 e−βθ ∝ θα+n−1 e−(β+s)θ,
the kernel of a gamma density, so that

p(θ |D) = Ga(θ |α+ n, β + s), θ > 0. (69)

Thus, the posterior distribution, combining the engineers’ prior knowledge K2 and data D was
found to be p(θ |D,K2) = Ga(θ | 63.3, 127.8), represented with a dashed line in Figure 8. It
is easily appreciated from Figure 8 that the 25 observations contained in the data analyzed do
not represent a dramatic increase in information over that initially claimed by the production
engineers, although the posterior distribution is indeed more concentrated than the prior, and it
is displaced towards the values of θ suggested by the data. The firm’s management would not
be able to use this combined information in their auditing but, if they trusted their production
engineers, they were advised to use p(θ |D,K2) to further understand their production process,
or to design policies intended to improve its performance.

7. Discussion and Further Issues

In writing a broad article it is always hard to decide what to leave out. This article concentrates
on the basic concepts of the Bayesian paradigm; methodological topics which have unwillingly
been omitted include design of experiments, sample surveys, linear models and sequential
methods. The interested reader is referred to the bibliography for further information. This
final section briefly reviews the main arguments for the Bayesian approach, and includes pointers
to further issues which have not been discussed in more detail due to space limitations.

7.1. Coherency

By using probability distributions to measure all uncertainties in the problem, the Bayesian
paradigm reduces statistical inference to applied probability, thereby ensuring the coherency of
the proposed solutions. There is no need to investigate, on a case by case basis, whether or not the
solution to a particular problem is logically correct: a Bayesian result is only a mathematical
consequence of explicitly stated assumptions and hence, unless a logical mistake has been
committed in its derivation, it cannot be formally wrong. In marked contrast, conventional
statistical methods are plagued with counterexamples. These include, among many others,
negative estimators of positive quantities, q-confidence regions (q < 1) which consist of the
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whole parameter space, empty sets of “appropriate” solutions, and incompatible answers from
alternative methodologies simultaneously supported by the theory.

The Bayesian approach does require, however, the specification of a (prior) probability distribu-
tion over the parameter space. The sentence “a prior distribution does not exist for this problem”
is often stated to justify the use of non-Bayesian methods. However, the general representation
theorem proves the existence of such a distribution whenever the observations are assumed to be
exchangeable (and, if they are assumed to be a random sample then, a fortiori, they are assumed
to be exchangeable). To ignore this mathematical fact, and to proceed as if a prior distribution
did not exist, just because it is not easy to specify, is mathematically similar to working on a
differential equation system as if no solution existed, once it has been proved that a solution
exists, just because an explicit solution is not easily found.

7.2. Objectivity

It is generally accepted that any statistical analysis is subjective, in the sense that it is always
conditional on accepted assumptions (on the structure of the data, on the probability model,
on the outcome space) and those assumptions, although possibly well founded, are definitely
subjective choices. It is, therefore, mandatory to make all assumptions very explicit.

Users of conventional statistical methods rarely dispute the mathematical foundations of the
Bayesian approach, but claim to be able to produce “objective” answers in contrast to the
possibly subjective elements involved in the choice of the prior distribution.

Bayesian methods do indeed require the choice of a prior distribution, and critics of the Bayesian
approach systematically point out that in many important situations, including scientific report-
ing and public decision making, the results must exclusively depend on documented data which
might be subject to independent scrutiny. This is of course true, but those critics choose to
ignore that this particular case is covered within the Bayesian approach by the use of reference
prior distributions which (i) are mathematically derived from the accepted probability model
(and, hence, they are “objective” insofar as the choice of that model might be objective) and,
(ii) by construction, they produce posterior probability distributions which, given the accepted
probability model, only contain the information about their values which data may provide and,
optionally, any further contextual information over which there might be universal agreement.

A related issue to that of objectivity is that of the operational meaning of reference posterior
probabilities; it is found that the analysis of their behaviour under repeated sampling provides
a suggestive form of calibration. Indeed, Pr[θ ∈ R |D] =

∫
R π(θ |D) dθ, the reference

posterior probability that θ ∈ R, is both a measure of the conditional uncertainty (given the
assumed model and the observed data D) about the event that the unknown value of θ belongs
to R ⊂ Θ, and the limiting proportion of the regions which would cover θ under repeated
sampling conditional on data “sufficiently similar” to D. Under broad conditions (to guarantee
regular asymptotic behaviour), all large data sets from the same model are “sufficiently similar”
among themselves in this sense and hence, given those conditions, reference posterior credible
regions are approximate unconditional frequentist confidence regions.

The conditions for this approximate unconditional equivalence to hold exclude, however, im-
portant special cases, like those involving “extreme” or “relevant” observations. In very special
situations, when probability models may be transformed to location-scale models, there is an
exact unconditional equivalence; in those cases reference posterior credible intervals are, for
any sample size, exact unconditional frequentist confidence intervals.
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7.3. Applicability

In sharp contrast to most conventional statistical methods, which may only be exactly applied to a
handful of relatively simple stylized situations, Bayesian methods are (in theory) totally general.
Indeed, for a given probability model and prior distribution over its parameters, derivation of
posterior distributions is a well-defined mathematical exercise. In particular, Bayesian methods
do not require any particular regularity conditions on the probability model, do not depend on
the existence of sufficient statistics of finite dimension, do not rely on asymptotics, and do not
require the derivation of any sampling distribution, nor (a fortiori) the existence of a “pivotal”
statistic whose sampling distribution is independent of the parameters.

However, when used in complex models with many parameters, Bayesian methods often require
the computation of multidimensional definite integrals and, for a long time, this effectively
placed practical limits on the complexity of the problems which could be handled. This has
dramatically changed in recent years with the general availability of large computing power, and
the parallel development of simulation-based numerical integration strategies like importance
sampling or Markov chain Monte Carlo (MCMC). Those methods provide a structure within
which many complex models may be analyzed using generic software. MCMC is numerical
integration using Markov chains. Monte Carlo integration proceeds by drawing samples from
the required distributions, and computing sample averages to approximate expectations. MCMC
methods draw the required samples by running appropriately defined Markov chains for a long
time; specific methods to construct those chains include the Gibbs sampler and the Metropolis
algorithm, originated in the 1950’s in the literature of statistical physics. The production of
improved algorithms, and the development of appropriate diagnostic tools to establish their
convergence, remains a very active research area.

Actual scientific research often requires the use of models that are far too complex for conven-
tional statistical methods to be able to handle. This article concludes with a very brief glimpse
at some of them.

Hierarchical structures. Consider a situation where a possibly variable number ni of observa-
tions, {xij, j = 1, . . . , ni}, i = 1, . . . ,m, are made on each of m internally homogeneous
subsets of some population. For instance, a firm might have chosen m production lines for in-
spection, and ni items might have been randomly selected among those made by production line
i, so that xij is the result of the measurements made on item j of production line i. As another
example, animals of some species are captured to study their metabolism, and a blood sample
taken before releasing them again; the procedure is repeated in the same habitat for some time,
so that some of the animals are recaptured several times, and xij is the result of the analysis of
the j-th blood sample taken from animal i. It those situations, it is often appropriate to assume
that the ni observations on subpopulation i are exchangeable, so that they may be treated as a
random sample from some model p(x |θi) indexed by a parameter θi which depends on the
subpopulation observed, and that the parameters which label the subpopulations may also be
assumed to be exchangeable, so that {θ1, . . . ,θm} may be treated as a random sample from
some distribution p(θ |ω). Thus, the complete hierarchical model which is assumed to have
generated the observed data D = {x11, . . . ,xmnm} is of the form

p(D |ω) =
∫

Θm

[ ni∏
j=1

p(xij |θi)
][ m∏

i=1

p(θi |ω)
] [ m∏

i=1

dθi

]
. (70)

Hence, under the Bayesian paradigm, a family of conventional probability models, say p(x |θ),
θ ∈ Θ, and an appropriate “structural” prior p(θ |ω), may be naturally combined to produce a
versatile, complex model {p(D |ω),ω ∈ Ω} whose analysis is often well beyond the scope of
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conventional statistics. The Bayesian solution only requires the specifiction a prior distribution
p(ω), the use Bayes’ theorem to obtain the corresponding posterior p(ω |D) ∝ p(D |ω) p(ω),
and the performance of the appropriate probability transformations to derive the posterior distri-
butions of the quantities of interest (which may well be functions of ω, functions of the θi’s, or
functions of future observations). As in any other Bayesian analysis, the prior distribution p(ω)
has to describe available knowledge about ω; if none is available, or if an objective analysis is
required, an appropriate reference prior function π(ω) may be used.

Contextual information. In many problems of statistical inference, objective, universally agreed,
contextual information is available on the parameter values. This information is typically
very difficult to handle within conventional statistics, but it is trivially incorporated into a
Bayesian analysis by simply restricting the prior distribution to the class {P} of priors which are
compatible with such information. As an example, consider the frequent problem in archaeology
of trying to establish the occupation period [α, β] of a site by some past culture on the basis
of the radiocarbon dating of organic samples taken from the excavation. Radiocarbon dating
is not precise, so that each dating xi is typically taken to be a normal observation from a
distribution N(x |µ(θi), σi), where θi is the actual, unknown calendar date of the sample, µ(θ)
is an internationally agreed calibration curve, and σi is a known standard error quoted by the
laboratory. The actual calendar dates {θ1, . . . , θm} of the samples are typically assumed to
be uniformly distributed within the occupation period [α, β]; however, stratigraphic evidence
indicates some partial orderings for, if sample i was found on top of sample j in undisturbed
layers, then θi > θj . Thus, if C denotes the class of values of {θ1, . . . , θm} which satisfy those
known restrictions, data may be assumed to have been generated by the hierarchical model

p(x1, . . . , xm |α, β) =
∫
C

[ m∏
i=1

N(xi |µ(θi), σ2
i )

]
(β − α)−m dθ1 . . . dθm. (71)

Often, contextual information further indicates an absolute lower bound α0 and an abso-
lute upper bound β0 for the period investigated, so that α0 < α < β < β0. If no fur-
ther documented information is available, the corresponding restricted reference prior for
the quantities of interest, {α, β} should be used; this is found to be π(α, β) ∝ (β − α)−1

whenever α0 < α < β < β0 and zero otherwise. The corresponding reference posterior
π(α, β |x1, . . . , xm) ∝ p(x1, . . . , xm |α, β)π(α, β) summarizes all available information on
the occupation period.

Covariate information. Within the last 30 years, both linear and non-linear regression models
have been analyzed from a Bayesian point of view at increasing levels of sophistication. This
ranges from the elementary objective Bayesian analysis of simple linear regression structures
(which parallel their frequentist counterparts) to the sophisticated analysis of time series involved
in dynamic forecasting which often make use of complex hierarchical structures. The field is
far too large to be reviewed in this article, but the bibliography contains some relevant pointers.

Model Criticism. It has been stressed that any statistical analysis is conditional on the accepted
assumptions of the probability model which is presumed to have generated the data. Recent
years have shown a huge effort into the development of Bayesian procedures for model criticism
and model choice. Most of these are sophisticated elaborations of the procedures described in
Section 4.2 under the heading of hypothesis testing. Again, this is too large a topic to be
reviewed here, but some key references are included in the bibliography.
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