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Abstract 

Artificial neural networks (ANN) have been widely used for both classification and 
prediction.  This paper is focused on the prediction problem in which an unknown 
function is approximated.  ANNs can be viewed as models of real systems, built by 
tuning parameters known as weights.  In training the net, the problem is to find the 
weights that optimize its performance (i.e. to minimize the error over the training set).  
Although the most popular method for training these networks is back propagation, 
other optimization methods such as tabu search or scatter search have been 
successfully applied to solve this problem.  In this paper we propose a path relinking 
implementation to solve the neural network training problem.  Our method uses GRG, a 
gradient-based local NLP solver, as an improvement phase, while previous approaches 
used simpler local optimizers.  The experimentation shows that the proposed procedure 
can compete with the best-known algorithms in terms of solution quality, consuming a 
reasonable computational effort. 
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1. Introduction 
Artificial neural networks offer a general framework for representing non-linear 
mappings from several input variables to several output variables.  They are built by 
tuning a set of parameters known as weights, and can be considered as an extension of 
the many conventional mapping techniques.  In classification or recognition problems 
the net’s outputs are categories, while in prediction or approximation problems they are 
continuous variables. Although this paper is focused on the prediction problem, most of 
the key issues in the net functionality are common to both. 
 
In the process of training the net (supervised learning), the problem is to find the values 
of the weights w that minimize the error across a set of input/output pairs (patterns) 
called the training set E.  For a single output and input vector x, the error measure is 
typically the root mean squared difference between the predicted output p(x,w) and the 
actual output value f(x) for all the elements x in E (RMSE); therefore, the training is an 
unconstrained nonlinear optimization problem, where the decision variables are the 
weights and the objective is to reduce the training error.  Ideally, the set E is a 
representative sample of points in the domain of the function f that we are 
approximating; however, in practice it is usually a set of points for which we know the f-
value. 
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The main goal in the design of an ANN is to obtain a model which makes good 
predictions for new inputs (i.e. to provide good generalization).  Therefore the net must 
represent the systematic aspects of the training data rather than their specific details.  
The standard way to measure the generalization provided by the net consists of 
introducing a second set of points in the domain of f called the testing set T.  We 
assume that no point in T belongs to E and f(x) is known for all x in T.  Once the 
optimization has been performed and the weights have been set to minimize the error in 
E (w=w*), the error across the testing set T is computed (error(T,w*)).  The net must 
exhibit a good fit between the target f-values and the output (prediction) in the training 
set and also in the testing set.  If the RMSE in T is significantly higher than that one in 
E, we will say that the net has memorized the data, instead of learning them (i.e., the 
net has over-fitted the training data). 
 
If we consider a net with too few weights, it will not be able to fit the training data, while 
too many weights may provide a perfect fit to the training data, but a poor fit over the 
test set T. There is no direct rule to compute the optimum number of parameters when 
designing a neural net. The tradeoff between the flexibility and generalization properties 
of the system must be empirically determined in each particular case. 
 
Several models inspired by biological neural networks have been proposed throughout 
the years, beginning with the perceptron introduced by Rosenblatt (1962).  He studied a 
simple architecture where the output of the net is a transformation of a linear 
combination of the input variables and the weights.  The transformation g is a threshold 
activation function where g(x) =-1 for x<0 and g(x) = 1 for x>0. This model has been the 
subject of extensive study in the statistics literature under the generic name of “ logistic 
discrimination” where the activation function is given by the sigmoid function g(x) = 
1/(1+e-x), which produces a smooth approximation to the original step function. 
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Minskey and Papert (1969) showed that the perceptron can only solve linearly separable 
classification problems and is therefore of limited interest.  A natural extension to 
overcome its limitations is given by the so called multi-layer-perceptron or simply 
multilayer neural networks, consisting of a set of nodes N and a set of arcs A.  In 2-
layered networks, N is partitioned into three subsets: NI, input nodes, NH, hidden nodes 
and NO, output nodes.  The arcs go from NI to NH or from NH to NO; in this sense we say 
that the net is a layered graph.  We assume that there are n input variables, so |NI|= n, 
and a single output.  The neural network has m hidden neurons (|NH|= m) with a bias 
term in each hidden neuron. 
 
Kolmogorov (1957) proved that every continuous function of several variables can be 
represented as the superposition of a small number of one-variable functions.  This 
result explains, in a theoretical sense, why neural networks work, but in practice it is of 
limited interest.  If we put Kolmogorov’s theorem in neural network terms, we will 
obtain a net with non-smooth activation functions that depend on the mapping that we 
are trying to approximate and provide poor generalization.  Recent studies have proved 
that multilayer networks with one hidden layer and specific “squashing” functions are 
able to approximate any function.  Hornik et al. (1989) show that neural networks are 
universal approximators and they conclude that any lack of success in applications 
must arise from inadequate learning or an insufficient number of hidden units.  
However, practical results show that in some “difficult” functions, neural networks 
provide approximations of low quality. 
 
Blum and Li (1991) proved that a neural network having two layers and sigmoidal 
hidden units can approximate any continuous mapping arbitrarily well.  As 
consequence, regarding the classification problem, two layer networks with sigmoidal 
units can approximate any decision boundary to arbitrary accuracy.  However, Gallant 
and White (1992) showed that, from a practical point of view, the number of hidden 
units must grow as the size of the data set to be approximated (or classified) grows. 
 
Barron (1993) showed that the training error decreases as the number of parameters 
increases, independently of the number of input variables.  In other approximation 
models, such as polynomial approximation, the reduction in the error is considerably 
lower and depends on the dimension of the input space.  Moreover, the number of 
parameters in these other models usually grows exponentially with the number of input 
variables, while the number of weights grows linearly or quadratically in the neural 
networks models.  However, as it has been mentioned, the objective of these models is 
to make good predictions and increasing the number of weights reduces the networks 
ability to generalize the data.  A view on these theoretical aspects and proofs of the 
results above are outlined in the excellent book due to Bishop (1995). 
 
In this paper we will consider two layer feed-forward networks since this is the most 
common architecture used.  We explore the behavior of the most relevant optimization 
methods developed for training neural networks.  These include back propagation, a 
well-known gradient descent technique, as well as other non-linear optimization 
methods such as conjugate directions set or conjugate gradients (Martí and El-fallahi, 
2003).  Recently, metaheuristics such as tabu search (Sexton, 1998) or scatter search 
(Laguna and Martí, 2002) have been also adapted to this context, for the special case of 
optimizing simulations. 
 
We propose a new training method based on the path relinking methodology.  Path 
relinking starts from a given set of elite solutions obtained during a previous search 
process.  Following the notation in Martí et al. (2003) we will call this set RefSet.  
Section 2 describes the construction of the initial RefSet using the tabu search 
algorithm for on-line training by Martí and El-Fallahi (2003), its updating, as well as the 
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outline of our path relinking method.  Path relinking and its “cousin” scatter search are 
mainly based on two elements: combinations and local search.  Path Relinking 
generalizes the concept of combination beyond its usual application to consider paths 
between solutions.  Local search intensifies the search by seeking local optima. Section 
3 explores two different relinking elements while Section 4 describes two well known 
local optimizers for non linear optimization: the (nonlinear) Simplex search method and 
GRG (Generalized Reduced Gradient method).  The paper concludes with an empirical 
comparison of the proposed method with the best previous approaches and the 
associated conclusions. 
 

2. Path Relinking and the Reference Set 
Basic scatter search and path relinking implementations are designed to check that the 
reference set does not contain duplications; however, sometimes we can find that 
although the values of two points differ, they represent the same solution of the 
problem.  This is the case with neural network training, where different symmetries are 
present (Bishop, 1995). 
 
If we change the sign of all weights of the arcs from the input layer to a particular 
hidden unit, then for a given net input, we will obtain the same input value in this unit 
but with the opposite sign.  Since the activation is an odd function, the output of this 
hidden layer will be the same as in a net with the original weights but with the opposite 
sign.  If we also change the sign of the weight from this hidden unit to the output unit, 
the change in sign is compensated and the net’s output is unchanged.  Therefore, given 
a solution, for each hidden unit, we can obtain another solution which gives rise to the 
same mapping.  Since we can do this for each hidden unit, or groups of units, we can 
obtain 2m solutions representing the same mapping. 
 
On the other hand, if we exchange the values of all the weights of the arcs incident to a 
hidden unit with those of the arcs incident with another hidden unit (considering both 
output and input arcs in the unit), we will obtain a different solution that represents 
the same mapping.  Since we can interchange the values of the weights among all the 
hidden units, we can obtain m! different solutions representing the same mapping.  If 
we add the symmetries previously described, we find that for each solution w in the 
solution space, there are a total of m!2m solutions representing the same mapping.  
Therefore, before adding a solution to the RefSet, we check that it is different than those 
currently in it (where ‘different’ means that the solution doesn’t represent the same 
mapping of any other solution in the RefSet). 
 
The initial Reference Set consists of the best solutions found during a previous tabu 
search application.  Martí and El-Fallahi (2003) proposed a tabu search approach for 
neural network training when run time is limited.  We will use the core of their 
approach to generate the initial set of elite solutions in the path relinking algorithm.  A 
description of the TSProb method follows.  An iteration begins by randomly selecting a 
weight from the current solution w.  The probability of selecting weight t

iw  at iteration 
t, is proportional to the absolute value of the partial derivative 

t
i

t
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wEerror
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The neighborhood consists of solutions that are reached from wt by modifying the value 
of the selected weight t

iw .  Specifically, three solutions are considered with the following 
expression: 

wit+1 = wit + α β wit  ;  wjt+1 = wjt  , ∀ j≠i 
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The algorithm starts by evaluating two solutions; the first one with α=0,3 and the 
second one with α=0,5.  If the error associated with the first one is lower than that one 
associated with α=0,5, then α=0,1 provides the last solution considered; otherwise, the 
method computes the solution generated with α=0,8.  The method selects the best 
solution among the three considered, and labels it as wt+1.   Note that the move is 
executed even when the error of wt+1 is greater than the error of wt, thus resulting in a 
deterioration of the current value of the objective function.  The moved weight becomes 
tabu-active for TabuTenure iterations, and therefore it cannot be selected during this 
time.  The factor β scales the change in the selected weight according to the status of 
the search.  The algorithm starts with β =1 and reduces the magnitude of this change 
as long as the current solution is close to a local optimum.  Starting from a random 
initial solution, the TSProb phase stops when b diverse local solutions have been found. 
 
Figure 1 shows the outline of our path relinking algorithm for neural network training.  
It starts with the creation of the Reference Set, which contains the b elite solutions 
found during the application of the TSProb method.  These b solutions must be different 
as described above (they do not represent the same mapping) and they must be far 
enough apart to insure that the improvement method (Simplex or GRG) started from 
any two solutions will converge to different final solutions.  This is possible because the 
training error function error(E,w) has many local minima.  Therefore, a solution is 
admitted to the RefSet if its Euclidean distance from each solution already in the set is 
larger than a pre-specified threshold th_d.  The improvement method is applied to the 
b/2 best solutions in the RefSet and the improved solutions are ordered according to 
quality (i.e., to their error(E,w) value). 
 
0. Select the training set E and the testing set T.  Normalize input and output data. 
1. Build RefSet = { w(1), …, w(b) } with the best solutions found with the TSProb method.  Apply 

the improvement method (with stopping condition modified as explained below) to the best 
b/2 solutions in RefSet. 

2. Order RefSet according to their objective function value such that w(1) is the best solution and 
w(b) the worst.  Compute E_best=error(E,w(1)) and T_best as the minimum of error(T,w(i)) for 
i=1,…,b.  Set T_Improve = 0. 

while ( T_Improve < T_Limit ) do 
 3. Generate NewPairs, which consists of all pairs of solutions in RefSet that include at least 

one new solution. Make NewSolutions = ∅. 
 for ( all NewPairs ) do 
 4. Select the next pair ( w(i), w(j) ) in NewPairs. 
 5. Obtain new solutions in the path from w(i) to w(j) and add the best one to 

NewSolutions. 
 end for 
 6. Select the best b solutions in NewSolutions and apply the improvement method. 
 for ( each improved w ) do 
 if ( w is not in RefSet and error(E,w)<error(E,w(b)) ) then 
   7. Make w(b) = w and reorder RefSet. 
 end for 
 8. Make T_current = the minimum of error(T,w(i)) for i=1,…,b. 
 if ( T_current < T_best ) then 
 9. Make T_best=T_current and T_improve=0. 
 else 
 10. Make T_improve= T_improve +1. 
end while 

Figure 1. Outline of the path relinking procedure. 
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The search is initiated by assigning the value of 0 to the variable T_Improve.  This 
variable stores the number of consecutive iterations without improvement in the best 
testing error found error(T,w).  In step 1, note that although the improvement method 
minimizes the error(E,w) value, it is stopped when error(T,w) has not been improved for 
the last T_Limit iterations to avoid over-training.  In step 3, NewPairs is constructed 
with all pairs of solutions in RefSet that include at least one new solution, in order to 
perform a relinking phase.  The procedure does not allow two solutions to be subjected 
to the relinking phase more than once.  For each pair (w′, w″) a path is initiated from w′ 
to w″.  The best solution found in the path is added to the set NewSolutions.  The 
cardinality of NewSubsets corresponding to the initial reference set is given by (b2-b)/2, 
which accounts for all pairs of solutions in RefSet.  In step 6 the improvement method 
is applied to the best b solution in NewSolutions.  If a newly created solution improves 
upon the worst solution currently in RefSet, the new solution replaces the worst and 
RefSet is reordered in step 7. 
 
Note that this procedure is very aggressive in trying to improve upon the quality of the 
solutions in the current reference set, even if it sacrifices search diversity.  The 
updating of the reference set is based on improving the quality of the worst solution and 
the search terminates when no new solutions are admitted to RefSet. 
 
In the step 3 of the algorithm (see Figure 1) we construct the set NewPairs, which 
consists of all pairs of solutions in RefSet that include at least one new solution.  We  
apply the relinking process to the pairs in this set in step 5.  This prevents considering 
again a pair already re-linked in previous iterations (note that the relinking method 
described in the next section is deterministic, so it would produce the same sequence of 
solutions). 
 
 
3. The Relinking Phase 
Since the training problem is a nonlinear unconstrained problem with continuous 
variables (weights), a natural way to perform a combination of two solutions u and v is 
to create a linear combination of them.  So, in path relinking terms, we can say that if u 
is the initiating solution and v is the guiding solution, we can create a path linking both 
solutions by giving values to α ∈ (0,1) in the expression w = u + α (v – u). 
 
Instead of directly producing a single solution when combining two original solutions, 
this approach produces a set of solutions that can be interpreted as a sequence 
(according to the values of α).  We refer to this method as LINEAR.  It was proposed in 
the scatter search algorithm for neural network training due to Laguna and Martí 
(2000). 
 
We introduce now a different method of combining that fits better with the relinking 
concept of incorporating attributes from one solution into another.  The path relinking 
approach is oriented to the goal of choosing moves that introduce the attributes of the 
guiding solution, in order to create a “good attribute composition” in the current 
solution.  The composition at each step is determined by choosing the best move, using 
customary choice criteria, from a set of attributes of the guiding solution. 
 
Consider that the weights in a solution w are numbered sequentially starting with those 
from the n neurons in the input layer to the first hidden neuron: w1,1, w2,1, …, wn,1 and 
the bias term for this first hidden neuron wn+1,1.  We will say that these n+1 weights are 
associated with hidden neuron 1.  Therefore, each solution has (n+1)*m+m+1 weights 
where the firsts n+1 are associated with hidden neuron 1, the next n+1 with hidden 



PR and GRG for Artificial Neural Networks / 7 

neuron 2 (w1,2, w2,2, …, wn,2, wn+1,2) and so on, up to those associated with hidden 
neuron m and, additionally, the m from the hidden layer to the output and the bias of 
the output. 
 
In our implementation, if the neural network has m hidden neurons, we construct a 
path with m solutions from solution u to solution v by performing moves that transform 
u into v.  In the first step we create the first solution in the path w1 by replacing in u the 
values of the weights associated with the hidden neuron 1 with their values in v: 
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Similarly, in the second step we create the solution w2 by replacing in w1 the values of 
the weights associated with the hidden neuron 2 with their values in v: 
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Therefore, in each step we copy into the current solution the v-values of the weights 
associated with a hidden neuron.  Solution wm only differs from solution v in the values 
associated with the weights from the hidden layer to the output neuron.  We will call to 
this method, that progressively adds to one solution the characteristics of the other,  
Block Swap. 
 
The effectiveness of adding a local search exploration from some of the generated 
solutions within the relinking path (Laguna and Marti, 2003) has been well 
documented.  In the context of neural network training, the application of an 
improvement method is a time consuming operation, so we will limit it to the best 
solution found in the path, as is shown in the outline of Figure 1. 
 
 
4.  The Improvement Method 
The Simplex Search procedure is a popular and effective method for unconstrained 
minimization which does not use derivatives.  A good description is found in [Avriel, 
1976].  It maintains a set of n+1 points, located at the vertices of a n-dimensional 
simplex.  Each major iteration attempts to replace the worst point by a new and better 
one using reflection, expansion, and contraction steps.  The reflection step moves from 
the centroid of all points but the worst, in a direction away from the worst toward the 
centroid, to a new point xr.  If xr is better than all others, the expansion step moves 
farther in this direction.  If xr is worse than all points in the original simplex but the 
worst, then the contraction step replaces the original simplex by a new one that  retains 
the best point, but with the other vertices some fraction of their original distances from 
this best point.  Some variants can be shown to converge to a local minimum of a 
smooth function, but the rate of convergence is at most linear, like steepest descent. 
 
The GRG implementation used here (Lasdon and Smith, 1993) applies the BFGS Quasi-
Newton procedure to unconstrained problems (Nash and Sofer, 1996).  This gradient-
based algorithm is known to have a superlinear convergence rate, and has been found 
empirically to have the best combination of reliability and efficiency among all gradient-
based methods for unconstrained minimization of smooth functions.  When applied to 
the problem of minimizing the training error, BFGS will almost always find solutions 
with lower training error than the Simplex search procedure, and will do so faster.  This 
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is confirmed in the results of the next section.  Recall, however, that both Simplex 
Search and GRG procedures are terminated when the testing error has not improved for 
T_limit consecutive iterations, so they may not converge to a local minimum of the 
training error. 
 
 
5.  Computational Experiments 
For our computational testing, we implemented, in C, the classical Back-Propagation 
method (BP), the extended tabu search method, ETS, of Sexton et al. (1998), the SS 
method of Laguna and Martí (2000) and our procedure described in the previous 
sections (PR).  We have also implemented the Simplex search procedure, and have used 
the LSGRG2 implementation of GRG described in [Smith and Lasdon, 1992). 
 
Sexton et al. (1998) perform a computational study over 5 functions with 2 variables.  
Laguna and Martí (2000) use the same set of instances.  We have extended this set 
adding 10 more functions of 2 variables from the literature.  Figure 2 shows the 15 
functions used to compare the performance of the methods under consideration.  It 
should be noted that the new functions, from 6 to 15, present more complex 
expressions than the five previously reported.  All functions have multiple local minima, 
and hence are difficult to fit. 
 
It is well known that, for most applications, it is advantageous to apply pre-processing 
transformations to the input data.  It is often useful to process the data with a linear re-
scaling to ensure that all inputs are of similar magnitude.  Specifically, for each input 

variable x we calculate its mean x and variance 2σ  in the training set.  Then, we define 
the scaled variable 

 

σ
xxx −=' , 

 
which has zero mean and unit standard deviation.  A similar re-scaling is made for the 
function values (net’s output). 
 
The training set consists of 200 observations with data randomly drawn from [-100, 
100] for x1 and [-10,10] for x2.  The testing set consists of 100 observations drawn from 
the same uniform distributions.  Since we use this testing set to stop the methods, we 
will use an additional set (the validation set) of 100 observations to test the ability of the 
neural network to predict f(x) for x values that were not used in the search process at all 
(neither in the training set or in the testing set). 
 
Back-propagation is one of the first methods for neural network training, and is the 
most widely used algorithm in practical applications.  It is a gradient descent procedure 
that computes the derivatives’ values in a very efficient way (from the output layer back 
towards the input layer), and modifies the weights according to a parameter known as 
‘learning rate’.  The original algorithm has been modified in many ways; the most 
popular consists in adding a ‘momentum’ term (Rumelhart and McClelland, 1986) when 
the weights are updated.  The inclusion of this term leads to significant improvements, 
although it introduces a second parameter in the algorithm.  Jacobs (1988) suggested a 
different modification called ‘delta-bar-delta rule’ which introduces a separate learning 
rate for each weight.  It has been shown (Bishop, 1995) that this rule increases the 
convergence of the method in some cases, but does not work well in practice across 
different instances due to some stability problems.  Several methods have been 
proposed to compute the learning rate.  This is the case of the quickprop (Fahlman, 
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1988) and the Rprop (Riedmiller and Heinrich, 1993) methods but they share, in 
general, the limitations associated with first derivative based methods.  Our adaptation 
of the back-propagation algorithm (BP) includes the momentum term and compares 
favorably with commercial implementations of this method (El-Fallahi, 2002). 
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Figure 2.  Testing Functions. 
 
 
Martí and El-Fallahi (2003) compared three well known non-linear methods: Simplex,  
Powell’s direction set (Brent, 1973) and Conjugate gradient method (Polak, 1971) as 
they appear in Press et al. (1992).  Their experimentation shows that the Simplex is 
probably the best of the three in terms of computational efficiency and solution quality 
(considering both training and testing error). 
 
In our first experiment we compare two local optimizers, Simplex and GRG.  We run 
both procedures from the same random initial point until the testing error does not 
improve in 20 consecutive iterations.  Table 1 reports, for both methods, the average 
RMSE in the training set (Train Error), in the testing set (Test Error) and in the 
validation set (Valid. Error) for problems 3, 5, 6 and 12 in Figure 2 above.  In this 
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experiment we also explore the effect of changes in the number of hidden neurons (m).  
Table 1 also reports the average running time in seconds (CPU time) of the methods. 
 
 
 Method m Train Error Test Error Valid. Error CPU time 
  6 7.801 3.137 7.158 204.30 
 Simplex 9 3.722 1.408 3.686 160.04 
  20 8.842 2.831 6.785 156.77 
  6 0.394 0.115 0.125 123.65 
 GRG 9 0.092 0.074 0.068 149.33 
  20 0.233 0.090 0.098 220.87 

Table 1.  Performance of Improvement methods 
 
As expected, GRG clearly outperforms the Simplex method with respect to the training 
error, since it is a more powerful optimizer.  Considering the testing and the validation 
errors, GRG is also able to obtain much better results than the Simplex method.  The 
Simplex obtains an average validation error of 3.686 with 9 hidden neurons while GRG 
obtains 0.068 with similar running times. 
 
This experiment confirms what is well known about the parameters in neural networks; 
i.e. the performance of the net is highly dependent on the number of hidden neurons.  
Table 1 shows that the performance of the training methods improves as the net has 
more hidden neurons up to one point (that we have empirically found for our functions 
when m is equal to 9) and then it begins to deteriorate.  Therefore, from now on, we will 
use a net with 9 hidden neurons and GRG as the improvement method of our path 
relinking algorithm. 
 
A common search scheme (Sexton et al., 1998 or Laguna and Marti, 2002) consists of 
applying the training method to the set of weights associated with hidden neurons and 
then using linear regression to find the weights associated with the output neuron.  We 
have implemented the linear regression combined with the GRG optimizer.  If we apply 
this method to solve the problems in the previous experiment, we obtain a reduction in 
the errors with a modest increment in the computational time (from 149.3 to 199.1 
seconds).  Specifically, the average training error decreases from 0.092 to 0.048, the 
testing error from 0.074 to 0.044 and the validation error from 0.068 to 0.051.  
Therefore, we will use this combined optimizer in the path relinking method. 
 
In our second experiment we compare three relinking mechanisms in the same four 
instances considered in the previous experiment: the method based on linear 
combinations where all pairs in the RefSet are considered (Linear All), the method based 
on linear combinations where only relinking between the best element in RefSet and 
other solutions are considered (Linear Best), and the method based on block swapping 
given by the weights associated with each node (Block Swap).  In this experiment we 
also want to isolate and measure the relative contribution of the relinking method in the 
algorithm.  Therefore, no improvement methods have been used.  We have generated a 
random initial RefSet and we have performed the relinking method for 500 iterations, 
updating, if necessary, the RefSet.  Table 2 shows the average training and testing error 
for the solutions in the initial RefSet as well as for the solutions in the final RefSet after 
the application of each of the three methods under consideration. 
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  Method Train Error Test Error CPU time 
  Initial RefSet 313.52 319.24 ---- 
  Linear All 188.36 291.27 277.84 
  Linear Best 238.85 301.67 202.56 
  Block Swap  247.54 273.76 200.84 

Table 2.  Relinking methods 
 
Table 2 shows that all three methods are able to reduce the average error in the RefSet.  
Specifically, the “Linear All” method yields an average percent reduction from the initial 
testing error of 39% (from 313.52 to 188.36), while the “Linear Best” and “Block Swap” 
achieve a 23.8% and 25% respectively.  As it was expected, the “Linear Best” method 
has lower computational time, since it performs less relinking steps than the other two 
methods.  “Linear All” has a better average performance than the other two methods 
with respect to the training error.  However, the “Block Swap” method is able to obtain 
the best solutions (closely followed by the “Linear All”) in terms of the testing error, 
although it requires more computational effort than the other methods.  We will 
consider the “Block Swap” method as the relinking method in our algorithm given that 
our objective is to design a method that has good generalization properties. 
 
In the last experiment we are going to compare our path relinking algorithm PR, as it 
appears in the outline given in Figure 1, with the Back-Propagation method (BP), the 
extended tabu search method, ETS, of Sexton et al. (1998) and the SS method of 
Laguna and Martí (2000).  The path relinking algorithm uses GRG with linear 
regression as the improvement method. 
 
Tables 3, 4 and 5 report, respectively, the training, testing and validation error obtained 
with the four methods in the 15 problems considered.  All the methods were run for ten 
minutes on average.  In all the cases, we have considered the same training, testing and 
validation sets. 
 
 
 Id. Prob. BP ETS SS PR 
 1 0.43 0.00 0.00 0.00 
 2 7.46 6.15 0.09 0.00 
 3 0.06 0.22 0.08 0.02 
 4 25.30 45.78 0.51 0.00 
 5 14.30 37.70 1.17 0.00 
 6 14.25 39.45 2.37 0.05 
 7 8.45 43.60 0.51 0.29 
 8 0.16 0.00 0.00 0.00 
 9 3.33E+09 1.81E+09 4.04E+07 1.20E+09 
 10 16.85 17.10 5.38 20.07 
 11 6.75E+06 3.04E+06 8.82E+05 5.79E+09 
 12 88.50 113.12 0.63 0.00 
 13 7.75 9.81 0.03 0.00 
 14 5.88E+05 3.53E+04 7.55E+01 8.69E+01 
 15 1.65 65.12 2.30 0.05 

Table 3.  Training Error across different methods 
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 Id. Prob. BP ETS SS PR 
 1 1.25 0.00 0.01 0.00 
 2 14.50 11.45 73.50 0.00 
 3 0.65 0.51 4.45 0.02 
 4 63.45 62.60 54.45 0.00 
 5 25.80 47.46 0.00 0.00 
 6 91.10 87.70 727.46 0.05 
 7 17.60 59.45 35.55 0.28 
 8 0.33 263.00 0.00 0.00 
 9 1.10E+10 1.03E+10 6.59E+08 1.06E+09 
 10 31.50 33.45 1342.25 19.50 
 11 8.50E+06 2.56E+45 4.24E+07 6.12E+05 
 12 155.15 175.25 75.15 0.00 
 13 11.50 11.39 1.01 0.00 
 14 7.36E+04 50400.00 3.12E+05 8.31E+01 
 15 1.58 1.52E+46 1475.25 0.05 

Table 4.  Testing Error across different methods 
 
 
Tables 3 and 4 show that the best solution quality is obtained by the path relinking 
method (PR) in most of the cases.  Table 3 shows that the PR method is able to obtain 
the best solutions with respect to the training error in 11 instances, while the SS 
method obtains 3 best solutions and the ETS only obtains 1.  Table 4 shows similar 
results since PR obtains 14 best solutions with respect to the testing error and SS is 
able to obtain the other one. 
 
This experiment shows that none of the methods can effectively handle problems 9, 11 
and 14 within the run time considered.  (We also ran the training methods in these 
three instances for around half an hour of CPU time with no significant improvement).  
Therefore, we can say that in practice this neural network is not able to approximate 
these functions.  If we remove these three instances, we found that the SS algorithm is 
the best with 1.09 average training error, closely followed by PR with a value of 1.7, and 
ETS and BP obtain 31.5 and 15.4 respectively.  However, considering the testing error, 
the PR clearly outperforms the other methods, since it obtains an average of 1.64 while 
SS, ETS and BP obtain 316, 1.27E47 and 34.5 (note that the high value of the ETS is 
given by instance 15, and if we removed it, it would be 68.4).  It should be mentioned 
that the SS method was designed for online training within short computational time, 
and it does not take advantage of the extra time considered.  Moreover, it uses as the 
improvement method the Simplex algorithm, which was shown in previous experiment 
to be inferior to GRG.  On the other hand, although the BP results are only of medium 
quality, this method is very simple to implement compared with the other 
metaheuristics approaches. 
 
The mean squared error values in Table 5, which corresponds to the validation set, are 
in line with those obtained in the training and testing sets.  Specifically, PR is able to 
obtain 14 out of 15 best solutions, while BP obtains the other one.  Regarding average 
values (removing instances 9, 11 and 14), PR obtains 1.75 while SS, ETS and BP obtain 
321.9, 1.26E45 and 17.6 respectively.  As in the previous experiment if we removed 
instance 15, the average value of the ETS method would be reduced to 69.8. 
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 Id. Prob. BP ETS SS PR 
 1 0.56 0.02 0.00 0.00 
 2 13.47 15.65 67.28 0.00 
 3 0.19 1.03 3.16 0.01 
 4 27.26 63.76 61.82 0.00 
 5 9.29 46.04 0.00 0.00 
 6 16.44 91.45 842.78 0.03 
 7 7.97 57.03 32.43 0.29 
 8 0.16 270.25 0.09 0.00 
 9 1.22E+10 1.03E+10 5.00E+09 1.33E+09 
 10 13.64 35.05 1330.86 20.64 
 11 4.20E+06 2.56E+45 1.99E+06 5.44E+05 
 12 117.02 175.05 72.12 0.00 
 13 3.62 13.04 0.78 0.00 
 14 5.96E+04 5.04E+04 6.39E+04 9.06E+01 
 15 2.01 1.52E+46 1452.36 0.06 

Table 5.  Validation Error across different methods 
 
 
Conclusions 
In this paper we have described the implementation of path relinking for training a 
single-layer feed-forward neural network.  The proposed method was compared with the 
well known Back-Propagation algorithm as well as a recently developed scatter search 
and tabu search procedures.  Our experiments show that some few functions cannot be 
approximated by the neural network considered (with 9 hidden units) trained with these 
methods.  For those that can be approximated with a reasonable accuracy level, the 
best results are obtained by the PR method coupled with an improvement phase based 
on the GRG optimizer. 
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