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Glossary

Bayes Estimator: A function w* = w*(D) of data D, to be used as a proxy for the unknown
value of the parameter vector w. It is obtained by minimizing the posterior expectation
of aloss function, L(@, w), defined to measure the consequences of using w as a proxy
for the true value of w.

BayesFactor: Givendata D generated by theprobability model {p(D |w),w € Q} andaprior
distribution p(w), the Bayes Factor By; = By1(D) for Qy C QagainstQ; C , isthein-
tegrated likelihood ratio p(D | Qo) /p(D | 1), wherep(D | ;) = [, p(D | w)p(w)dw.

Bayes Theorem: Given data D generated by the probability model {p(D |w),w € 2} and a
prior distribution p(w), the posterior distribution of w isp(w | D) x p(D | w)p(w). The
proportionality constant is { [, p(D | w)p(w)dw} 1.

Credible Region: Given data D, a posterior ¢g-credible region for w €  isasubset R of €2
with posterior probability ¢, sothat [, p(w | D)dw = q. Likewise, aposterior -credible
region for x € X isasubset R of X with posterior predictive probability ¢, so that
pr(:B | D)dx = q.

Exchangeability: The random vectors {x1, ..., x,} are exchangeable if their joint distribu-
tion is invariant under permutations. An infinite sequence {x;} of random vectors is
exchangeable if al its finite subsequences are exchangeable. If {x;,...,x,} isaran-
dom sample from some probability model, and hence the = ;'s are independent given the
model parameter, then the random vectors {x1, . . ., ,, } are necessarily exchangeable.

Expected | nformation: Theexpected informationfromdataD € D generated by aprobability
model {p(D |w),w € O}, about a function § = §(w) of the parameter vector w, is a
functional of the prior distribution p(w), denoted as I?{D, p(w)}. It is defined as the
expected logarithmic divergence Ep| [, p(6 | D) log{p(¢ | D)/p(8)}dé] of the marginal
prior of 0, p(6), from the marginal posterior of 0, p(6 | D).

Likelihood Function: The probability (or probability density) of the observed data D as a
function of the unknown parameter vector w, [(w, D) = p(D |w).

Logarithmic Divergence: The logarithmic divergence of a probability density p(x) for the
random vector € X fromitstrue probability density p(x), isthe non-negative number
o{p(x) |p(x)} = [ p(e)log{p(x)/b(x)} de.

Intrinsic Discrepancy Function: Giventheprobabilitymodel {p(D |w),w € Q},theintrinsic
discrepancy between the parameter values w; and ws isthe minimum logarithmic diver-
gence between the models p(D | w1) and p(D |wo), i.e., the symmetric, non-negative,
function d(w1,ws) = min(3{p(D |w1) | p(D|w2)}, {p(D |w2) | p(D |w1)}).

Maximum Likelihood Estimator (MLE): Given data D, the maximum likelihood estimator
of w € Q isthat value w € 2 which maximizes the likelihood function /(w, D).

Outcome space: See Probability Model.
Parameter, Parameter Space: See Representation Theorem.



Posterior Distribution: A probability distribution on the unknown parameter vector w € €2
in the probability model, typically described by its density function p(w | D), which
conditional on the model, encapsulates the available information about the unknown
value of w, given the observed data D and the knowledge about w which the prior
distribution p(w) might contain. It is obtained by Bayes' theorem.

Predictive Distribution: If {x;} isasequence of exchangeable random vectors, the predictive
density of afuture element x of the sequence, given n observed values {x, ..., x,}, is
plx|xy,...,x,) = plx,x1,...,2)/D(T1,...,2,). Inparticular, given a probability
model of the form {p(D |w),w € Q}, with p(D |w) = [[; p(z;|w), and a prior
distribution p(w), the posterior predictivedensityiSp(m|D Jop(x|w)p(w]|D)dw.
If no data are available, the prior predictive density isp(x) = [, p(x | w)p(w)dw.

Prior Distribution: A probability distribution on the unknown parameter vector w € 2 in
the probability model, typically described by its density function p(w), with p(w) > 0,
Jo p(w)dw = 1, which encapsulates the available information about the unknown value
of w. Ifno prior information isto be utilized, the prior distribution p(w) may bereplaced
by areference prior function 7(w).

Probability Model: A family of probability distributionsof D € D, typically described by their
density functions {p(D |w),w € Q}, with p(D |w) > 0 and [, p(D |w)dD = 1 for
al w € 2, which is assumed to contain the probability mechanism which has generated
the observed data D. The set D of possible data values is the outcome space. If data are
arandomsample D = {x;,...,x,} of observations x; € X generated from p(x | w),
then p(D |w) =[], p(z;|w) and D = X",

Random Sample: See Probability Model.

Reference Prior Function: Given the probability model {p(D |w),w € Q} and afunction
¢ = ¢(w) of the parameter vector w, a¢-referenceprior isapositivefunction 7y (w) tobe
used asthe prior distribution in Bayestheorem to obtain areference posterior distribution
for ¢. The function 7, (w) does not necessarily have afinite integral over 2 and, hence,
it is not necessarily a probability distribution.

Reference Posterior Distribution: Given data D and aprobability model {p(D |w),w € 0},
which is assumed to have generated D, the reference posterior of a function ¢ = ¢(w)
of the parameter vector w is a probability distribution, typically described by its density
function 7(¢ | D), which encapsulates inferential conclusions on the value of ¢, solely
based on the assumed model and the observed data D. It isobtained from Bayes theorem
with a ¢-reference prior function asaformal prior.

Representation Theorem: If {z;} is an infinite sequence of exchangeable random vectors,
the joint density of any finite subsequence {x1,...,x,} hasanintegral representation of
theformp(z, .. = [oIlimi p(zi | w) p(w) dw. Thus, observations{x1, ..., x,}
may be treated asarandom sample from some distribution p(x | w), labeled by a param-
eter w € §, whichisdefined asthelimit (asn — o) of some function of {1, ..., x,},
and there exists a probability distribution p(w) over the parameter space €.

Sufficiency: Given the probability model {p(D |w),w € Q}, afunction of thedatat = t(D),
is a sufficient statistic if (and only if) there exist functions f and ¢ such that, for any
data set D € D, the likelihood function factorizes in the form i(w, D) = p(D |w) =
f(w,t)g(D). A necessary and sufficient condition for ¢ to be sufficient is that, for any
prior p(w), theposterior distributionp(w | D) = p(w | t) only dependsonthedatathrough
the functiont = ¢t(D).



Summary

Statisticsisthe study of uncertainty. Bayesian statistical methods provide a compl ete paradigm
for both statistical inference and decision making under uncertainty. Bayesian methods are
firmly based on strict mathematical foundations, providing a coherent methodology which
makes it possible to incorporate relevant initial information, and which solves many of the
difficulties faced by conventional statistical methods. The Bayesian paradigm is based on an
interpretation of probability as a conditional measure of uncertainty which closely matches
the use of the word * probability’ in ordinary language. Statistical inference about a quantity of
interest isdescribed asthe modification of the uncertainty about itsvaluein thelight of evidence,
and Bayes' theorem specifies how this modification should be made. Bayesian methods may be
appliedto complex, richly structured problems, which havebeenfairly inaccessibletotraditional
statistical methods. The special situation, often met in scientific reporting and public decision
making, where the only acceptable information is that which may be deduced from available
documented data, is addressed as an important particular case.

1. Introduction

Scientific experimental or observational results generally consist of (possibly many) sets of data
of thegeneral foom D = {x1, ..., z,}, wherethe z;'sare somewhat “homogeneous” (possibly
multidimensional) observations x;. Statistical methods are then typically used to derive con-
clusions on both the nature of the process which has produced those observations, and on the
expected behaviour of futureinstances of the same process. A central element of any statistical
analysisisthe specification of a probability model which isassumed to describe the mechanism
which has generated the observed data D asafunction of a(possibly multidimensional) parame-
ter w € (2, sometimes named the state of nature, about whose value only limited information (if
any) isavailable. All derived statistical conclusions are obviously conditional on the assumed
probability model.

Unlike most other branches of mathematics, conventional methods of statistical inference suffer
from the lack of an axiomatic basis; as a consequence, their proposed desiderata are often
mutually incompatible, and the analysis of the same data may well lead to incompatible results
when different, apparently intuitive procedures are tried. In marked contrast, the Bayesian
approach to statistical inference is firmly based on axiomatic foundations which provide a
unifying logical structure, and guarantee the mutual consistency of the methods proposed.
Bayesian methods constitute a complete paradigm to statistical inference, ascientific revolution
in Kuhn's sense.

Bayesian statistics only require the mathematics of probability theory and the inter pretation of
probability which most closely corresponds to the standard use of this word in everyday lan-
guage: it isno accident that some of the more important seminal books on Bayesian statistics,
such as the works of de Laplace, de Finetti or Jeffreys, are actually entitled “Probability The-
ory”. The practical consequences of adopting the Bayesian paradigm are far reaching. Indeed,
Bayesian methods (i) reduce statistical inferenceto problemsin probability theory, thereby min-
imizing the need for completely new concepts, and (i) serveto discriminate among conventional
statistical techniques, by either providing a logical justification to some (and making explicit
the conditions under which they are valid), or proving the logical inconsistency of others.

The main consegquence of these foundations is the mathematical need to describe by means
of probability distributions al uncertainties present in the problem. In particular, unknown
parameters in probability models must have ajoint probability distribution which describes the
availableinformation about their values; thisisoften regarded asthe more characteristic element
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of a Bayesian approach. Notice that (in sharp contrast to conventional statistics) parameters
are treated as random variables within the Bayesian paradigm. This is not a description of
their variability (parameters are typically fixed unknown quantities) but a description of the
uncertainty about their true values.

Animportant particular case ariseswhen either no relevant prior informationisreadily available,
or that information is subjective and an “objective” analysis is desired, one exclusively based
on accepted model assumptions and well-documented data. This is addressed by reference
analysis which uses information-theoretical concepts to derive appropriate reference posterior
distributions, defined to encapsulate inferential conclusions on the quantities of interest solely
based on the supposed model and the observed data.

Inthisarticleit isassumed that probability distributions may be described through their proba
bility density functions, and no distinction is made between arandom quantity and the particular
values that it may take. Bold roman fonts are used for observable random vectors (typically
data) and bold greek fonts are used for unobservable random vectors (typically parameters);
lower caseisused for variables and upper case for their dominion sets. Moreover, the standard
mathematical convention of referring to functions, say f and g of @ € X, respectively by f(x)
and g(x), will be used throughout. Thus, p(8 | C') and p(x | C') respectively represent general
probability densities of the random vectors & € © and x € X under conditions C, so that
p(@|C) >0, [op@]|C)d0 = 1,and p(x|C) > 0, [y p(x|C)dx = 1. This admitedly
unprecise notation will greatly simplify the exposition. If the random vectors are discrete, these
functions naturally become probability mass functions, and integrals over their values become
sums.

Table 1. Notation for common probability density and probability mass functions

Name Probability Density or Probability Mass Function Parameter (s)
Beta Be(x |, B) = gy (1 — @), @ € (0,1) a>0,43>0
Binomial Bi(z|n,0) = (1) 6°(1—0)"*, z€{0,...,n} ne{l,2,...},0€(0,1)
Exponential Ex(z]6) =0e %, x>0 6>0
ExpGamma Eg(z|a,B) = (m;;f)iﬂ x>0 a>0,3>0
Gamma Galz|a,B) = r*— e x>0 a>0,6>0
NegBinomial Nb(z |r,0) = 60" ("t"") (1 - 0)*, z € {0,1,...} re{l,2,...},0¢€(0,1)
Normal Ni(z | p, X) = ‘(2‘ )k;2 exp [—3(x — p)'S H(x — p)], © e R € R* Y def. pos.
Poisson Pn(z|\) =e 22 e{0,1,...} A>0

(a4

rH) W—{H (5

—(a+1)/2
Student St(z | p, 0, 0) = )2}

, t €R pER o>0,a>0

Specific density functions are denoted by appropriate names. Thus, if x is arandom quantity
with anormal distribution of mean ;. and standard deviation o, its probability density function
will bedenoted N(z | i1, o). Table 1 containsdefinitionsof other distributionsused inthisarticle.
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Bayesian methods make frequent use of the logarithmic divergence, a very genera measure
of the goodness of the approximation of a probability density p(x) by another density p(x).
The logarithmic divergence of a probability density p(«) of the random vector x € X from
its true probability density p(x), is defined as 6{p(x) | p(x)} = [ p(x) log{p(x)/p(x)} dx.
It may be shown that (i) the logarithmic divergence is non-negative (and it is zero if, and only
if, p(x) = p(x) dmost everywhere), and (ii) that 6{p(x) | p(x) } isinvariant under one-to-one
transformations of x.

This article contains a brief summary of the mathematical foundations of Bayesian statistical
methods (Section 2), an overview of the paradigm (Section 3), adescription of useful inference
summaries, including estimation and hypothesis testing (Section 4), an explicit discussion of
objective Bayesian methods (Section 5), the detailed analysis of a simplified case study (Sec-
tion 6), and afinal discussion which includes pointersto further issues not addressed inthemain
text (Section 7).

2. Foundations

A central element of the Bayesian paradigm isthe use of probability distributionsto describe al
relevant unknown quantities, interpreting the probability of an event asaconditional measure of
uncertainty, on a0, 1] scale, about the occurrence of the event in some specific conditions. The
limiting extreme values 0 and 1, which are typically inaccessible in applications, respectively
describe impossibility and certainty of the occurrence of the event. This interpretation of
probability includesand extendsall other probability interpretations. Therearetwo independent
arguments which prove the mathematical inevitability of the use of probability distributions to
describe uncertainties; these are summarized later in this section.

2.1. Probability asa Measure of Conditional Uncertainty

Bayesian statistics uses the word probability in precisely the same sense in which this word
is used in everyday language, as a conditional measure of uncertainty associated with the
occurrence of a particular event, given the avail able information and the accepted assumptions.
Thus, Pr(E | C') isameasure of (presumably rational) belief in the occurrence of the event £
under conditions C. It is important to stress that probability is always a function of two
arguments, the event £ whose uncertainty is being measured, and the conditions C' under which
the measurement takes place; “absolute” probabilities do not exist. In typica applications,
one is interested in the probability of some event E given the available data D, the set of
assumptions A which one is prepared to make about the mechanism which has generated the
data, and therel evant contextual knowledge K which might beavailable. Thus, Pr(F | D, A, K)
isto beinterpreted asameasure of (presumably rational) belief in the occurrence of the event F,
givendata D, assumptions A and any other availableknowledge K, asameasure of how “likely”
isthe occurrence of E inthese conditions. Sometimes, but certainly not always, the probability
of an event under given conditions may be associated with the relative frequency of “similar”
events in “similar” conditions. The following examples are intended to illustrate the use of
probability as a conditional measure of uncertainty.

Probabilistic diagnosis. A human population is known to contain 0.2% of people infected by a
particular virus. A person, randomly selected from that population, is subject to atest which is
known from laboratory datato yield positive resultsin 98% of infected people and in 1% of non-
infected, so that, if V' denotes the event that a person carries the virus and + denotes a positive
result, Pr(+ | V) = 0.98 and Pr(+ | V') = 0.01. Suppose that the result of the test turns out to
be positive. Clearly, one isthen interested in Pr(V |+, A, K), the probability that the person
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carries the virus, given the positive result, the assumptions A about the probability mechanism
generating the test results, and the available knowledge K of the prevalence of the infection in
the population under study (described here by Pr(V | K') = 0.002). An elementary exercisein
probability algebra, which involves Bayes theorem in its simplest form (see Section 3), yields
Pr(V|+,A,K) = 0.164. Notice that the four probabilities involved in the problem have
precisely the same interpretation: they are all conditional measures of uncertainty. Besides,
Pr(V |+, A, K) isboth ameasure of the uncertainty associated with the event that the particul ar
person who tested positive is actually infected, and an estimate of the proportion of peoplein
that population (about 16.4%) that would eventually prove to be infected among those which
yielded a positive test. 4
Estimation of a proportion. A survey isconducted to estimatethe proportion 6 of individualsina
popul ation who share agiven property. A random sample of n elementsisanalyzed,  of which
are found to possess that property. Oneisthen typically interested in using the results from the
sample to establish regions of [0, 1] where the unknown value of  may plausibly be expected
to lie; this information is provided by probabilities of the form Pr(a < 6 < b|r,n, A, K),
a conditional measure of the uncertainty about the event that ¢ belongs to (a,b) given the
information provided by the data (r,n), the assumptions A made on the behaviour of the
mechanism which has generated the data (a random sample of n Bernoulli trials), and any
relevant knowledge K on the values of # which might beavailable. For example, after apolitical
survey in which 720 citizens out of arandom sample of 1500 have declared to be in favour of
aparticular political measure, one may conclude that Pr(6 < 0.5 | 720, 1500, A, K) = 0.933,
indicating a probability of about 93% that a referendum of that issue would be lost. Similarly,
after a screening test for an infection where 100 people have been tested, none of which has
turned out to be infected, one may conclude that Pr(6# < 0.01]0,100, A, K) = 0.844, or a
probability of about 84% that the proportion of infected people is smaller than 1%. 4
Measurement of a physical constant. A team of scientists, intending to establish the unknown
value of a physical constant p, obtain data D = {zy,...,z,} which are considered to be
measurements of ;. subject to error. The probabilities of interest are then typically of the form
Pr(a < pu<b|xy,...,x,, A, K), the probability that the unknown value of 1 (fixed in nature,
but unknown to the scientists) lieswithinaninterval (a, b) given theinformation provided by the
data D, theassumptions A made on the behaviour of the measurement mechanism, and whatever
knowledge K might be available on the value of the constant ;.. Again, those probabilities are
conditional measures of uncertainty which describe the (necessarily probabilistic) conclusions
of the scientists on the true value of y, given available information and accepted assumptions.
For example, after a classroom experiment to measure the gravitational field with a pendulum,
a student may report (in m/sec?) something like Pr(9.788 < g < 9.829| D, A, K) = 0.95,
meaning that, under accepted knowledge K and assumptions A, the observed data D indicatethat
the true value of ¢ lieswithin 9.788 and 9.829 with probability 0.95, a conditional uncertainty
measure on a [0,1] scale. This is naturally compatible with the fact that the value of the
gravitational field at the laboratory may well be known with high precision from available
literature or from precise previous experiments, but the student may have been instructed not to
usethat information as part of the accepted knowledge K. Under some conditions, itisalso true
that if the same procedure were actually used by many other students with similarly obtained
data sets, their reported intervalswould actually cover the true value of g in approximately 95%
of the cases, thus providing some form of calibration for the student’s probability statement

(see Section 5.2). 4



Prediction. An experiment is made to count the number r of timesthat an event E takesplacein
each of n replications of awell defined situation; it is observed that £/ does take place r; times
in replication 4, and it is desired to forecast the number of times r that £ will take place in a
future, similar situation. Thisis a prediction problem on the value of an observable (discrete)
quantity r, giventheinformation provided by data D, accepted assumptions A on the probability
mechanism which generates the r;’s, and any relevant available knowledge K. Hence, simply
the computation of theprobabilities{Pr(r | ry,...,r,, A, K)},forr = 0,1,...,isrequired. For
example, the quality assurance engineer of afirm which produces automobile restraint systems
may report something like Pr(r = 0|r; = ... = r9 = 0, A, K) = 0.953, after observing
that the entire production of airbags in each of n = 10 consecutive months has yielded no
complaints from their clients. This should be regarded as a measure, on a [0, 1] scale, of the
conditional uncertainty, given observed data, accepted assumptions and contextual knowledge,
associated with the event that no airbag complaint will come from next month’s production and,
if conditions remain constant, thisis also an estimate of the proportion of months expected to
share this desirable property.

A similar problem may naturally be posed with continuous observables. For instance, after mea-
suring some continuous magnitude in each of n randomly chosen elements within a population,
it may be desired to forecast the proportion of itemsin the whole population whose magnitude
satisfies some precise specifications. As an example, after measuring the breaking strengths
{z1,...,z10} of 10 randomly chosen safety belt webbings to verify whether or not they satisfy
the requirement of remaining above 26 kN, the quality assurance engineer may report something
likePr(z > 26| xy,...,210, A4, K) = 0.9987. Thisshould beregarded asameasure, ona|0, 1]
scale, of the conditional uncertainty (given observed data, accepted assumptions and contextual
knowledge) associated with the event that arandomly chosen safety belt webbing will support
no less than 26 kN. If production conditions remain constant, it will also be an estimate of the
proportion of safety belts which will conform to this particular specification.

Often, additional information of future observations is provided by related covariates. For in-
stance, after observing the outputs{y;, . . ., y,,} which correspond to asequence {x, ..., x,}
of different production conditions, it may be desired to forecast the output y which would
correspond to a particular set = of production conditions. For instance, the viscosity of com-
mercial condensated milk is required to be within specified values a and b; after measuring

the viscosities {y1, . . . , y» } Which correspond to samples of concentrated milk produced under
different physical conditions {x1,...,x,}, production engineers will require probabilities of
theform Pr(a < y < b|x, (y1,21), .-, (yn, xn), A, K). Thisisaconditiona measure of the

uncertainty (always given observed data, accepted assumptions and contextual knowledge) as-
sociated with the event that condensated milk produced under conditions x will actually satisfy

the required viscosity specifications. g

2.2. Statistical Inference and Decision Theory

Decision theory not only provides a precise methodol ogy to deal with decision problems under
uncertainty, but its solid axiomatic basis also provides a powerful case for the logical force of
the Bayesian approach. We now summarize the basic argument.

A decision problem exists whenever there are two or more possible courses of action; let .A be
the class of possible actions. Moreover, for each a € A, let ©, be the set of relevant events
which may affect the result of choosing a, and let ¢(a, ) € C,, 8 € ©,, be the consequence of
having chosen action a when event 0 takesplace. Theclassof pairs{(0,,C,), a € A} describes
the structure of the decision problem. Without loss of generadlity, it may be assumed that the
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possible actions are mutually exclusive, for otherwise one would work with the appropriate
Cartesian product.

Different setsof principles have been proposed to capture a minimum collection of logical rules
that could sensibly berequired for “rational” decision-making. Theseall consist of axiomswith
astrong intuitive appeal; examples include the transitivity of preferences (if a; > ao given C,
and as > a3 given C, then a; > a3 given C'), and the sure-thing principle (if a; > ay given
C and E, and a; > as given C and E, then a; > ay given C). Notice that these rules are not
intended as a description of actual human decision-making, but as anormative set of principles
to be followed by someone who aspires to coherent decision-making.

There are naturally different options for the set of acceptable principles, but all of them lead
basically to the same conclusions, namely:

(i) Preferences among consequences should be measured with a real-valued bounded utility
function U(c¢) = U (a, @) which specifies, on some numerical scale, their desirability.

(if) The uncertainty of relevant events should be measured with aset of probability distributions
{(p(@|C,a),0 € ©,),a € A} describing their plausibility given the conditions C' under which
the decision must be taken.

(iii) The desirability of the available actionsis measured by their corresponding expected utility
U(a\C):/ U(a,0)p(0|C,a)dB, ac A (1)
Oa

It is often convenient to work in terms of the non-negative loss function defined by
L(av 0) = sup{U(a, 9)} - U(aa 0)7 (2)
acA

which directly measures, as a function of 6, the “penalty” for choosing a wrong action. The
relative undesirability of available actionsa € A isthen measured by their expected loss

Z(a|0):/ L(a,0)p(0]C,a)d0, ac A (3)

Notice that, i%aparticular, the argument described above establishes the need to quantify the
uncertainty about all relevant unknown quantities (the actual values of the @’s), and specifies
that this quantification must have the mathematical structure of probability distributions. These
probabilities are conditional on the circumstances C' under which the decision is to be taken,
which typically, but not necessarily, include the results D of some relevant experimental or
observational data.

It has been argued that the devel opment described above (whichisnot questioned when decisions
have to be made) does not apply to problems of statistical inference, where no specific decision
making is envisaged. However, there are two powerful counterarguments to this. Indeed, (i) a
problem of statistical inferenceistypically considered worth analyzing becauseit may eventually
help to make sensible decisions (as Ramsey put it in the 1930’s, alump of arsenic is poisonous
because it may kill someone, not because it has actualy killed someone), and (ii) it has been
shown (by Bernardo in the 1970's) that statistical inference on @ actually has the mathematical
structure of adecision problem, where the class of aternativesis the functional space

A={p®|D): »(6]D)>0. /eper)de:l} (4)

of the conditional probability distributions of € given the data, and the utility function is a
measure of the amount of information about @ which the data may be expected to provide.



2.3. Exchangeability and Representation Theorem

Available data often take the form of aset {x,...,x,} of “homogeneous’ observations, in
the precise sense that only their values matter and not the order in which they appear. Formally,
thisis captured by the notion of exchangeability. The set of random vectors{x, ..., x,} isex-
changeableif their joint distribution isinvariant under permutations. An infinite sequence {x; }
of random vectorsis exchangeable if al its finite subsequences are exchangeable. Notice that,
in particular, any random sample from any model is exchangeable in this sense. The concept of
exchangeability, introduced by de Finetti in the 1930’s, is central to modern statistical thinking.
Indeed, the general representation theoremimpliesthat if a set of observationsisassumed to be
a subset of an exchangeable sequence, then it constitutes a random sample from some proba-
bility model {p(x |w),w € Q}, z € X, labeled by some parameter vector w; furthermore this
parameter w isdefined asthelimit (asn — oo) of some function of the observations. Available
information about the value of w in prevailing conditions C' is necessarily described by some
probability distribution p(w | C).

For example, in the case of a sequence {z1, z9, ...} of dichotomous exchangeable random
quantitiesz; € {0, 1}, de Finetti’s representation theorem establishes that the joint distribution

of (x1,...,x,) hasanintegral representation of the form
1 n
p(x1,...,2,|C) :/ [[¢7ia—6)"ip@©|C)do, 6= lim % (5)
0 i1 n—oo

wherer = ) x; isthe number of positive trials. Thisis precisely the joint distribution of a set
of (conditionally) independent Bernoulli trials with parameter ¢, over which some probability
distribution p(6 | C) is therefore proven to exist. More generally, for sequences of arbitrary
random quantities {x;, x2, . ..}, exchangeability leads to integral representations of the form

(1,...,2,|C) = (z; |w) p(w]|C) dw, (6)
P /Q;l:!p p

where {p(x |w),w € Q} denotes some probability model, w isthelimit asn — oo of some
function f(x1, ..., x,) of theobservations, and p(w | C') issome probability distribution over .
This formulation includes “nonparametric” (distribution free) modelling, where w may index,
for instance, all continuous probability distributions on X. Notice that p(w | C') does not
describe a possible variability of w (since w will typically be a fixed unknown vector), but a
description on the uncertainty associated with its actual value.

Under appropriate conditioning, exchangeability is a very general assumption, a powerful ex-
tension of thetraditional concept of arandomsample. Indeed, many statistical analysesdirectly
assume data (or subsets of the data) to be a random sample of conditionally independent ob-
servations from some probability model, so that p(x1,. .., z, |w) = [/ p(x; |w); but any
random sample is exchangeable, since []""_; p(z; |w) is obviously invariant under permuta-
tions. Notice that the observationsin arandom sample are only independent conditional on the
parameter value w; as nicely put by Lindley, the mantrathat the observations {1, ..., x,} in
arandom sample are independent is ridiculous when they are used to infer x,,, ;. Notice aso
that, under exchangeability, the general representation theorem provides an existence theorem
for a probability distribution p(w | C') on the parameter space €2, and that this is an argument
which only depends on mathematical probability theory.

Another important consequence of exchangeability isthat it provides aformal definition of the
parameter w which labelsthe model asthe limit, asn — oo, of somefunction f (1, ..., x,) of
the observations; the function f obviously depends both on the assumed model and the chosen
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parametrization. For instance, in the case of a sequence of Bernoulli trials, the parameter 6 is
defined as the limit, asn — oo, of the relative frequency r/n. It follows that, under exchange-
ability, the sentence “the true value of w” has a well-defined meaning, if only asymptotically
verifiable. Moreover, if two different models have parameters which are functionally related by
their definition, then the corresponding posterior distributions may be meaningfully compared,
for they refer to functionally related quantities. For instance, if afinite subset {x1, ..., x,} of
an exchangeable sequence of integer observations is assumed to be a random sample from a
Poisson distribution Po(x | A), so that E[x | A\] = A, then )\ is defined as lim,,_.»{Z, }, where
T, = Zj xj/n; similarly, if for some fixed non-zero integer r, the same data are assumed to be
arandom sample for anegative binomial Nb(z | , ), sothat E[z | 6, 7] = r(1 — 0)/6, then @ is
defined as lim,, .o {7/(Z, + r)}. It followsthat § = r/(\ + r) and, hence, 6 and r/(\ + r)
may be treated as the same (unknown) quantity whenever this might be needed as, for example,
when comparing the relative merits of these alternative probability models.

3. TheBayesian Paradigm

Thestatistical analysisof some observed data D typically beginswith someinformal descriptive
evaluation, which is used to suggest a tentative, formal probability model {p(D |w), w € Q}
assumed to represent, for some (unknown) value of w, the probabilistic mechanism which has
generated the observed data D. The arguments outlined in Section 2 establish the logical need
to assess a prior probability distribution p(w | K') over the parameter space (2, describing the
availableknowledge K about thevalueof w prior to thedatabeing observed. It thenfollowsfrom
standard probability theory that, if the probability model is correct, all available information
about the value of w after the data D have been observed is contained in the corresponding
posterior distribution whose probability density, p(w | D, A, K), isimmediately obtained from
Bayes' theorem,
p(D|w)p(w|K)

P DA K = R i (7)
where A stands for the assumptions made on the probability model. It isthis systematic use of
Bayes' theorem to incorporate the information provided by the data that justifies the adjective
Bayesian by which the paradigm is usually known. It is obvious from Bayes' theorem that any
value of w with zero prior density will have zero posterior density. Thus, it istypically assumed
(by appropriate restriction, if necessary, of the parameter space () that prior distributions
are strictly positive (as Savage put it, keep the mind open, or at least gjar). To simplify the
presentation, the accepted assumptions A and the available knowledge K are often omitted
from the notation, but the fact that all statements about w given D are also conditional to A
and K should always be kept in mind.

Example 1. (Bayesian inference with a finite parameter space). Letp(D |0),0 € {01, ...,0,},
be the probability mechanism which isassumed to have generated the observed data D, so that 6
may only take a finite number of values. Using the finite form of Bayes' theorem, and omitting
the prevailing conditions from the notation, the posterior probability of 0; after data D have
been observed is

Pr(6;| D) = p(D|6;) Pr(6;)

> 7L p(D]6;) Pr(6;)
For any prior distribution p(6) = {Pr(6;), ..., Pr(6,,)} describing available knowledge about

the value of 6, Pr(6; | D) measures how likely should 6; be judged, given both the initial
knowledge described by the prior distribution, and the information provided by the data D.

=1,...,m. (8)
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An important, frequent application of thissimple techniqueis provided by probabilistic diagno-
sis. For example, consider the simple situation where a particul ar test designed to detect avirus
is known from laboratory research to give a positive result in 98% of infected peopleandin 1%
of non-infected. Then, the posterior probability that a person who tested positive isinfected is
given by Pr(V |+) = (0.98p)/{0.98 p + 0.01 (1 — p)} asafunction of p = Pr(V), the prior
probability of a person being infected (the prevalence of the infection in the population under
study). Figure 1 shows Pr(V | +) asafunction of Pr(V).

1
Pr(V|+4)

0.8

0.6

0.4

0.2
: : : : _p
0.2 0.4 0.6 0.8 T )

Figure 1. Posterior probability of infection Pr(V | +) given a positive test, as a function of the prior probability
of infection Pr(V).

Asonewould expect, the posterior probability isonly zero if the prior probability iszero (so that
itisknown that the population isfree of infection) and itisonly oneif the prior probability isone
(sothat it isknown that the populationisuniversally infected). Noticethat if theinfectionisrare,
then the posterior probability of arandomly chosen person being infected will be relatively low
evenif thetestispositive. Indeed, for say Pr(V') = 0.002, onefindsPr(V | +) = 0.164, sothat
inapopulation where only 0.2% of individualsareinfected, only 16.4% of thosetesting positive
within a random sample will actually prove to be infected: most positives would actually be

false positives. 4

In this section, we describe in some detail the learning process described by Bayes' theorem,
discuss its implementation in the presence of nuisance parameters, show how it can be used to
forecast the value of future observations, and analyze its large sample behaviour.

3.1. TheLearning Process

Inthe Bayesian paradigm, the process of |earning from thedatais systematically implemented by
making use of Bayes theorem to combine the available prior information with the information
provided by the data to produce the required posterior distribution. Computation of posterior
densitiesis often facilitated by noting that Bayes theorem may be simply expressed as

p(w|D) o p(D|w)p(w), (9)
(where ox standsfor ‘ proportional to' and where, for simplicity, the accepted assumptions A and
the available knowledge K have been omitted from the notation), since the missing proportion-
ality constant [ [, p(D | w) p(w) dw] ! may always be deduced from the fact that p(w | D), a
probability density, must integrate to one. Hence, to identify the form of aposterior distribution
it suffices to identify a kernel of the corresponding probability density, that is a function k(w)
such that p(w | D) = ¢(D) k(w) for some ¢(D) which does not involve w. In the examples
which follow, this technique will often be used.
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An improper prior function is defined as a positive function 7(w) such that [, 7(w) dw is
not finite. Equation (9), the formal expression of Bayes theorem, remains technically valid
if p(w) isreplaced by an improper prior function 7(w) provided the proportionality constant
exists, thusleading to awell defined proper posterior density m(w | D) o« p(D |w)7(w). Itwill
later be established (Section 5) that Bayes' theorem also remains philosophically valid if p(w)
is replaced by an appropriately chosen reference “noninformative” (typically improper) prior
function 7(w).

Considered as a function of w, I(w,D) = p(D|w) is often referred to as the likelihood
function. Thus, Bayes' theoremissimply expressed in words by the statement that the posterior
isproportional to the likelihood times the prior. It follows from equation (9) that, provided the
same prior p(w) is used, two different data sets D; and D,, with possibly different probability
models p; (D1 |w) and p2 (D3 | w) but yielding proportional likelihood functions, will produce
identical posterior distributionsfor w. Thisimmediate consequence of Bayes theorem has been
proposed as an independent principle, the likelihood principle, and it is seen by many as an
obvious requirement for reasonable statistical inference. In particular, for any given prior p(w),
the posterior distribution does not depend on the set of possible data values, or outcome space.
Notice, however, that the likelihood principle only applies to inferences about the parameter
vector w once the data have been obtained. Consideration of the outcome space is essential,
for instance, in model criticism, in the design of experiments, in the derivation of predictive
distributions, or (see Section 5) in the construction of objective Bayesian procedures.

Naturally, the terms prior and posterior are only relative to a particular set of data. As one
would expect from the coherence induced by probability theory, if data D = {x1,...,x,} are
sequentially presented, thefinal result will be the same whether dataare globally or sequentially
processed. Indeed, p(w | x1, ..., xi+1) X p(@it1 |w) p(w |x1,...,x;), fori=1,...,n—1,
so that the “ posterior” at a given stage becomes the “prior” at the next.

In most situations, the posterior distribution is“narrower” than the prior so that, in most cases,
p(w|xy,...,xi+1)will bemoreconcentrated around thetruevalue of w thanp(w | x1, . . ., x;).
However, this is not always the case: occasionally, a “surprising” observation will increase,
rather than decrease, the uncertainty about the value of w. For instance, in probabilistic di-
agnosis, a sharp posterior probability distribution (over the possible causes {wy, . ..,w;} of a
syndrome) describing, a*“clear” diagnosis of disease w; (that is, a posterior with alarge prob-
ability for w;) would typically update to a less concentrated posterior probability distribution
over {wi,...,wy} if anew clinical analysis yielded data which were unlikely under w;.

For a given probability model, one may find that a particular function of the datat = ¢(D) is
a sufficient statistic in the sense that, given the model, ¢(D) contains al information about w
whichisavailablein D. Formally, t = t(D) issufficient if (and only if) there exist nonnegative
functions f and ¢ such that the likelihood function may be factorized in the form p(D |w) =
f(w,t)g(D). A sufficient statisticalwaysexists, for t(D) = D isobviously sufficient; however,
a much simpler sufficient statistic, with a fixed dimensionality which is independent of the
sample size, often exists. In fact thisis known to be the case whenever the probability model
belongsto the generalized exponential family, which includes many of the more frequently used
probability models. It is easily established that if ¢ is sufficient, the posterior distribution of w
only depends on the data D through ¢(D), and may be directly computed in terms of p(t | w),
so that, p(w | D) = p(w | 1) o p(t|w) p(w).

Naturally, for fixed data and model assumptions, different priors lead to different posteriors.
Indeed, Bayes' theorem may be described as a data-driven probability transformation machine
which maps prior distributions (describing prior knowledge) into posterior distributions (repre-
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senting combined prior and data knowledge). It isimportant to analyze whether or not sensible
changes in the prior would induce noticeable changes in the posterior. Posterior distributions
based onreference“ noninformative” priorsplay acentral rolein thissensitivity analysis context.
Investigation of the sensitivity of the posterior to changesin the prior isan important ingredient
of the comprehensive analysis of the sensitivity of the final resultsto all accepted assumptions
which any responsible statistical study should contain.

Example 2. (Inference on a binomial parameter). If the data D consist of n Bernoulli observa-
tions with parameter # which contain r positivetrias, then p(D |0,n) = 6"(1 — §)"", so that
t(D) = {r,n} issufficient. Suppose that prior knowledge about ¢ is described by a Betadistri-
bution Be(d | a, 3), so that p(# | o, 3) o< 621 (1 — §)P~1. Using Bayes' theorem, the posterior
density of @ isp(0 |r,n,a, B) o 67 (1 — )" 7011 — 0)0~ L o g7Fe1(1 — g)" "+~ the
Betadistribution Be(0 | r + o, n — 7 + [3).

Suppose, for example, that in the light of precedent surveys, available information on the
proportion 6 of citizens who would vote for a particular political measure in a referendum is
described by a Beta distribution Be(# | 50, 50), so that it isjudged to be equally likely that the
referendum would be won or lost, and it is judged that the probability that either side wins less
than 60% of the voteis 0.95.

30 p(0|r,n,a, ) = Be(d]730,790)
25
20
15
10 p(0 ], 5) = Be(#]50,50)
5
0

0.35 0.4 0.45 0.5 0.55 0.6 0.65
Figure 2. Prior and posterior densities of the proportion 6 of citizens that would vote in favour of a referendum.

A random survey of size 1500 isthen conducted, where only 720 citizens declare to bein favour
of the proposed measure. Using the results above, the corresponding posterior distribution
is then Be(#|770,830). These prior and posterior densities are plotted in Figure 2; it may
be appreciated that, as one would expect, the effect of the data is to drastically reduce the
initial uncertainty on the value of 6 and, hence, on the referendum outcome. More precisely,
Pr(0 < 0.5]720,1500, H, K) = 0.933 (shaded regionin Figure 2) sothat, after theinformation
from the survey has been included, the probability that the referendum will be lost should be

judged to be about 93%. q

The genera situation where the vector of interest is not the whole parameter vector w, but
some function @ = 6(w) of possibly lower dimension than w, will now be considered. Let D
be some observed data, let {p(D | w),w € Q} be aprobability model assumed to describe the
probability mechanism which hasgenerated D, let p(w) be aprobability distribution describing
any available information on the value of w, andlet & = 6(w) € © beafunction of the original
parameters over whose val ue inferences based on the data D arerequired. Any valid conclusion
on the value of the vector of interest & will then be contained in its posterior probability
distribution p(@ | D) whichisconditional on the observed data D and will naturally al so depend,
athough not explicitly shown in the notation, on the assumed model {p(D |w),w € Q}, and
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on the available prior information encapsulated by p(w). The required posterior distribution
p(@ | D) isfoundby standard useof probability calculus. Indeed, by Bayes' theorem, p(w | D)
p(D |w) p(w). Moreover, let A = A(w) € A be some other function of the original parameters
such that ¢» = {6, A} is a one-to-one transformation of w, and let J(w) = (91 /0w) be the
corresponding Jacobian matrix. Naturally, the introduction of A is not necessary if 8(w) isa
one-to-one transformation of w. Using standard change-of-variable probability techniques, the
posterior density of ) is
p(w|D)

p(¥|D) =p(6,A| D) = | [ J(w)] ]w=w<¢>

and the required posterior of @ isthe appropriate marginal density, obtained by integration over
the nuisance parameter A,

p(0] D) :/Ap(H,)\|D) dA. (11)

Notice that elimination of unwanted nuisance parameters, a simple integration within the
Bayesian paradigm is, however, a difficult (often polemic) problem for conventional statistics.

Sometimes, the range of possible values of w is effectively restricted by contextual considera-
tions. If w isknown to belongto 2. C €2, theprior distribution isonly positivein 2. and, using
Bayes theorem, it isimmediately found that the restricted posterior is

D
pw|Dweqy) = LDl g (12)

Jo.p(w|D)
and obvioudly vanishesif w ¢ .. Thus, to incorporate a restriction on the possible values of
the parameters, it sufficesto renormalize the unrestricted posterior distributiontotheset 2. € Q
of parameter values which satisfy the required condition. Incorporation of known constraints
on the parameter values, a simple renormalization within the Bayesian pardigm, isanother very
difficult problem for conventional statistics.

(10)

Example 3. (Inference on normal parameters). Let D = {zy,... x,} be a random sample
from anormal distribution N (x| i1, o). The corresponding likelihood function is immediately
found to be proportional to o~ exp[-n{s® + (F — u)?}/(20?)], with nz = >, z;, and
ns? = > .(x; — T)%. It may be shown (see Section 5) that absence of initial information on
the value of both ;. and o may formally be described by ajoint prior function which is uniform
in both 12 and log (o), that is, by the (improper) prior function p(u, o) = o~1. Using Bayes
theorem, the corresponding joint posterior is

p(p, 0| D) oc o™ exp[—n{s® + (T — p)*}/(20%)]. (13)
Thus, using the Gammaintegral in terms of A = o~ to integrate out o,

n

Pl D)o [T om0 exp [ Tl o ] do o [+ @) (1

which is recognized as a kernel of the Student density St(u |z, s/v/n — 1,n — 1). Similarly,
integrating out i,

[e’e) 2
p(o| D) x / o~ (n+1) exp [—

[s2+ (T — M)Q]] dp oc 0" exp {_%} . (15)

n
202

Changing variables to the precision A = o2 resultsin p(A | D) oc A("=3)/2¢75°/2, akerndl of
the Gammadensity Ga(\ | (n—1)/2,ns?/2). Intermsof the standard deviation o thisbecomes
p(o| D) = p(\| D)|0N/ 0| = 203Ga(c 2 | (n—1)/2,ns?/2), asquare-root inverted gamma
density.
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A frequent exampl e of thisscenariois provided by laboratory measurements made in conditions
where central limit conditions apply, so that (assuming no experimental bias) those measure-
ments may be treated as arandom sample from a normal distribution centered at the quantity u
which is being measured, and with some (unknown) standard deviation o. Suppose, for ex-
ample, that in an elementary physics classroom experiment to measure the gravitational field g
with apendulum, astudent has obtained n = 20 measurementsof ¢ yielding (in m/sec?) amean
T = 9.8087, and a standard deviation s = 0.0428. Using no other information, the correspond-
ing posterior distribution is p(g| D) = St(g]9.8087,0.0098, 19) represented in Figure 3(a).
In particular, Pr(9.788 < g < 9.829| D) = 0.95, so that, with the information provided by
this experiment, the gravitational field at the location of the laboratory may be expected to lie
between 9.788 and 9.829 with probability 0.95.

@ 40
p(p|,s,m)
30
20

10

5.75 9.8 9.85 9.9 Y

(b)
40 p(u\f,s,n,gGG,,)

30
20

10

9.7 9.75 9.8 9.85 9.9 7

Figure 3. Posterior density p(g | m, s, n) of the value g of the gravitational field, given n = 20 normal measure-
mentswith mean m = 9.8087 and standard deviation s = 0.0428, (&) with no additional information, and (b) with
g restricted to G, = {g; 9.7803 < g < 9.8322}. Shaded areas represent 95%-credible regions of g.

Formally, the posterior distribution of g should be restricted to g > 0; however, asimmediately
obvious from Figure 3a, this would not have any appreciable effect, due to the fact that the
likelihood function is actually concentrated on positive g values.

Suppose now that the student is further instructed to incorporate into the analysis the fact that
the value of the gravitational field ¢ at the laboratory is known to lie between 9.7803 m/sec?
(average value at the Equator) and 9.8322 m/sec? (average value at the poles). The updated
posterior distribution will the be

St(g|m,s/v/n—1,n) ’
fgch St(g|m,s/v/n—1,n)

represented in Figure 3(b), where G. = {g; 9.7803 < g < 9.8322}. One-dimensiona nu-
merical integration may be used to verify that Pr(g > 9.792 | D, g € G.) = 0.95. Moreover,
if inferences about the standard deviation o of the measurement procedure are also requested,
the corresponding posterior distribution is found to be p(o | D) = 20~3Ga(c2|9.5,0.0183).
Thishasamean E[o | D] = 0.0458 and yields Pr(0.0334 < o < 0.0642 | D) = 0.95.

p(g|D,g € G.) =

g € G, (16)

<
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3.2. Predictive Distributions

Let D = {xy,...,x,}, x; € X, be aset of exchangeable observations, and consider now a
situation where it is desired to predict the value of a future observation x € X generated by
the same random mechanism that has generated the data D. It follows from the foundations
arguments discussed in Section 2 that the solution to this prediction problem is simply encapsu-
lated by the predictive distribution p(x | D) describing the uncertainty on the value that « will
take, given the information provided by D and any other available knowledge. Suppose that
contextual information suggests the assumption that data D may be considered to be arandom
sample from a distribution in the family {p(z |w),w € Q}, and let p(w) be a prior distribu-
tion describing available information on the value of w. Since p(x |w, D) = p(x | w), it then
follows from standard probability theory that p(x | D) = [, p(x |w) p(w | D) dw, whichis an
average of the probability distributions of = conditional on the (unknown) value of w, weighted
with the posterior distribution of w given D.

If the assumptions on the probability model are correct, the posterior predictive distribution
p(x | D) will converge, as the sample size increases, to the distribution p(« | w) which has
generated the data. Indeed, the best technique to assess the quality of the inferences about w
encapsulatedinp(w | D) isto check against the observed datathe predictivedistribution p(x | D)
generated by p(w | D).

Example 4. (Prediction in a Poisson process). Let D = {ry,...,r,} bearandom samplefrom
a Poisson distribution Pn(r | \) with parameter \, so that p(D | \) o< Ate ™", wheret = 3" r;.
It may be shown (see Section 5) that absence of initial information on the value of A may be
formally described by the (improper) prior function p(\) = A~1/2_ Using Bayes' theorem, the
corresponding posterior is

p(A| D) x A=A \1/2 o \I1/26—n, (17)

the kernel of aGammadensity Ga(\ |, ¢+ 1/2,n), withmean (¢ 4+ 1/2)/n. The corresponding
predictive distribution is the Poisson-Gamma mixture
2 1 D(r+t+1/2)

T(t+1/2) r! (1 +n)r+t+1/2
Suppose, for example, that in afirm producing automobile restraint systems, the entire produc-
tion in each of 10 consecutive months has yielded no complaint from their clients. With no
additional information on the average number A of complaints per month, the quality assurance
department of the firm may report that the probabilities that » complaints will be received in
the next month of production are given by equation (18), with ¢ = 0 and n = 10. In particular,
p(r=0|D) =0.953, p(r = 1| D) = 0.043, and p(r = 2| D) = 0.003. Many other situa-
tions may be described with the same model. For instance, if metereological conditions remain

smilarinagiven area, p(r = 0| D) = 0.953 would describe the chances of no flash flood next
year, given 10 years without flash floods in the area.

p(r|D):/OOOPn(r])\)Ga()\\,t—l—%,n)d)\: (18)

<

Example 5. (Prediction in a Normal process). Consider now prediction of a continuous vari-
able. Let D = {z1,...,z,} bearandom sample from a normal distribution N (x| 4, 0). As
mentioned in Example 3, absence of initial information on the values of both 1 and o isformally
described by the improper prior function p(i, o) = o~!, and this leads to the joint posterior
density (13). The corresponding (posterior) predictive distribution is

1
p(x| D) = / / N(z|p,0)p(p,o| D)dudo = St(x | T, s nt ,n—1). (19)
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If 1. isknown to be positive, the appropriate prior function will be the restricted function
1

_Jo ifu>0
p(p, ) {0 otherwise. (20)

However, theresultin equation (19) will still hold, provided thelikelihood function p(D | 4, o) is
concentrated on positive 1 values. Suppose, for example, that in the firm producing automobile
restraint systems, the observed breaking strengths of n = 10 randomly chosen safety belt
webbingshavemeanz = 28.011 kN and standard deviation s = 0.443 kN, and that the relevant
engineering specification requires breaking strengths to be larger than 26 kN. If data may truly
be assumed to be a random sample from a normal distribution, the likelihood function is only
appreciable for positive i, values, and only the information provided by this small sasmpleisto
be used, then the quality engineer may claim that the probability that a safety belt randomly
chosen from the same batch as the sample tested would satisfy the required specification is
Pr(z > 26| D) = 0.9987. Besides, if production conditions remain constant, 99.87% of the

safety belt webbings may be expected to have acceptable breaking strengths. 4

3.3. Asymptotic Behaviour

The behaviour of posterior distributions when the sample size islarge is now considered. This
isimportant for, at least, two different reasons:. (i) asymptotic results provide useful first-order
approximations when actual samples are relatively large, and (ii) objective Bayesian methods
typically depend on the asymptotic properties of the assumed model. Let D = {x,...,x,},
x € X, be arandom sample of size n from {p(x |w),w € Q}. It may be shown that, as
n — oo, the posterior distribution p(w | D) of a discrete parameter w typically convergesto a
degenerate distribution which gives probability one to the true value of w, and that the posterior
distribution of a continuous parameter w typically converges to a normal distribution centered
at its maximum likelihood estimate w (MLE for short), with a variance matrix which decreases
withn as1/n.

Consider first the situation where @ = {w;,ws,...} consists of a countable (possibly in-
finite) set of values, such that the probability model which corresponds to the true parame-
ter value w; is distinguishable from the others in the sense that the logarithmic divergence
Mp(x|w;)|p(x|w:)} of each of the p(x | w;) from p(x | w;) is strictly positive. Taking log-
arithms in Bayes' theorem, defining z; = log[p(x; |w;)/p(x;|w;)], j = 1,...,n, and using
the strong law of large numbers on the n conditionally independent and identically distributed

random quantities zy, . . ., z,,, it may be shown that
lim p(wi|®,...,2,) =1, lim p(w;|®1,...,2,) =0, i#t. (21)
n—od n—oo

Thus, under appropriate regularity conditions, the posterior probability of the true parameter
value converges to one as the sample size grows.

Consider now the situation where w is a k-dimensional continuous parameter. Expressing
Bayes' theorem as p(w | z1, ..., ;) o exp{log[p(w)] + >_7_; log[p(z; |w)]}, expanding
>_;jlog[p(z; | w)] about its maximum (the MLE ), and assuming regularity conditions (to
ensure that terms of order higher than quadratic may be ignored and that the sum of the terms
from the likelihood will dominate the term from the prior) it is found that the posterior density
of w isthe approximate k-variate normal

n

2 (0] | w
bl m) N, S(D.2)) ST (D) = (=0 TR BRI,
=1 !
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A simpler, but somewhat poorer, approximation may be obtained by using the strong law of
large numbers on the sums in (22) to establish that S~(D, ) ~ n F(&), where F(w) is
Fisher’s information matrix, of general element

_ 0 log[p(z | w)]
Fy() = - [ palw) SEEE (23)
so that
pwl|xy,...,x,) ~ Np(w|@,n P F7H®)). (24)

Thus, under appropriate regularity conditions, the posterior probability density of the parameter
vector w approaches, as the sample size grows, a multivarite normal density centered at the
MLE &, with avariance matrix which decreases with n asn ! .

Example 2. (Inference on a binomial parameter, continued). Let D = (z1,...,z,) con-
sist of n independent Bernoulli trials with parameter 6, so that p(D [0,n) = 6"(1 — 6)" .
This likelihood function is maximized at # = r/n, and Fisher's information function is
F(9) = 0~1(1 — 0)~'. Thus, using the results above, the posterior distribution of 6 will
be the approximate normal,

p(0]r,n) = N(9|0,5(0)/v/n), s(0) ={0(1-0)}' (25)

with mean 6 = r/n and variance §(1 — ) /n. Thiswill provide a reasonable approximation
to the exact posterior if (i) the prior p(0) is relatively “flat” in the region where the likelihood
function matters, and (ii) both » and n are moderately large. If, say, n = 1500 and r = 720,
thisleadsto p(6 | D) ~ N(#|0.480,0.013), and to Pr(6 > 0.5| D) ~ 0.940, which may be
compared withtheexact valuePr(6 > 0.5 | D) = 0.933 obtained from the posterior distribution

which corresponds to the prior Be(d | 50, 50). q

It follows from the joint posterior asymptotic behaviour of w and from the properties of the
multivariate normal distribution that, if the parameter vector is decomposed into w = (6, A),
and Fisher’s information matrix is correspondingly partitioned, so that

_ _ F@é’ 07)‘) F@)\(O;)‘
Flw)=F(6A) = (FME@, A) Fa(6, A (26)
and

_ 1 _ [ Seo(0,X)  Spr(0, A

S(0,2) = F(0,2) = (Sxege)\) Sw(0.A) )7 (27)
then the marginal posterior distribution of 8 will be
p(0] D) ~N{6 6, n™" Spy(8,\)}, (28)
while the conditional posterior distribution of A given 8 will be
p(A]6,D) ~ N{X| X = F{(6,A\)Fy(6,X)(6 — 0), n" F;{(6,\)}. (29)

Notice that F;Al = S, if (and only if) F' isblock diagonal, i.e., if (and only if) 8 and A are
asymptotically independent.

Example 3. (Inference on normal parameters, continued). Let D = (x1,...,z,) be aran-
dom sample from a normal distribution N(z | i, o). The corresponding likelihood function
p(D |, o) ismaximized at (f1,6) = (Z, s), and Fisher’s information matrix is diagonal, with
F,, = =2, Hence, the posterior distribution of 1 is approximately N(u | Z, s//n); this may
be compared with the exact result p(p. | D) = St(u |z, s/v/n — 1,n — 1) obtained previously

under the assumption of no prior knowledge. 4
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4. |Inference Summaries

From a Bayesian viewpoint, the final outcome of a problem of inference about any unknown
quantity is precisely the corresponding posterior distribution. Thus, given some data D and
conditions C, all that can be said about any function w of the parameters which govern the
model is contained in the posterior distribution p(w | D, C), and all that can be said about
some function y of future observations from the same model is contained in its posterior
predictive distribution p(y | D, C'). As mentioned before, Bayesian inference may technically
be described as a decision problem where the space of available actions is the class of those
posterior probability distributions of the quantity of interest which are compatible with accepted
assumptions.

However, to make it easier for the user to assimilate the appropriate conclusions, it is often
convenient to summarize theinformation contained in the posterior distribution by (i) providing
values of the quantity of interest which, in the light of the data, are likely to be “close” to its
true value and by (ii) measuring the compatibility of the results with hypothetical values of the
quantity of interest which might have been suggested in the context of theinvestigation. In this
section, those Bayesian counterparts of traditional estimation and hypothesis testing problems
are briefly considered.

4.1. Estimation

In one or two dimensions, a graph of the posterior probability density of the quantity of in-
terest (or the probability mass function in the discrete case) immediately conveys an intuitive,
“impressionist” summary of the main conclusions which may possibly be drawn on its value.
Indeed, thisisgreatly appreciated by users, and may be quoted as an important asset of Bayesian
methods. From a plot of its posterior density, the region where (given the data) a univariate
quantity of interest islikely tolieiseasily distinguished. For instance, all important conclusions
about the value of the gravitational field in Example 3 are qualitatively available from Figure 3.
However, this does not easily extend to more than two dimensions and, besides, quantitative
conclusions(inasimpler formthanthat provided by the mathematical expression of the posterior
distribution) are often required.

Point Estimation. Let D be the available data, which are assumed to have been generated by a
probability model {p(D |w),w € Q}, andlet @ = O(w) € O be the quantity of interest. A
point estimator of @ is some function of the data @ = (D) which could be regarded as an
appropriate proxy for the actual, unknown value of 8. Formally, to choose a point estimate
for 6 is a decision problem, where the action space is the class © of possible 6 values. From
a decision-theoretic perspective, to choose a point estimate 6 of some quantity 0 is a decision
to act as though 6 were 6, not to assert something about the value of 6 (although desire to
assert something simple may well be the reason to obtain an estimate). As prescribed by the
foundations of decision theory (Section 2), to solve this decision problem it is necessary to
specify aloss function L (8, 8) measuring the consequences of acting asif the true value of the

quantity of interest was @, when it is actually 6. The expected posterior lossif 8 was used is
L] D)~ [ L(6.6)p(6|D)de. (30)
S

and the corresponding Bayes estimator 6 is that function of the data, 8* = 6*(D), which
minimizes this expectation.
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Example 6. (Conventional Bayesestimators). For any given model and data, the Bayes estimator
obviously depends on the chosen lossfunction. Thelossfunction iscontext specific, and should
be chosen in terms of the anticipated uses of the estimate; however, a number of conventional
loss functions have been suggested for those situations where no particular uses are envisaged.
These loss functions produce estimates which may be regarded as ssimple descriptions of the
location of the posterior distribution. For example, if the loss function is quadratic, so that
L(6,0) = (6 — 0)(6 — 0), then the Bayes estimator is the posterior mean * = E[6| D],
assuming that the mean exists. Similarly, if the loss function is a zero-one function, so that
L(6,0) = 0if 8 belongsto aball or radius e centeredin @ and L(6, 0) = 1 otherwise, then the
Bayesestimator 8" tendsto the posterior mode asthe ball radius e tendsto zero, assuming that a
unique mode exists. If 6 isunivariate and theloss functionislinear, sothat L(6,0) = ¢, (6 — 0)
if > 6,and L(0,0) = cz(6 — 0) otherwise, then the Bayes estimator is the posterior quantile
of order co/(c1 + ¢2), sothat Pr[f < 0*] = ca/(c1 + ¢2). In particular, if ¢; = c2, the Bayes
estimator is the posterior median. The results derived for linear loss funtions clearly illustrate
the fact that any possible parameter value may turn out be the Bayes estimator: it all depends
on the loss function describing the consequences of the anticipated uses of the estimate. 4
Example 7. (Intrinsic estimation). Conventional loss functionsare typically non-invariant under
reparametrization, so that the Bayes estimator ¢* of a one-to-one transformation ¢ = ¢(8) of
the original parameter 6 isnot necessarily ¢(6*) (the posterior median, whichisinvariant, isan
interesting exception). Moreover, conventional loss functions focus on the “distance” between
the estimate € and thetrue value 8, rather then on the “distance” between the probability models
they label. Intrinsic losses directly focus on how different the probability model p(D |0, A) is
from its closest approximation within the family {p(D |8, \;), A\; € A}, and typically produce
invariant solutions. An attractive example is the intrinsic discrepancy, d(8, 8) defined as the
minimum logarithmic divergence between a probability model labeled by 6 and a probability
model labeled by 8. When there are no nuisance parameters, thisis given by

p(t]6)
p(t|0:)
wheret = t(D) € T isany sufficient statistic (which may well be the whole data set D). The
definition is easily extended to problems with nuisance parameters; in this case,

. p(t]6,A)
50iw:59¢0,>\:1nf/ t|0,\) log—F-——~
Orl@) =00i10.2) = Jl, J POV 8476, X)
measures the logarithmic divergence from ~p(t |0, ) of its closest approximation with 6 = 6;,
and the loss function d(0,w) = min{4(€]6,X),(0|6,A)} now depends on the complete
parameter vector w = (6, A). Although not explicitly shown in the notation, the intrinsic
discrepancy function typically depends on the sample size n; indeed, when the data consist of

d(6,0) = min{4(0]6),5(0]0)}, 5(9i\9):/Tp(t\9) log dt, (31)

dt (32)

arandom sample D = {x1, ..., x,} from some model p(x |8, A), then

. p(x|6,A)
5(0;10,\) =n inf /pa: 0,) log ———= dx, 33
(6:16:2) AerJx (]8.%) (@0, M) (33)

so that the discrepancy associated with the full model is simply n times the discrepancy which
correspondsto asingle observation. Theintrinsic discrepancy isasymmetric, non-negative loss
function with a direct interpretation in information-theoretical terms as the minimum amount
of information which is expected to be necessary to distinguish between the model p(D |0, \)
and its closest approximation within the class {p(D | 8, A;), A; € A}. Moreover, it isinvariant
under one-to-one reparametrization of the parameter of interest 8, and does not depend on the
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choice of the nuisance parameter A. Theintrinsic estimator isnaturally obtained by minimizing
the posterior expected intrinsic discrepancy

40| D) = /Q (8, w) p(w | D) duw. (34)

Since the intrinsic discrepancy is invariant under reparametrization, minimizing its posterior
expectation produces invariant estimators. 4
Example 2. (Inference on a binomial parameter, continued). In estimation of a binomial pro-
portion §, givendata D = (n,r) and aBetaprior Be(f | «, 3), the quadratic |oss Bayes estimate
(the corresponding posterior mean) iSE[¢ | D] = (r+«)/(n+ a+ ), whilethe quadratic loss
estimate of, say, thelog-odds ¢(0) = log[0/(1 — 6)],iSE[¢ | D] = ¢(r + o) — p(n — r + )
(where i»(z) = dlog[I'(x)]/dx is the digamma function), which is not equal to ¢(E[0 | D]).
Theintrinsic loss function in this problem is

d(0,0) = n min{é(9|6),5(0|0)}, 8(6;|6) = Qlogg +(1—6)log 11:5 ,

and the corresponding intrinsic estimator ¢* is obtained by minimizing the expected posterior

loss d(0| D) = [d(6,0)p(0|D)df. The exact value of §* may be obtained by numerical

minimization, but a very good approximation is given by
1 r4+a« 1 e¥(r+a)

N Tt at B 2evra) et

Sinceintrinsic estimation is an invariant procedure, the intrinsic estimator of the log-odds will

simply be the log-odds of the intrinsic estimator of 6. As one would expect, when r + « and

n — r + [ are both large, all Bayes estimators of any well-behaved function ¢(6) will cluster
around ¢(E[0 | D]).

(35)

*

(36)

<

Interval Estimation. To describetheinferential content of the posterior distribution of the quan-
tity of interest p(@ | D) it isoften convenient to quoteregions R C © of given probability under
p(0 | D). For example, the identification of regions containing 50%, 90%, 95%, or 99% of the
probability under the posterior may be sufficient to convey the general quantitative messages
implicitinp(@ | D); indeed, thisisthe intuitive basis of graphical representations of univariate
distributions like those provided by boxplots. Any region R C © suchthat [, p(0|D)dé = q,
sothat, given data D, thetrue value of 8 belongsto R with probability ¢, issaid to be a posterior
g-credibleregion of 6. Noticethat this provides adirect, immediately intuitive statement about
the unknown quantity of interest @ in probability terms, in marked contrast to the circumlocutory
statements provided by frequentist confidence intervals. Clearly, for any given ¢ there are gen-
erally infinitely many credible regions. A credible region is invariant under reparametrization;
thus, for any ¢-credible region R of 8, ¢(R) isag-credible region of ¢ = ¢(6). Sometimes,
credible regions are selected to have minimum size (Ilength, area, volume), resulting in highest
probability density (HPD) regions, where all points in the region have larger probability den-
sity than all points outside. However, HPD regions are not invariant under reparametrization:
the image ¢(R) of an HPD region R will be a credible region for ¢, but will not generally
be HPD; indeed, there is no compelling reason to restrict attention to HPD credible regions.
Posterior quantiles are often used to derive credibleregions. Thus, if 8, = 6,(D) isthe 100¢%
posterior quantile of @, then R = {6; 6 < 0,} is a one-sided, typicaly unique g-credible
region, and it is invariant under reparametrization. Indeed, ¢-credible regions of the form
R=1{6;0,,<60<86,_,,}aeeaser tocompute, and are often quoted in preferenceto HPD
regions.
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Example 3. (Inference on normal parameters, continued). In the numerical example about
the value of the gravitational field described in Figure 3a, the interval [9.788,9.829] in the
unrestricted posterior density of g isaHPD, 95%-credible region for g. Similarly, the interval
[9.7803,9.8322] in Figure 3b is also a 95%-credible region for ¢, but it is not HPD. 4
The concept of a credible region for a function & = 6(w) of the parameter vector is trivially
extended to prediction problems. Thus, a posterior g-credible region for x € X isasubset R
of the outcome space X with posterior predictive probability ¢, so that [, p(x | D)dx = q.

4.2. Hypothesis Testing

The posterior distribution p(@ | D) of the quantity of interest & conveys immediate intuitive
information on those values of @ which, given the assumed model, may betakento be compatible
with the observed data D, namely, those with arelatively high probability density. Sometimes,
aredtriction @ € ©¢ C O of the possible values of the quantity of interest (where ©y, may
possibly consistsof asingle value 6y) is suggested in the course of theinvestigation asdeserving
special consideration, either because restricting 6 to © would greatly ssmplify the model, or
because there are additional, context specific arguments suggesting that 8 € ©. Intuitively, the
hypothesis Hy = {6 € ©} should bejudged to be compatible with the observed data D if there
areelementsin ©( with arelatively high posterior density. However, amore precise conclusion
isoften required and, once again, thisismade possi bl e by adopting adeci sion-oriented approach.
Formally, testing the hypothesis Hy = {0 € O} isadecision problem where the action space
has only two elements, namely to accept (ag) or to reject (a;) the proposed restriction. To solve
thisdecision problem, it isnecessary to specify an appropriatelossfunction, L(a;, €), measuring
the consequences of accepting or rgjecting H as afunction of the actual value @ of the vector
of interest. Notice that this requires the statement of an alternative a; to accepting Hy; thisis
only to be expected, for an action is taken not because it is good, but because it is better than
anything else that has been imagined.

Given data D, the optimal action will be to reject Hy if (and only if) the expected posterior
lossof accepting, [, L(ao, 8) p(0 | D) db, islarger than the expected posterior loss of rejecting,
Jo L(a1,0) p(6 ] D) de, that is, if (and only if)

[ 1L(@0.8) - L(a1.6)1 (8| D)d6 = | AL(8)p(8|D)db > 0. (37)
e e

Therefore, only the loss difference AL(6) = L(ap, 0) — L(ay, ), which measures the advan-
tage of rejecting H, asafunction of 6, hasto be specified. Thus, ascommon sense dictates, the
hypothesis H, should be rejected whenever the expected advantage of rejecting Hy is positive.

A crucial element in the specification of the loss function is a description of what is precisely
meant by rejecting Hy. By assumption ag meansto act asif Hy weretrue, i.e., asif 8 € Oy,
but there are at least two obvious options for the aternative action a;. This may either mean
(i) the negation of Hy, that isto act asif 8 ¢ O or, aternatively, it may rather mean (ii) to
reject the smplification implied by H and to keep the unrestricted model, 8 € ©, whichistrue
by assumption. Both options have been analyzed in the literature, although it may be argued
that the problems of scientific data analysis where hypothesis testing procedures are typicaly
used are better described by the second alternative. Indeed, an established model, identified by
Hy = {6 € 0y}, isoften embedded into amore general model, {6 € ©,0, C ©}, constructed
to include possibly promising departuresfrom Hy, and it isrequired to verify whether presently
available data D are still compatible with @ € ©g, or whether the extensionto 6 € O isreally
required.
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Example 8. (Conventional hypothesistesting). Letp(€ | D), 8 € ©, bethe posterior distribution
of the quantity of interest, let a( be the decision to work under the restriction 8 € © and let a;
be the decision to work under the complementary restriction 8 ¢ ©,. Suppose, moreover,
that the loss structure has the simple, zero-one form given by {L(ag,0) = 0, L(a1,60) = 1} if
0 € Oy and, similarly, {L(ap,0) = 1, L(a1,0) = 0} if @ ¢ O, so that the advantage AL(9)
of rgjecting Hy is1if 8 ¢ ©¢ anditis —1 otherwise. With thisloss function it isimmediately
found that the optimal actionisto reject H if (and only if) Pr(6 ¢ ©¢ | D) > Pr(6 € ©y | D).
Notice that this formulation requiresthat Pr(6 € ©¢) > 0, that is, that the hypothesis H, hasa
strictly positive prior probability. If @ is a continuous parameter and © has zero measure (for
instance if Hy consists of asingle point ), this requires the use of a non-regular “sharp” prior
concentrating a positive probability mass on ©. <
Example 9. (Intrinsic hypothesis testing). Again, let p(6 | D), 6 € O, be the posterior dis-
tribution of the quantity of interest, and let ag be the decision to work under the restriction
6 € Oy, but let a1 now be the decision to keep the general, unrestricted model 6 € ©. In this
case, the advantage A L(0) of rejecting Hy as a function of & may safely be assumed to have
the form AL(0) = d(Oy, 0) — d*, for some d* > 0, where (i) d(©y, ) is some measure of
the discrepancy between the assumed model p(D | @) and its closest approximation within the
class {p(D | 6y), 6y € Op}, such that d(Op,8) = 0 whenever 8 € O, and (ii) d* is a context
dependent utility constant which measures the (necessarily positive) advantage of being able to
work with the simpler model when it is true. Choices of both d(©, 8) and d* which may be
appropriate for general use will now be described.
By similar reasons to those supporting its use in point estimation, an attractive choice for the
function d(Oy, 0) is an appropriate extension of the intrinsic discrepancy; when there are no
nuisance parameters, thisis given by
d(©g,0) =min { inf 06(0p|0), inf §(0]|6p)}, (38)
006@0 006@0
where §(00 |0) = [, p(t]0)log{p(t|6)/p(t|6)}dt, and t = t(D) € T is any sufficient
statistic, which may well be the whole dataset D. As before, if thedata D = {x1,...,x,}
consist of arandom sample from p(«x | ), then

5(00]6) =n /X p(z]0)log ;’((;":0)) da. (39)

Naturally, theloss function d(©, @) reducesto theintrinsic discrepancy d(6y, €) of Example 6
when O contains a single element 0. Besides, asin the case of estimation, the definition is
easily extended to problems with nuisance parameters, with

| (t[6.)
5(0 G,A:mf/ £16, A)log LT A)
(G062 = 3, [ P10 2108 470, K0)

The hypothesis H should be rejected if the posterior expected advantage of rejecting is

dt. (40)

d(©y, D) = /O (00, 08) p(6 | D)d6 > d*, (41)

for some d* > 0. Itiseasily verified that the function d(©y, D) is nonnegative. Morovever,
if = ¢(0) is aone-to-one transformation of @, then d(¢p(Oy), D) = d(Oy, D), so that the
expected intrinsic loss of rejecting H isinvariant under reparametrization.

It may be shown that, as the sample size increases, the expected value of d(©, D) under
sampling tends to one when Hj is true, and tends to infinity otherwise; thus d(©, D) may be
regarded as a continuous, positive measure of how inappropriate (in loss of information units)
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it would be to simplify the model by accepting Hy. In traditional language, d(©, D) is atest
statistic for Hy and the hypothesis should be rejected if the value of d(©, D) exceeds some
critical value d*. In sharp contrast to conventional hypothesis testing, this critical value d* is
found to be a context specific, positive utility constant d*, which may precisely be described
as the number of information units which the decision maker is prepared to lose in order to be
able to work with the smpler model H,, and does not depend on the sampling properties of the
probability model. The procedure may be used with standard, continuous regular priorsevenin
sharp hypothesistesting, when © isazero-measure set (aswould be the caseif 6 is continuous
and © contains a single point 6,). Naturally, to implement the test, the utility constant d*
which defines the rejection region must be chosen.

All measurements are based on a comparison with a standard; comparison with the “canon-
ical” problem of testing a value u = p for the mean of a normal distribution with known
variance (see below) makes it possible to calibrate this information scale. Values of d(0y, D)
of about 1 should be regarded as an indication of no evidence against Hy, since the expected
value of d(©y, D) under Hy is precisely one. Vaues of d(©, D) of about 2.5, and 5 should
be respectively regarded as an indication of mild evidence against H, and significant evidence
against H since, in the canonical normal problem, these values correspond to the observed
sample mean 7 respectively lying 2 or 3 posterior standard deviations from the null value .
Notice that, in sharp contrast to frequentist hypothesis testing, where it is hazily recommended
to adjust the significance level for dimensionality and sample size, this provides an absolute
scale (in information units) which remains valid for any sample size and any dimensionality. 4

Example 10. (Testing the value of a normal mean). Letthedata D = {z1, ..., z,} bearandom
sample from anormal distribution N(z | i, o), where o is assumed to be known, and consider
the “canonical” problem of testing whether these data are or are not compatible with some
specific sharp hypothesis Hy = {u = uo} on the value of the mean.

The conventional approach to this problem requires anon-regular prior which places a probabil -
ity mass, say pg, onthevalue 1 to betested, with theremaining 1 — py probability continuously
distributed over R. If thisprior is chosen to be p(u | 1 # o) = N(u| po, 00), Bayes theorem
may be used to obtain the corresponding posterior probability,

B Bo1(D, \) po

Pr[,UJU | Da >\] - (1 — p()) +p0 B()l(D, )\) ! (42)
1/2 1

Bo1(D,\) = (1 + %) exp [_571 :L_ S 22] , (43)

where z = (T — o) /(o /+/n) measures, in standard deviations, the distance between z and 1
and A\ = o2 /03 is the ratio of model to prior variance. The function By (D, \), aratio of
(integrated) likelihood functions, is called the Bayesfactor in favour of Hy. With aconventional
zero-onelossfunction, H, should beregjectedif Prug | D, A] < 1/2. Thechoicespy = 1/2 and
A = lor\ = 1/2, describing particular formsof sharp prior knowledge, have been suggestedin
the literature for routine use. The conventional approach to sharp hypothesis testing deals with
situations of concentrated prior probability; it assumes important prior knowledge about the
value of 1 and, hence, should not be used unless this is an appropriate assumption. Moreover,
as pointed out in the 1950's by Bartlett, the resulting posterior probability isextremely sensitive
to the specific prior specification. In most applications, Hy is realy a hazily defined small
region rather than a point. For moderate sample sizes, the posterior probability Pr(u | D, A] is
an approximation to the posterior probability Pr{ug — € < p < po — €| D, A] for some small
interval around 1o which would have been obtained from a regular, continuous prior heavily
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concentrated around o; however, this approximation always breaks down for sufficiently large
sample sizes. One consequence (which isimmediately apparent from the last two equations)
is that for any fixed value of the pertinent statistic z, the posterior probability of the null,
Pr{uo | D, A], tendstooneasn — oo. Far from being specific to this example, thisunappealing
behaviour of posterior probabilities based on sharp, non-regular priors (discovered by Lindley
in the 1950's, and generally known as Lindley’s paradox) is always present in the conventional
Bayesian approach to sharp hypothesis testing.

Theintrinsic approach may be used without assuming any sharp prior knowledge. Theintrinsic
discrepancy is d(jug, 1) = n(p — po)?/(20?), a simple transformation of the standardized
distance between 1 and o. As later explained (Section 5), absence of initial information
about the value of 1 may formally be described in this problem by the (improper) uniform
prior function p(u) = 1; Bayes' theorem may then be used to obtain the corresponding (proper)
posterior distribution, p(u | D) = N (u | Z, 0 /+/n). Theexpected valueof d( g, i) with respect
to this posterior is d(uo, D) = (1 + 2?)/2, where z = (T — ug) /(0 /+/n) is the standardized
distance between = and 1. As foretold by the general theory, the expected value of d(u, D)
under repeated sampling isoneif u = pg, and increaseslinearly withn if 1 = po. Moreover, in
this canonical example, to reject Hy whenever |z| > 2 or |z| > 3, that iswhenever 1 iS2 or 3
posterior standard deviations away from z, respectively corresponds to rejecting Hy whenever
d(po, D) is larger than 2.5, or larger than 5. But the information scale is independent of the
problem, so that rejecting the null whenever its expected discrepancy from the true model is
larger than d* = 5 units of information is a general rule (and one which corresponds to the
conventional ‘3¢’ rule in the canonical normal case).

If o isunknown, the intrinsic discrepancy becomes

d(ji, 1, 0) = g log [1 + (“ ;“0)2] (44)

Moreover, as mentioned before, absence of initial information about both 1 and ¢ may be
described by the (improper) prior function p(u, o) = o~1. Theintrinsic test statistic d(uo, D)
isfound asthe expected value of d( 19, 1, o) under the corresponding joint posterior distribution;
this may be exactly expressed in terms of hypergeometric functions, and is approximated by

2

1 n t
d(po, D) ~ 3 + 3 log (1 + 5), (45)

where ¢ is the traditional statistic t = v/n — 1(Z — po)/s, ns? =Y i(r; — T)% For instance,
for samplessizes 5, 30 and 1000, and using the utility constant d* = 5, the hypothesis H, would
be rejected whenever |¢| is respectively larger than 5.025, 3.240, and 3.007.

<

5. Reference Analysis

Under the Bayesian paradigm, the outcome of any inference problem (the posterior distribution
of the quantity of interest) combinestheinformation provided by the datawith relevant available
prior information. In many situations, however, either the available prior information on the
quantity of interest istoo vague to warrant the effort required to have it formalized in the form
of a probability distribution, or it is too subjective to be useful in scientific communication
or public decision making. It is therefore important to be able to identify the mathematical
form of a*“noninformative” prior, a prior that would have aminimal effect, relative to the data,
on the posterior inference. More formally, suppose that the probability mechanism which has
generated the available data D isassumed to be p(D | w), for somew € €, and that the quantity
of interest is some real-valued function § = 6(w) of the model parameter w. Without loss
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of generality, it may be assumed that the probability model is of the form p(D |0, A), 6 € O,
A € A, where X is some appropriately chosen nuisance parameter vector. As described in
Section 3, to obtain the required posterior distribution of the quantity of interest p(9 | D) it is
necessary to specify ajoint prior p(6, X). Itis now required to identify the form of that joint
prior y(0, X), the 0-reference prior, which would have a minimal effect on the corresponding
posterior distribution of 4,

(0| D) x /Ap(D |6, X) mg(0, ) dA, (46)

aprior which, to use aconventional expression, “would let the data speak for themselves’ about
the likely value of 6. Properly defined, reference posterior distributions have an important role
to play in scientific communication, for they provide the answer to a central question in the
sciences: conditional on the assumed model p(D |6, A), and on any further assumptions of
the value of # on which there might be universal agreement, the reference posterior (6| D)
should specify what could be said about 6 if the only available information about 6 were some
well-documented data D.

Much work has been doneto formulate “reference” priorswhich would make the idea described
above mathematically precise. This section concentrates on an information-theoretical based
approach to derive reference distributions which may be argued to provide the most advanced
general procedure available. 1ntheformulation described below, far from ignoring prior know!-
edge, the reference posterior exploits certain well-defined features of a possible prior, namely
those describing a situation were relevant knowledge about the quantity of interest (beyond
that universally accepted) may be held to be negligible compared to the information about that
quantity which repeated experimentation (from a particular data generating mechanism) might
possibly provide. Reference analysis is appropriate in contexts where the set of inferences
which could be drawn in this possible situation is considered to be pertinent.

Any statistical analysis contains a fair number of subjective elements; these include (among
others) the data selected, the model assumptions, and the choice of the quantities of interest.
Reference analysis may be argued to provide an “objective’” Bayesian solution to statistical
inference problems in precisely the same sense that conventional statistical methods claim to
be “objective’: in that the solutions only depend on model assumptions and observed data. The
whole topic of objective Bayesian methods is, however, subject to polemic; interested readers
will find in the bibliography some pointers to the relevant literature.

5.1. Reference Distributions

Oneparameter. Consider the experiment which consists of the observation of data D, generated
by a random mechanism p(D | 6) which only depends on a real-valued parameter 6 € ©, and
let t = t(D) € T be any sufficient statistic (which may well be the complete data set D). In
Shannon’s general information theory, the amount of information 1¢{T, p(6)} which may be
expected to be provided by D, or (equivalently) by ¢(D), about the value of 0 is defined by

0 _ oo P(E:0) B og PLO1Y)
I {T,p(@)}—/T/@p(t,G)l sl dedt_Et[/@p(eyt)l s

the expected logarithmic divergence of the prior from the posterior. Thisis naturally a func-
tional of the prior p(6): the larger the prior information, the smaller the information which
the data may be expected to provide. The functional I°{T,p(6)} is concave, non-negative,
and invariant under one-to-one transformations of . Consider now the amount of information
I9{T* p(6)} about # which may be expected from the experiment which consists of k& condi-
tionally independent replications {¢1, ..., t;.} of the original experiment. Ask — oo, such an

do (47)
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experiment would provide any missing information about # which could possibly be obtained
within this framework; thus, ask — oo, the functional 1{T* p(6)} will approach the missing
information about # associated with theprior p(6). Intuitively, af-“ noninformative’ prior isone
which maximizes the missing information about 6. Formally, if 7;.(6) denotes the prior density
which maximizes I?{T*, p(6)} in the class P of strictly positive prior distributions which are
compatible with accepted assumptions on the value of # (which may well be the class of all
strictly positive proper priors) then the 6-reference prior 7(0) isthelimit ask — oo (inasense
to be made precise) of the sequence of priors {7 (0),k = 1,2,...}.

Noticethat thislimiting procedureisnot somekind of asymptotic approximation, but an essential
element of the definition of areference prior. In particular, this definition impliesthat reference
distributions only depend on the asymptotic behaviour of the assumed probability model, a
feature which greatly simplifies their actual derivation.

Example 11. (Maximum entropy). If # may only take a finite number of values, so that the
parameter spaceis© = {0y,...,0,,} and p(0) = {p1,...,pm}, Withp; = Pr(6 = 6;), then

the missing information associated to {p;, . . ., p,,} Mmay be shown to be
0k _ _ e .
klggol {T 7p(9)} — H(ph v 7pm) - - Zizl Di IOg(Pz); (48>

that is, the entropy of the prior distribution {p1, ..., pn}.

Thus, inthefinite case, the reference prior isthat with maximumentropy in the class P of priors
compatible with accepted assumptions. Consequently, the reference prior algorithm contains
“maximum entropy” priors as the particular case which obtains when the parameter space is
finite, the only case where the original concept of entropy (in statistical mechanics, asameasure
of uncertainty) is unambiguous and well-behaved. If, in particular, P contains all priors over
{61, ...,0,}, thenthereference prior isthe uniform prior, 7(6) = {1/m,...,1/m}. q
Formally, the reference prior function () of aunivariate parameter 6 is defined to be the limit
of the sequence of the proper priors 7;,(6) which maximize I°{T*, p(6)} in the precise sense
that, for any value of the sufficient statistic t = ¢(D), the reference posterior, the pointwise
limit 7(0 | ) of the corresponding sequence of posteriors {7 (6 |t)}, may be obtained from
7(0) by formal use of Bayes theorem, sothat 7(6 | t) o p(t | 0) 7 (0).

Reference prior functions are often simply called reference priors, even though they are usually
not probability distributions. They should not be considered as expressions of belief, but
technical devices to obtain (proper) posterior distributions which are a limiting form of the
posteriors which could have been obtained from possible prior beliefs which were relatively
uninformative with respect to the quantity of interest when compared with theinformation which
data could provide.

If (i) the sufficient statistic t = ¢(D) is a consistent estimator 6 of a continuous parameter 6,
and (ii) theclass P containsall strictly positive priors, then the reference prior may be shown to
have asimple form in terms of any asymptotic approximation to the posterior distribution of 6.
Notice that, by construction, an asymptotic approximation to the posterior does not depend on
the prior. Specifically, if the posterior density p(6 | D) has an asymptotic approximation of the
form p( | 6, n), the reference prior is simply

m(0) x p(0|6,n) - (49)

One-parameter reference priors are shown to be invariant under reparametrization; thus, if
Y = 1(0) is a piecewise one-to-one function of 4, then the ¢-reference prior is simply the
appropriate probability transformation of the 6-reference prior.
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Example12. (Jeffreys’ prior). If ¢ isunivariate and continuous, and the posterior distribution of 6
given{z; ..., x,} isasymptoticaly normal with standard deviation s(6)/+/n, then, using (49),
the reference prior function is w(6) oc s(#)~!. Under regularity conditions (often satisfied in
practice, see Section 3.3), the posterior distribution of # is asymptotically normal with variance
n~t F~1(6), where F(6) is Fisher's information function and 6 is the MLE of . Hence, the
reference prior function in these conditions is 7(6) o« F(#)'/2, which is known as Jeffreys
prior. It follows that the reference prior algorithm contains Jeffreys priors as the particular
case which obtains when the probability model only depends on a single continuous univariate
parameter, there are regularity conditions to guarantee asymptotic normality, and there is no
additional information, so that the class of possible priors P contains all strictly positive priors
over ©. These are precisely the conditions under which there is general agreement on the use
of Jeffreys prior as a“noninformative” prior. 4
Example 2. (Inference onabinomial parameter, continued). LetdataD = {x,...,z,} consist
of a sequence of n independent Bernoulli trials, so that p(z |0) = 6°(1 — 6)' =%, 2 € {0,1};
this is a regular, one-parameter continuous model, whose Fisher’s information function is
F(#) = 0~ (1—0)"1. Thus, thereferenceprior 7(6) isproportional to#—1/2(1—6)~1/2, sothat
the reference prior is the (proper) Beta distribution Be(d | 1/2,1/2). Since the reference algo-
rithm isinvariant under reparametrization, the reference prior of ¢(6) = 2arcsin V0 isw(¢) =
m(0)/|0¢/0/0| = 1; thus, the reference prior is uniform on the variance-stabilizing transfor-
mation ¢(#) = 2arcsin /0, afeature generally true under regularity conditions. In terms of
the original parameter 6, the corresponding reference posterior isBe(d | r +1/2,n —r +1/2),
wherer = > x; isthe number of positive trials.

600
500 p(0|r,n,a,3) =Be(#]0.5,100.5)
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Figured4. Posterior distribution of the proportion of infected peoplein the population, given theresultsof n = 100
tests, none of which were positive.

Suppose, for example, that n = 100 randomly selected people have been tested for an infection
andthat all tested negative, sothat » = 0. Thereference posterior distribution of the proportion ¢
of people infected is then the Beta distribution Be(6 | 0.5, 100.5), represented in Figure 4. It
may well be known that the infection was rare, leading to assume that 6 < 6, for some upper
bound 6; the (restricted) reference prior would then be of the form 7(0) o< 0~/2(1 — §)~1/2
if & < 6y, and zero otherwise. However, provided the likelihood is concentrated in the region
6 < 6y, the corresponding posterior would virtually be identical to Be(#|0.5,100.5). Thus,
just on the basis of the observed experimental results, one may claim that the proportion of
infected people is surely smaller than 5% (for the reference posterior probability of the event
6 > 0.05is0.001), that 6 issmaller than 0.01 with probability 0.844 (area of the shaded region
in Figure 4), that it is equally likely to be over or below 0.23% (for the median, represented
by avertical line, is 0.0023), and that the probability that a person randomly chosen from the

29



population isinfected is 0.005 (the posterior mean, represented in the figure by a black circle),
since Pr(x = 1|r,n) = E[#|r,n] = 0.005. If aparticular point estimate of # is required
(say a number to be quoted in the summary headline) the intrinsic estimator suggests itself;
this is found to be 8 = 0.0032 (represented in the figure with a white circle). Notice that
the traditional solution to this problem, based on the asymptotic behaviour of the MLE, here

6 = r/n = 0 for any n, makes absolutely no sensein this scenario. 4

One nuisance parameter. The extension of the reference prior algorithm to the case of two
parameters follows the usual mathematical procedure of reducing the problem to a sequential
application of the established procedure for the single parameter case. Thus, if the probability
model isp(t|0,\), 0 € ©, A € A and a d-reference prior 7y(6, \) is required, the reference
algorithm proceeds in two steps:

(i) Conditional on 6, p(t|#,\) only depends on the nuisance parameter A and, hence, the
one-parameter algorithm may be used to obtain the conditional reference prior 7(A | 9).

(ii) If w(X| @) is proper, this may be used to integrate out the nuisance parameter thus ob-
taining the one-parameter integrated model p(t|6) = [, p(t|0, ) w(\]6)dA, to which the
one-parameter algorithm may be applied again to obtain 7(0). The d-reference prior is then
(0, \) = w(A|0) w(0), and the required reference posterior isw(0 | t) o< p(t | 0)m(6).

If the conditional reference prior is not proper, then the procedure is performed within an
increasing sequence {A;} of subsets converging to A over which = (A |6) isintegrable. This
makesit possible to obtain a corresponding sequence of 6-reference posteriors {; (0 | t} for the
quantity of interest 6, and the required reference posterior is the corresponding pointwise limit
w(0|t) = lim; m;(0 | t). A O-referenceprior isthen defined asapositivefunction 7y (6, ) which
may be formally used in Bayes' theorem as a prior to obtain the reference posterior, i.e., such
that, forany t € T, w(6 | t) o< [, p(t |6, \) me(0, \) dX. The approximating sequences should
be consi stently chosen withinagivenmodel. Thus, given aprobability model {p(x |w), w € Q}
an appropriate approximating sequence { €2, } should be chosen for thewhol e parameter space (2;
then, if theanalysisisdoneintermsof, say, v = {11,192} € ¥ (), the approximating sequence
should be chosen such that ¥; = v(£2;). A natural approximating sequence in location-scale
problemsis {u,log o} € [—i,1]%.

The 6-reference prior does not depend on the choice of the nuisance parameter \; thus, for
any ¢ = (6, \) such that (6,1) is a one-to-one function of (6, \), the -reference prior in
terms of (6,4) issimply mp(6,¢) = (0, X)/|0(0,)/0(8, \)|, the appropriate probability
transformation of the 6-reference prior in terms of (6, A). Notice, however, that the reference
prior may depend on the parameter of interest; thus, the #-reference prior may differ from the
¢-reference prior unless either ¢ is a piecewise one-to-one transformation of 6, or ¢ is asymp-
totically independent from 6. Thisis an expected consequence of the fact that the conditions
under which the missing information about 6 is maximized are not generally the same as the
conditions which maximize the missing information about some function ¢ = ¢(0, ).

The non-existence of a unique “noninformative prior” which would be appropriate for any
inference problem within a given model was established in the 1970’'s by Dawid and Stone,
when they showed that thisisincompatible with consistent marginalization. Indeed, if giventhe
model p(D | 0, \), the reference posterior of the quantity of interest 6, 7(6 | D) = = (0| t), only
depends on the data through a statistic ¢ whose sampling distribution, p(t | 0, \) = p(t| @), only
depends on #, one would expect the reference posterior to be of theform (0 | t) o 7(0) p(t | )
for some prior 7(#). However, examples were found where this cannot be the case if a unique
joint “noninformative” prior were to be used whatever the quantity of interest might be.
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Example 13. (Regular two dimensional continuous reference prior functions). If the joint pos-
terior distribution of (6, \) isasymptotically normal, then the 6-reference prior may be derived
in terms of the corresponding Fisher’sinformation matrix, F'(6, \). Indeed, if

Fox(0,A)  Fya(0, A
then the 6-reference prior ismy(0, A) = w(A | 0) w(0), where
7(A60) < FI{2(6,)), A€ A (51)
If 7(\|0) isproper,

F(@,A):(FM@W F%é“;), and S(6,)) = F(6, ), (50)

7(6) exp{/AW()\]@) log[Sys/2(0, M) d\}, 6 € ©. (52)

If w(\| @) is not proper, integrations are performed on an approximating sequence {A;} to
obtain a sequence {m;(\|0) 7;(6)}, (where m;(\ | 6) is the proper renormalization of 7(\ | 0)
to A;) and the f-reference prior 7y (0, \) isdefined asits appropriate limit. Moreover, if (i) both
F;<2(9, A) and 5501/2(9, A) factorize, so that

Spo (0. 3) < fo6) g (N, E3*(6,0) o 2(6) A (V) (53)
and (ii) the parameters 6 and A are variation independent, so that A does not depend on 6, then
the 6-reference prior issimply my(6, \) = fy(0) g»()), even if the conditional reference prior
m(A]0) = m(A\) x gr(A) (which will not depend on 6) is actually improper. 4

Example 3. (Inference on normal parameters, continued). The information matrix which cor-
responds to anorma model N(z | i, o) is

Fluo)= (7" 502 )s St =Fua = (7 0 (4)
hence Fal(11,0) = V201 = f,(11) go(c), With gy () = o1, and thus (| p) = o 1.
similarly, S/ * (1, 0) = 0 = fu(1) gu(o), with £, (1) = 1, and thus 7(12) = 1. Therefore,
the pi-reference prior is 7, (u, o) = m(o | p) 7(pn) = o', as aready anticipated. Moreover,
as one would expect from the fact that F'(u, o) is diagonal and also anticipated, it is similarly
found that the o-reference prior is 7, (11, 0) = o1, the same as m,(u, o).

Suppose, however, that the quantity of interest is not the mean . or the standard deviation o,
but the standardized mean ¢ = u/o. Fisher’sinformation matrix in terms of the parameters ¢
andoisF(¢,0) = J F(u,o)J,where J = (0(u,0)/0(¢, o)) isthe Jacobian of the inverse
transformation; thisyields

—1 1+ 142 1
F(¢70) = (gb;_l U_2qu+ ¢2)) ) S(¢7U) = ( __Eéf_ %QO_(Z;U> : (55)

Thus, S;(;/Z(gzﬁ, o) x (1+1¢?)~1/2 and ij(@ o) o< o1 (24 ¢?)1/2. Hence, using again the
results in Example 13, 74(¢, o) = (1 + 1¢?)~1/2671. Inthe original parametrization, thisis
To(p,0) = (1 + $(u/a)?) 712072, which is different from 7, (1, o) = 7, (u, o). The corre-
sponding reference posterior of g isfoundtober (¢ | z1, . .., 2,) o (1+3¢%) /2 p(t | ) where
t = (3 x;)/(3 =%)/?, aone-dimensional statistic whose sampling distribution, p(t | ., o) =
p(t| @), only depends on ¢. Thus, the reference prior algorithm is seen to be consistent under

marginalization. 4
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Many parameters. The reference algorithm is easily generalized to an arbitrary number of
parameters. |f themodel isp(t|wi, .. .,wn), ajoint reference prior

7O | Oty ..., 01) X ... x w(B2]6) x 7(61) (56)

may sequentially be obtained for each ordered parametrization {6; (w), . . . , 0, (w)} Of interest,
and these are invariant under reparametrization of any of the §;(w)’s. The choice of the ordered
parametrization {61, ...,0,,} precisely describes the particular prior required, namely that
which sequentially maximizes the missing information about each of the 6;’s, conditional on
{01,...,9i_1},f0ri =m,m—1,...,1.

Example 14. (Stein’s paradox). Let D be a random sample from a m-variate normal distri-
bution with mean p = {p1, ..., 1y} a@nd unitary variance matrix. The reference prior which
correspondsto any permutation of the y;’sisuniform, and this prior leads indeed to appropriate
reference posterior distributions for any of the p;'s, namely 7 (u; | D) = N(ui|Ti, 1/4/n).
Suppose, however, that the quantity of interestisf = >, M%' the distance of u to the origin.
As showed by Stein in the 1950’s, the posterior distribution of # based on that uniform prior
(or in any “flat” proper approximation) has very undesirable properties; this is due to the fact
that a uniform (or nearly uniform) prior, although “noninformative” with respect to each of
the individual 1;'s, is actually highly informative on the sum of their squares, introducing a
severe positive bias (Stein’s paradox). However, the reference prior which corresponds to a
parametrization of theform {6, \;, ..., \,,—1 } produces, for any choice of the nuisance param-
eters \; = \;(u), the reference posterior w(6 | D) = n(0|t) o< 8~1/2x2(nt| m,nd), where
t = . @2, and this posterior is shown to have the appropriate consistency properties.

At

<

Far from being specific to Stein’s exampl e, the inappropriate behaviour in problems with many
parameters of specific marginal posterior distributions derived from multivariate “flat” priors
(proper or improper) isindeed very frequent. Hence, lazy, uncritical use of “flat” priors, rather
than the relevant reference priors, is strongly discouraged.

Limited information . Although often used in contextswhere no universally agreed prior knowl-
edge about the quantity of interest is available, the reference algorithm may be used to specify
aprior which incorporates any acceptable prior knowledge; it suffices to maximize the missing
information within the class P of priors which is compatible with such accepted knowledge.
Indeed, by progressive incorporation of further restrictionsinto P, the reference prior algorithm
becomes a method of (prior) probability assessment. As described below, the problem has a
fairly ssmple analytical solution when thoserestrictionstake the form of known expected values.
The incorporation of other type of restrictions usually involves numerical computations.

Example 15. (Univariate restricted reference priors). If the probability mechanism which is
assumed to have generated the available data only depends on a univarite continuous parameter
0 € © C R, andthe class P of acceptable priorsisaclass of proper priors which satisfies some
expected value restrictions, so that

P ={p0): »(0) >0, /@ p(0)do =1, /@ G@)pO)dd=Fi=1,...m}  (57)
then the (restricted) reference prior is
w(0]P) ocn(0) exp |3 2ii(6)] (59)

where 7(6) is the unrestricted reference prior and the ;s are constants (the corresponding
Lagrange multipliers), to be determined by the restrictions which define P. Suppose, for
instance, that data are considered to be a random sample from a location model centered at 6,
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and that it is further assumed that E[f] = p and that Var[f] = o3. The unrestricted reference
prior for any regular |ocation problem may be showntobeuniform. Thus, therestricted reference
prior must be of theform 7 (6 | P) oc exp{v10 4+ 12(6 — p0)*}, with [ 6 7(6| P) df = 19 and
Jo (60— p10)* (0| P) df = 5. Hence, (6 | P) isanormal distribution with the specified mean

and variance. 4

5.2. Frequentist Properties

Bayesian methods provide a direct solution to the problems typically posed in statistical infer-
ence; indeed, posterior distributions precisely state what can be said about unknown quantities
of interest given available data and prior knowledge. In particular, unrestricted reference poste-
rior distributions state what could be said if no prior knowledge about the quantities of interest
were available.

A frequentist analysis of the behaviour of Bayesian procedures under repeated sampling may,
however, be illuminating, for this provides some interesting bridges between frequentist and
Bayesian inference. It isfound that the frequentist properties of Bayesian reference procedures
aretypically excellent, and may be used to provide aform of calibration for reference posterior
probabilities.

Point Estimation. Itisgenerally accepted that, asthe samplesizeincreases, a“good” estimator 6
of @ ought to get the correct value of @ eventually, that is to be consistent. Under appropriate
regularity conditions, any Bayes estimator ¢ of any function ¢(6) converges in probability
to ¢(0), so that sequences of Bayes estimators are typically consistent. Indeed, it is known that
if there is aconsistent sequence of estimators, then Bayes estimators are consistent. The rate of
convergence is often best for reference Bayes estimators.

Itisalso generally accepted that a“ good” estimator should be admissible, that is, not dominated
by any other estimator in the sense that its expected loss under sampling (conditional to )
cannot be larger for al @ values than that corresponding to another estimator. Any proper
Bayes estimator is admissible; moreover, as established by Wald in the 1950's, a procedure
must be Bayesian (proper or improper) to be admissible. Most published admissibility results
refer to quadratic loss functions, but they often extend to more general lossfuntions. Reference
Bayes estimators are typically admissible with respect to intrinsic loss functions.

Notice, however, that many other apparently intuitive frequentist ideas on estimation have been
proved to be potentially misleading. For example, given asequence of n Bernoulli observations
with parameter ¢ resulting in r positive trials, the best unbiased estimate of 62 is found to be
r(r —1)/{n(n — 1)}, which yields #> = 0 when r = 1; but to estimate the probability of two
positive trials as zero, when one positive trial has been observed, is not precisely sensible. In
marked contrast, any Bayes reference estimator provides a reasonable answer. For example,
the intrinsic estimator of 62 is simply (6*)?, where 6* isthe intrinsic estimator of ¢ described
in Section 4.1. In particular, if » = 1 and n = 2 theintrinsic estimator of 2 is (as one surely
might expect) (6*) = 1/4.

Interval Estimation. As the sample size increases, the frequentist coverage probability of a
posterior ¢-credibleregion typically convergesto ¢ so that, for large samples, Bayesian credible
intervalsmay (under regularity conditions) be interpreted as approximate frequentist confidence
regions. under repeated sampling, aBayesian ¢-credibleregion of 8 based on alarge samplewill
cover the true value of € approximately 100¢% of times. Detailed results are readily available
for univariate problems. For instance, consider the probability model {p(D |w),w € Q}, let
0 = 6(w) beany univariate quantity of interest, andlett = t(D) € T beany sufficient statistic.
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If §,(t) denotesthe 100¢% quantile of the posterior distribution of § which correspondsto some
unspecified prior, so that

Pr{6 < 6,(t) 4] = / p(O]8)d = q. (59)
0<04(t)

then the coverage probability of the g-credibleinterval {6;6 < 6,(t)},

Puloy(t) 2 0lw) = [ pitlw)at (60)
0q(t)=0

typicaly satisfies that Pr[0,(t) > 0|w] = Pr[d < 0,(¢)|t] + O(n~'/?). This asymptotic
approximation is true for all (sufficiently regular) positive priors. However, the approximation
is better, actually O(n~!), for a particular class of priors known as (first-order) probability
matching priors. Reference priorsaretypically found to be probability matching priors, so that
they providethisimproved asymptotic agreement. Asamatter of fact, the agreement (in regular
problems) istypically quite good even for relatively small samples.

Example 16. (Product of normal means). Consider the case where independent random sam-
ples {z1,...,x,} and {y1,...,yn} have respectively been taken from the normal densities
N(z|wi,1) and N(y|we, 1), and suppose that the quantity of interest is the product of their
means, ¢ = wiws (for instance, one may be interested in inferences about the area ¢ of a
rectangular piece of land, given measurements {x;} and {y;} of its sides). Notice that this
is a simplified version of a very frequent problem in the sciences, where one is interested
in the product of severa magnitudes, al of which have been measured with error. Using
the procedure described in Example 13, with the natural approximating sequence induced by
(w1, ws) € [—i,1]?, the ¢-reference prior is found to be

Tp(wi, wa) o (n w? + mw%)*lﬂ, (61)

very different from the uniform prior 7, (w1, w2) = @y, (w1, w2) = 1 which should be used
to make objective inferences about either wy or wp. The prior 74(wr,w2) May be shown to
provide approximate agreement between Bayesian credible regions and frequentist confidence
intervals for ¢; indeed, this prior was originally suggested by Stein in the 1980's precisely to
obtain such approximate agreement. The same example was later used by Efron to stress the
fact that, even within afixed probability model {p(D |w),w € 2}, the prior required to make
objective inferences about some function of the parameters ¢ = ¢(w) must generally depend
on the function ¢. 4
The numerical agreement between reference Bayesian credible regions and frequentist confi-
dence intervals is actually perfect in special circumstances. Indeed, as Lindley pointed out
in the 1950’s, this is the case in those problems of inference which may be transformed to
location-scale problems.

Example 3. (Inference on normal parameters, continued). Let D = {z,,... x,,} be arandom
sample from a normal distribution N (z | u, o). As mentioned before, the reference posterior
of the quantity of interest x is the Student distribution St(i |z, s/v/n —1,n — 1). Thus,
normalizing u, the posterior distribution of ¢(x) = +n — 1(Z — p)/s, as a function of
given D, isthe standard Student St(¢ | 0,1, n — 1) with n — 1 degrees of freedom. On the other
hand, this function ¢ is recognized to be precisely the conventional ¢ statistic, whose sampling
distribution iswell known to also be standard Student with n — 1 degrees of freedom. It follows
that, for all sample sizes, posterior reference credible intervals for ;. given the data will be
numerically identical to frequentist confidenceinterval s based on the sampling distribution of ¢.
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A similar result is obtained in inferences about the variance. Thus, the reference posterior
distribution of A\ = o2 is the Gamma distribution Ga(c 2 | (n — 1)/2,ns%/2) and, hence,
the posterior distribution of » = ns?/0?, as afunction of o2 given D, is a (central) x? with
n — 1 degrees of freedom. But the function r is recognized to be a conventional statistic for
this problem, whose sampling distribution is well known to also be x? with n — 1 degrees of
freedom. It followsthat, for all samplesizes, posterior reference credibleintervalsfor o2 (or any
one-to-one function of %) given the datawill be numerically identical to frequentist confidence

intervals based on the sampling distribution of r. <

6. A Stylized Case Study

To further illustrate the main aspects of Bayesian methods, and to provide a detailed, worked
out example, asimplified version of a problem in engineering is analyzed bel ow.

To study the reliability of alarge production batch, n randomly selected items were put to an
expensive, destructive test, yielding D = {x, ..., x,} astheir observed lifetimes in hours of
continuous use. Context considerations suggested that the lifetime x; of each item could be
assumed to be exponential with hazard rate 6, so that p(z; | 0) = Ex[z; | 6] = e~ %%, 0 > 0,
and that, given 6, thelifetimesof then itemsareindependent. Quality engineerswereinterested
in information on the actual value of the hazard rate #, and on prediction of the lifetime x of
similar items. In particular, they were interested in the compatibility of the observed data with
advertised values of the hazard rate, and on the proportion of items whose lifetime could be
expected to be longer than some required industrial specification.

The statistical analysis of exponential data makes use of the exponential-gamma distribution
Eg(z | «, (3), obtained as a continuous mixture of exponentials with a gamma density,

QMm@:Afwh%WmmM=@%%m

This is a monotonically decreasing density with mode at zero; if a > 1, it has a mean
E[z|a, 8] = B/(a — 1). Moreover, tail probabilities have a simple expression; indeed,

_[ B
Pﬂx>ﬂa4ﬂ—{giz}. (63)
Likelihood function. Under the accepted assumptions on the mechanism which generated the
data, p(D|0) = []; e %i = g7e~% which only dependson s = >_jzj, the sum of the
observations. Thus, t = (s,n) isasufficient statistic for this model. The corresponding MLE
estimator is# = n/s and Fisher’sinformation functionis F'(6) = #~2. Moreover, the sampling
distribution of s isthe Gamma distribution p(s | 0) = Ga(s |n, 0).
Theactua dataconsisted of n = 25 uncensored observed lifetimeswhich, inthousands of hours,
yielded asum s = 41.574, henceamean 7 = 1.663, and a MLE # = 0.601. The standard
deviation of the observed lifetimes was 1.286 and their range was [0.136, 5.591], showing the
large variation (from afew hundred to afew thousand hours) typically observed in exponential
data.
Using the results of Section 3.3, and the form of Fisher’s iAanormation function given above, the
asymptotic posterior distribution of 8 isp(6| D) ~ N(6|6,6/+/n) = N(6]0.601,0.120). This
provided afirst, quick approximation to the possible values of # which, for instance, could be

expected to belong to theinterval 0.601 4+ 1.96 % 0.120, or (0.366, 0.837), with probability close
t0 0.95.

x>0, a>0 #>0. (62
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6.1. Objective Bayesian Analysis

The firm was to be audited on behalf of a mgjor client. A report had to be prepared on the
available information on the hazard rate 6 exclusively based on the documented data D, as
if this were the only information available. Within a Bayesian framework, this “objective’
analysis (objective in the sense of not using any information beyond that provided by the data
under the assumed model) may be achieved by computing the corresponding reference posterior
distribution.

Reference prior and reference posteriors. The exponential model meets all necessary regularity
conditions. Thus, using the resultsin Example 12 and the form of Fisher’sinformation function
mentioned above, the reference prior function (which in this case is also Jeffreys prior) is
simply 7(6) « F(6)'/2 = #~'. Hence, using Bayes theorem, the reference posterior is
(0| D) o< p(DO) O~ < 671 = the kernel of a gamma density, so that

70| D) = Ga( |n,s), 6> 0, (64)

whichhasmean E[@ | D] = n/s (whichisalsotheMLE §), mode (n— 1) /s, and standard devia-
tion/n/s = 6/,/n. Thus, thereference posterior of the hazard ratewasfound tobe (¢ | D) =
Ga(f | 25,41.57) (represented in Figure 5) with mean 0.601, mode 0.577, and standard devi-
ation 0.120. One-dimensional numerical integration further yields Pr[6 < 0.593| D] = 0.5,
Pr[# < 0.389| D] = 0.025 and Pr[# < 0.859| D] = 0.975; thus, the median is 0.593, and the
interval (0.389,0.859) isa95% reference posterior credible region (shaded areain Figure 5).
Theintrinsic estimator (see below) was found to be 0.590 (dashed linein Figure 5).
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Figure 5. Reference posterior density of the hazard rate 6. The shaded region is a 95% credible interval. The
dashed line indicates the position of the intrinsic estimator.

Under the accepted assumptions for the probability mechanism which has generated the data,
the reference posterior distribution (6 | D) = Ga(f | 25,41.57) contained all that could be said
about the value of the hazard rate 6 on the exclusive basis of the observed data D. Figure 5 and
the numbers quoted above respectively provided useful graphical and numerical summaries,
but the fact that 7(6 | D) is the complete answer (necessary for further work on prediction or
decision making) was explained to the engineers by their consultant statistician.

Reference posterior predictivedistribution. Thereference predictive posterior density of afuture
lifetime z is

m(z| D) = /OOO e " Ga(f | n,s)dd = Eg(d | n, s) (65)
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with mean s/(n — 1). Thus, the posterior predictive density of the lifetime of a random item
produced in similar conditions was found to be 7(z| D) = Eg(x|25,41.57), represented
in Figure 6 against the background of a histogram of the observed data. The mean of this
distributionis 1.732; hence, given data D, the expected lifetime of future similar itemsis 1.732
thousands of hours. The contract with their client specified a compensation for any item whose
lifetime was smaller than 250 hours. Since

b s n
Pr[x<byD]=/0Eg(x\n,s)zl—{8+b}, (66)
the expected proportion of items with lifetime smaller than 250 hoursis Prjz < 0.250| D] =

0.139, the shaded area in Figure 6; thus, conditional on accepted assumptions, the engineers
were advised to expect 14% of items to be nonconforming.

0.5 m(z| D)

2 4 6 8 10 12 *

Figure6. Referencepredictive posterior density of lifetimes (in thousands of hours). The shaded region represents
the probability of producing unconforming items, with lifetime smaller than 250 hours. The background is a
histogram of the observed data.

Calibration. Consider t = t(0) = (s/n)f as afunction of ¢, and its inverse transformation

= 0(t) = (n/s)t. Sincet = t(#) is a one-to-one transformation of 0, if R; is a g-posterior
credibleregionfor ¢, then Ry = 0( R;) isag-posterior credibleregionfor §. Moreover, changing
variables, the reference posterior distribution of ¢ = (), as a function of 6 conditional
on s, is7(t(0)|n,s) = w(0|n,s)/|0t(0)/00] = Ga(t|n,n), agamma density which does
not depend on s. On the other hand, the sampling distribution of the sufficient statistic s is
p(s|n,0) = Ga(d|n,0); therefore, the sampling distribution of ¢t = ¢(s) = (6/n)s, as a
function of s conditional to 6, is p(t(s) | n,0) = p(s|n,0)/|0t(s)/0s| = Ga(t|n,n), which
does not contain € and is precisely the same gamma density obtained before. It follows that,
for any sample size n, al ¢-credible reference posterior regions of the hazard rate  will also
be frequentist confidence regions of level . Any ¢-credible reference posterior region has,
given the data, a (rational) degree of belief ¢ of containing the true value of #; the result just
obtained may be used to provide an exact calibration for this degree of belief. Indeed, for any
0 > 0andany ¢ € (0,1), the limiting proportion of g-credible reference posterior regions
which would cover the true value of ¢ under repeated sampling is precisely equal to ¢. It was
therefore possible to explain to the engineers that, when reporting that the hazard rate 6 of
their production was expected to be within (0.389, 0.859) with probability (rational degree of
belief) 0.95, they could claim this to be a calibrated statement in the sense that hypothetical
replications of the same procedure under controlled conditions, with samples simulated from
any exponential distribution, would yield 95% of regions containing the value from which the
sample was simulated.
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Estimation. The commercial department could use any location measure of the reference pos-
terior distribution of § as an intuitive estimator # of the hazard rate ¢, but if a particular value
has to be chosen with, say, some legal relevance, this would pose a decision problem for which
an appropriate loss function L (6, §) would have to be specified. Since no particular decision
was envisaged, but the auditing firm nevertheless required that a particular estimator had to be
guoted in the report, the attractive properties of the intrinsic estimator were invoked to justify
itschoice. Theintrinsic discrepancy d(6;, ;) between the models Ex(z | 6;) and Ex(x | 0;) is

d(0;,0;) = min{06(0; [0;), 6(6;10:)},  6(6:]6;) = (6;/6:) — 1 — log(6;/6:). (67)
Asexpected, d(6;, 6;) isasymmetric, non-negative concave function, which attainsits minimum

value zero if, and only if, §; = #;. Theintrinsic estimator of the hazard rate is that 6*(n, s)
which minimizes the expected reference posterior |0ss,

@ |n,s) =n /O " d(8,0)Gald | n, 5) do. (68)

To avery good approximation (n > 1), thisisgiven by 6*(n, s) = (2n — 1) /2s, the arithmetic
average of the reference posterior mean and the reference posterior mode, quite close to the
reference posterior median. With the available data, this approximation yielded 6* ~ 0.5893,
while the exact value, found by numerical minimization was 6* = 0.5899. It was noticed that,
since intrinsic estimation is an invariant procedure, the intrinsic estimate of any function ¢(0)
of the hazard rate would simply be ¢(6*).

Hypothesis Testing. A criterion of excellence in this industrial sector described first-rate pro-
duction as one with a hazard rate smaller than 0.4, yielding an expected lifetime larger than
2500 hours. The commercial department was interested in whether or not the data obtained
were compatible with the hypothesis that the actual hazard rate of the firm’s production was
that small. A direct answer was provided by the corresponding reference posterior probability
Pr[0 < 04|D] = 00‘4 Ga(f | n,s)df = 0.033, suggesting that the hazard rate of present
production might possibly be around 0.4, but it is actually unlikely to be that low.

(6| D)

\

0.25 0.5 0.75 1

.25 1.5 1.75 O

Figure 7. Expected reference posterior intrinsic loss for accepting 6, as a proxy for the true value of . The
minimum is reached at the intrinsic estimator 8* = 0.590. Values of ¢ outside the interval (0.297,1.170) would
be conventionally rejected.

Under pressureto provide aquantitative measure of the compatibility of thedatawith the precise
valuef = 0y = 0.4, the statistician produced the expected intrinsic discrepancy d (g | n, s) from
accepting 6, as a proxy for the true value of ¢ on the basis of data (n, s) by evaluating (69)
at 0 = 6. It was recalled that the expected value of d(6 | D) under repeated sampling is
precisely equal to onewhen @ = 6, and that alarge value of d(6, | D) indicates strong evidence
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against 6,. Moreover, using a frequent language in engineering, the statistician explained that
values of d(fy | D) = d* indicate, for d* = 2.5, 5.0 or 8.5, alevel of evidence against 6 = 6,
comparableto theevidence against azero mean that would be provided by anormal observation x
whichwas, respectively, 2, 3 or 4 standard deviationsfrom zero. Asindicatedin Figure 7, values
of Ay larger than 1.170 or smaller than 0.297 would be conventionally rejected by a“3 ¢” normal
criterion. The actual valuefor 6 wasfoundto bed(0.4 | D) = 2.01 (equivalent to 1.73 o under
normality). Thus, athough there was some evidence suggesting that 6 is likely to be larger
than 0.4, the precise value § = 0.4 could not be definitely rejected on the exclusive basis of the
information provided by the data D.

6.2. Sensitivity Analysis

Although consciousthat thisinformation could not be used in the report prepared for theclient’s
auditors, the firm's management was interested in taping their engineers’ inside knowledge to
gather further information on the actual lifetime of their products. Thiswas done by exploring
the consequences on the analysis of (i) introducing that information about the process which
their engineers considered “beyond reasonable doubt” and (ii) introducing an “informed best
guess’ based ontheir experiencewith the product. Theresults, analyzed bel ow and encapsul ated
in Figure 8, provide an analysis of the sensitivity of the final inferences on ¢ to changesin the
prior information.

Limited prior information. When questioned by their consultant statistician, the production
engineers claimed to know from past experience that the average lifetime E[z| should be about
2250 hours, and that this average could not possibly be larger than 5000 or smaller than 650.
Since E[z | 0] = 6!, those statements may directly be put in terms of conditions on the prior
distribution of 6; indeed, working in thousands of hours, they imply E[¢] = (2.25)"! = 0.444,
andthat 6 € ©. = (0.20, 1.54). To describe mathematically this knowledge K, the statistician
used the corresponding restricted reference prior, that isthat prior which maximizesthe missing
information about # within the class of priors which satisfy those conditions. The reference
prior restricted to # € ©, and E[#] = u is the solution of w(0) o 6~'e=*?, subject to the
restrictions§ € O, and fec O7(0| K1)do = . With the available data, this was numerically

found to be 7(0 | K1) oc 1 e 29889 9 c ©.. Bayes theorem was then used to obtain the
corresponding posterior distribution 7(6 | D, K1) o< p(D | 0) (0 | K1) o< 62443690 9 c @,
agammadensity Ga(f | 25, 43.69) renormalized to 6 € O, which is represented by athin line
in Figure 8. Comparison with the unrestricted reference posterior, described by a solid line,
suggeststhat, compared with the information provided by the data, the additional knowledge K
isrelatively unimportant.

Detailed prior information. When further questioned by their consultant statistician, the pro-
duction engineers guessed that the average lifetimeis* surely” not larger than 3000 hours; when
requested to be more precise they identified “surely” with a 0.95 subjective degree of belief.
Working inthousands of hours, thisimpliesthat Pr[ > 371] = 0.95. Together withtheir earlier
claim on the expected lifetime, implying E[0] = 0.444, thiswas sufficient to completely specify
a(subjective) prior distribution p(é | K2). To obtain atractable form for such a prior, the statis-
tician used a simple numerical routine to fit a restricted gamma distribution to those two state-
ments, and found thisto be p(6 | K2) « Ga(f | a, 3), with « = 38.3 and 5 = 86.3. Moreover,
the statistician derived the corresponding prior predictive distribution p(z | K3) = Eg(z | «v, 5)
and found that the elicited prior p(¢) would imply, for instance, that Pr[z > 1| K] = 0.64,
Pr[z > 3| K] = 0.27, and Pr[z > 10| K3] = 0.01, so that the implied proportion of items
with alifetime over 1, 3, and 10 thousands of hours were, respectively, 64%, 27%, and 1%. The
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Figure 8. Probability densities of the hazard rate 6. Subjective prior (dotted line), subjective posterior (dashed
line), partially informative reference posterior (thin line) and conventional reference posterior (solid line).

engineers declared that those numbers agreed with their experience and, hence, the statistician
proceededtoacceptp(f) = Ga(f | 38.3, 86.3), represented with adottedlinein Figure8, asarea-
sonabledescription of their prior beliefs. Using Bayes' theorem, the posterior density which cor-
repondstoaGa(f | a,, §) priorisp(0| D) = p(0 | n, s) o 0"~ o1 =80  gatn—1 = (F+s)0,
the kernel of agamma density, so that

p(0| D) =Gal|a+n,3+s), 0>0. (69)

Thus, the posterior distribution, combining the engineers’ prior knowledge K, and data D was
found to be p(6 | D, K») = Ga(f | 63.3,127.8), represented with a dashed line in Figure 8. It
is easily appreciated from Figure 8 that the 25 observations contained in the data analyzed do
not represent a dramatic increase in information over that initially claimed by the production
engineers, although the posterior distribution isindeed more concentrated than the prior, and it
is displaced towards the values of 6 suggested by the data. The firm’'s management would not
be able to use this combined information in their auditing but, if they trusted their production
engineers, they were advised to use p(0 | D, K>) to further understand their production process,
or to design policies intended to improve its performance.

7. Discussion and Further |ssues

In writing abroad articleit is always hard to decide what to leave out. This article concentrates
on the basic concepts of the Bayesian paradigm; methodol ogical topics which have unwillingly
been omitted include design of experiments, sample surveys, linear models and sequential
methods. The interested reader is referred to the bibliography for further information. This
final section briefly reviewsthe main argumentsfor the Bayesian approach, and includespointers
to further issues which have not been discussed in more detail due to space limitations.

7.1. Coherency

By using probability distributions to measure all uncertainties in the problem, the Bayesian
paradigm reduces statistical inference to applied probability, thereby ensuring the coherency of
the proposed solutions. Thereisno needtoinvestigate, onacaseby case basis, whether or not the
solution to a particular problem is logically correct: a Bayesian result is only a mathematical
consequence of explicitly stated assumptions and hence, unless a logical mistake has been
committed in its derivation, it cannot be formally wrong. In marked contrast, conventional
statistical methods are plagued with counterexamples. These include, among many others,
negative estimators of positive quantities, g-confidence regions (¢ < 1) which consist of the
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whole parameter space, empty sets of “appropriate” solutions, and incompatible answers from
alternative methodol ogies simultaneously supported by the theory.

The Bayesian approach doesrequire, however, the specification of a (prior) probability distribu-
tion over the parameter space. The sentence*aprior distribution doesnot exist for this problem”
is often stated to justify the use of non-Bayesian methods. However, the general representation
theorem proves the existence of such adistribution whenever the observations are assumed to be
exchangeable (and, if they are assumed to be arandom samplethen, afortiori, they are assumed
to be exchangeable). To ignore this mathematical fact, and to proceed asif a prior distribution
did not exist, just because it is not easy to specify, is mathematically similar to working on a
differential equation system as if no solution existed, once it has been proved that a solution
exists, just because an explicit solution is not easily found.

7.2. Objectivity

It is generally accepted that any statistical analysis is subjective, in the sense that it is always
conditional on accepted assumptions (on the structure of the data, on the probability model,
on the outcome space) and those assumptions, although possibly well founded, are definitely
subjective choices. It is, therefore, mandatory to make all assumptions very explicit.

Users of conventional statistical methods rarely dispute the mathematical foundations of the
Bayesian approach, but claim to be able to produce “objective’” answers in contrast to the
possibly subjective elements involved in the choice of the prior distribution.

Bayesian methods do indeed require the choice of aprior distribution, and critics of the Bayesian
approach systematically point out that in many important situations, including scientific report-
ing and public decision making, the results must exclusively depend on documented datawhich
might be subject to independent scrutiny. This is of course true, but those critics choose to
ignore that this particular case is covered within the Bayesian approach by the use of reference
prior distributions which (i) are mathematically derived from the accepted probability model
(and, hence, they are “objective” insofar as the choice of that model might be objective) and,
(i) by construction, they produce posterior probability distributions which, given the accepted
probability model, only contain the information about their values which datamay provide and,
optionally, any further contextual information over which there might be universal agreement.

A related issue to that of objectivity is that of the operational meaning of reference posterior
probabilities; it is found that the analysis of their behaviour under repeated sampling provides
a suggestive form of calibration. Indeed, Pr[@ € R|D] = [,7(0|D)de, the reference
posterior probability that 8 € R, is both a measure of the conditional uncertainty (given the
assumed model and the observed data D) about the event that the unknown value of 8 belongs
to R C ©, and the limiting proportion of the regions which would cover 8 under repeated
sampling conditional on data“ sufficiently ssmilar” to D. Under broad conditions (to guarantee
regular asymptotic behaviour), all large data sets from the same model are “ sufficiently smilar”
among themselves in this sense and hence, given those conditions, reference posterior credible
regions are approximate unconditional frequentist confidence regions.

The conditions for this approximate unconditional equivalence to hold exclude, however, im-
portant special cases, like thoseinvolving “extreme’ or “relevant” observations. In very special
situations, when probability models may be transformed to location-scale models, there is an
exact unconditional equivalence; in those cases reference posterior credible intervals are, for
any sample size, exact unconditional frequentist confidence intervals.
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7.3. Applicability

In sharp contrast to most conventional statistical methods, which may only beexactly appliedtoa
handful of relatively simple stylized situations, Bayesian methods are (in theory) totally general.
Indeed, for a given probability model and prior distribution over its parameters, derivation of
posterior distributionsisawell-defined mathematical exercise. In particular, Bayesian methods
do not require any particular regularity conditions on the probability model, do not depend on
the existence of sufficient statistics of finite dimension, do not rely on asymptotics, and do not
require the derivation of any sampling distribution, nor (afortiori) the existence of a“pivotal”
statistic whose sampling distribution is independent of the parameters.

However, when used in complex model swith many parameters, Bayesian methods often require
the computation of multidimensional definite integrals and, for a long time, this effectively
placed practical limits on the complexity of the problems which could be handled. This has
dramatically changed in recent yearswith the general availability of large computing power, and
the parallel development of simulation-based numerical integration strategies like importance
sampling or Markov chain Monte Carlo (MCMC). Those methods provide a structure within
which many complex models may be analyzed using generic software. MCMC is numerical
integration using Markov chains. Monte Carlo integration proceeds by drawing samples from
therequired distributions, and computing sampl e averagesto approximate expectations. MCMC
methods draw the required samples by running appropriately defined Markov chainsfor along
time; specific methods to construct those chains include the Gibbs sampler and the Metropolis
algorithm, originated in the 1950's in the literature of statistical physics. The production of
improved algorithms, and the development of appropriate diagnostic tools to establish their
convergence, remains avery active research area.

Actual scientific research often requires the use of models that are far too complex for conven-
tional statistical methods to be able to handle. Thisarticle concludes with avery brief glimpse
at some of them.

Hierarchical structures. Consider a situation where a possibly variable number n; of observa-
tions, {x;;,j = 1,...,n;}, 4 = 1,...,m, are made on each of m internally homogeneous
subsets of some population. For instance, afirm might have chosen m production lines for in-
spection, and n; items might have been randomly sel ected among those made by production line
i, so that ;; isthe result of the measurements made on item j of production line:. Asanother
example, animals of some species are captured to study their metabolism, and a blood sample
taken before releasing them again; the procedure is repeated in the same habitat for some time,
so that some of the animals are recaptured several times, and x;; isthe result of the analysis of
the j-th blood sample taken from animal <. It those situations, it is often appropriate to assume
that the n; observations on subpopulation i are exchangeable, so that they may be treated as a
random sample from some model p(x | 8;) indexed by a parameter 6; which depends on the
subpopulation observed, and that the parameters which label the subpopulations may also be
assumed to be exchangeable, so that {6, ..., 6,,} may be treated as a random sample from
some distribution p(@ | w). Thus, the complete hierarchical model which is assumed to have
generated the observed data D = {x11, . . ., T, } iSOf theform

PR, [T otess109] [[Tot0:1)] [TTa0] (70)
j=1 i=1 i=1

Hence, under the Bayesian paradigm, afamily of conventional probability models, say p(x | 0),
6 € ©, and an appropriate “structural” prior p(0 |w), may be naturally combined to produce a
versatile, complex model {p(D |w),w € 2} whose analysisis often well beyond the scope of
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conventional statistics. The Bayesian solution only requires the specifiction a prior distribution
p(w), theuse Bayes' theorem to obtain the corresponding posterior p(w | D) « p(D | w) p(w),
and the performance of the appropriate probability transformationsto derive the posterior distri-
butions of the quantities of interest (which may well be functions of w, functions of the 8;’s, or
functions of future observations). Asin any other Bayesian analysis, the prior distribution p(w)
has to describe available knowledge about w; if noneis available, or if an objective analysisis
required, an appropriate reference prior function = (w) may be used.

Contextual information. In many problemsof statistical inference, objective, universally agreed,
contextual information is available on the parameter values. This information is typically
very difficult to handle within conventional statistics, but it is trivialy incorporated into a
Bayesian analysisby simply restricting the prior distributiontotheclass{P} of priorswhich are
compatiblewith suchinformation. Asanexample, consider thefreguent problemin archaeol ogy
of trying to establish the occupation period [« 5] of a site by some past culture on the basis
of the radiocarbon dating of organic samples taken from the excavation. Radiocarbon dating
is not precise, so that each dating z; is typically taken to be a normal observation from a
distribution N (z | 1(6;), 0;), where 6; isthe actual, unknown calendar date of the sample, 1(6)
is an internationally agreed calibration curve, and o; is a known standard error quoted by the
laboratory. The actual calendar dates {61, ..., 60,,} of the samples are typically assumed to
be uniformly distributed within the occupation period [« 3]; however, stratigraphic evidence
indicates some partial orderings for, if sample ¢ was found on top of sample 5 in undisturbed
layers, then 6; > 6;. Thus, if C denotes the class of valuesof {61, ..., 8,,} which satisfy those
known restrictions, data may be assumed to have been generated by the hierarchical model

p(xl,...,xm|a,ﬁ):/[HN(QJ¢|M(0¢),0Z2) (B—a)™db;...db,. (71)
Crich

Often, contextual information further indicates an absolute lower bound «( and an abso-
lute upper bound (3, for the period investigated, so that oy < a < B < fy. If no fur-
ther documented information is available, the corresponding restricted reference prior for
the quantities of interest, {a, 3} should be used; this is found to be 7(a, ) < (8 — a)~!
whenever oy < a < 8 < [y and zero otherwise. The corresponding reference posterior
(e, Blxr, .. xm) < p(x1, ..., ;| a, B) m(a, ) summarizes all available information on
the occupation period.

Covariate information. Within the last 30 years, both linear and non-linear regression models
have been analyzed from a Bayesian point of view at increasing levels of sophistication. This
ranges from the elementary objective Bayesian analysis of ssimple linear regression structures
(whichparallel their frequentist counterparts) to the sophisticated analysis of timeseriesinvolved
in dynamic forecasting which often make use of complex hierarchical structures. The field is
far too large to be reviewed in this article, but the bibliography contains some relevant pointers.

Model Criticism. It has been stressed that any statistical analysisis conditional on the accepted
assumptions of the probability model which is presumed to have generated the data. Recent
years have shown ahuge effort into the devel opment of Bayesian proceduresfor model criticism
and model choice. Most of these are sophisticated elaborations of the procedures described in
Section 4.2 under the heading of hypothesis testing. Again, this is too large a topic to be
reviewed here, but some key references are included in the bibliography.
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