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Abstract

We propose a branch and cut algorithm for the Pallet Loading Problem. The 0-1
formulation proposed by Beasley for cutting problems is adapted to the problem,
adding new constraints and new procedures for variable reduction. We then take
advantage of the relationship between this problem and the maximum independent
set problem to use the partial linear description of its associated polyhedron. Finally,
we exploit the specific structure of our problem to define the solution graph and
to develop efficient separation procedures. We present computational results for the
complete sets Cover I (up to 50 boxes) and Cover II (up to 100 boxes).
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1 Introduction

The Pallet Loading Problem (PLP) arises whenever identical rectangular boxes
have to be packed on a rectangular pallet. Though the problem is initially
three-dimensional, practical considerations usually mean that the boxes must
be placed orthogonally with respect to the edges of the pallet, and in layers in
which the vertical orientation of the boxes is fixed. With these restrictions the
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problem becomes the two-dimensional problem of packing a large rectangle, a
pallet, with the maximum number of small identical rectangles, boxes.

The problem has many practical applications in distribution and logistics. An
increase in the number of boxes which can be shipped on a pallet directly leads
to a decrease in costs. The problem has therefore attracted a lot of research in
recent decades and many heuristic methods have been developed. On the one
hand, constructive methods of increasing complexity, from simple structures
in which the pallet is divided into blocks (Steudel[33], Smith and De Cani[32],
Bischoff and Dowsland[6],Young-Gun and Maing-Kyu[37]), to the recursive
procedures proposed by Morabito and Morales[25], by Scheithauer and Terno
[31], based on G-4 structures, and more recently by Lins et al.[23], based on L-
shaped structures. On the other hand, there are metaheuristics based on tabu
search, genetic algorithms and strategic oscillation (Amaral and Wright[1],
Dowsland[16], Herbert and Dowsland[19]). Several upper bounds have also
been proposed (Nelissen[27], Dowsland[12],[13], Letchford and Amaral[24]),
which consider the geometric structure of the problem and linearly relax inte-
ger programming formulations.

The exact algorithms proposed so far are basically tree search procedures in
which at each node a partial layout of boxes on the pallet has been built.
Different ways of adding boxes, extending the partial solution, and different
bounding procedures define the different algorithms (De Cani[11], Iserman[22],
Exeler [18], Bhattacharya et al.[5]). Special mention should be made of the
work by Dowsland [14],[15] who also follows a constructive approach, but based
on a very interesting equivalence to the maximum independent set on a pallet
loading graph. These exact algorithms have been able to solve problems of
only moderate size, that is of up to 50 boxes.

The purpose of the present paper is to develop an exact algorithm, based on
branch and cut, to solve larger problems, of up to 100 boxes. The structure of
the paper is as follows. In Section 2, we formally define the problem and review
the main concepts, especially the idea of equivalence classes. In Sections 3 to
8 we present the main components of the algorithm, introducing the integer
formulation of the problem, describing the separation procedures, heuristic
algorithms based on rounding LP solutions, branching strategies and logical
fixing of variables. In Section 9 we present the computational results. Finally,
concluding comments are made in Section 10.

2 Problem formulation and basic concepts

The problem can be formulated as follows: Given a large rectangle, a pallet,
with given length L and width W , and a small rectangle, a box, with length a
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and width b, the number of a ∗ b boxes packed onto the L ∗W pallet has to be
maximized. Each instance of the PLP is denoted by a quadruple (L,W, a, b). A
horizontally oriented box is referred to as an H-box, while a vertically oriented
is referred to as a V-box. The positions of the boxes are given with respect to
a coordinate system which originates in the bottom left corner of the pallet.

Given an instance (L,W, a, b), a pair (n,m) of non-negative integers is a
feasible partition of S (L or W ) if n ∗ a + m ∗ b ≤ S. If (n,m) satisfy
0 ≤ S − n ∗ a − m ∗ b < b, they are an efficient partition. Dowsland[12]
showed that two instances of the PLP are equivalent, that is, have the same
feasible solutions, if they have the same efficient partitions for both the length
and the width of the pallet. Hence, if we solve one instance of an equivalence
class, in particular that with the lowest dimensions, we have solved all the
other instances of the class.

The concept of equivalence class also determines the sets of test instances
used for the PLP. Randomly generating and solving a set of instances would
suppose solving equivalent problems more than once. It seems more reasonable
to work with equivalence classes. Two sets have been proposed[15]: Cover I,
the set of equivalence classes of instances satisfying:

1 ≤
L

W
≤ 2, 1 ≤

a

b
≤ 4, 1 ≤

L ∗ W

a ∗ b
< 51

and Cover II, the set of equivalence classes of instances satisfying:

1 ≤
L

W
≤ 2, 1 ≤

a

b
≤ 4, 51 ≤

L ∗ W

a ∗ b
< 101

Most of the authors mentioned above have used these sets totally or partially,
especially Cover I. If we refer to exact procedures, Dowsland[14] tested her
algorithm on the whole of Cover I, while Bhattacharya et al.[5] only used one
subset of it and one instance of Cover II. In fact, not even heuristic algorithms
have been tested on all the classes of Cover II. In this paper, we will test our
branch and cut algorithm on the whole set Cover II, thus providing a complete
picture of the easy and hard elements of the set.

The definition of sets Cover I and Cover II is subject to some ambiguity.
Sometimes an instance satisfies the conditions defining the set but another
equivalent instance does not. In these cases, the inclusion of the equivalence
class in the set is not clear and depends on the user. In order to avoid this am-
biguity, we have followed the constructive method proposed by Dowsland[15]
to generate all the equivalence classes for which the lowest dimensional in-
stance strictly satisfies the defining conditions of the set. Cover I produced in
this way has 7827 classes, and Cover II has 40609 classes.
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3 An integer formulation

A branch and cut algorithm is a branch and bound algorithm which may call a
cutting plane algorithm at each node of the search tree. At each node we have
an LP-relaxation of the problem. We solve this relaxation and if the solution
is integer, we stop. Otherwise, we call the separation algorithms based on the
families of valid inequalities we consider. If any violated inequalities are found,
we add them to the LP relaxation and solve it again. If no violated inequalities
are found, we have to branch from this node (for further details, see the book
by Wolsey[36]). Therefore, the main elements of a branch and cut algorithm
are the formulation, the separation procedures and the branching strategies,
which we will describe in the next subsections. We also include some additional
features, such as heuristics based on rounding LP-solutions and procedures for
fixing variables and constraints.

3.1 Beasley’s formulation

The PLP can be formulated as a particular case of Beasley’s[3] 0-1 formulation
for the two-dimensional non-guillotine cutting problem. We use two types of
variables, defining the positions of the bottom left corners of the boxes:

hkj =





1 if a H-box is placed in position (k,j),

0 otherwise.
(1)

vkj =





1 if a V-box is placed in position (k,j),

0 otherwise.
(2)

The problem is:

max
L−a∑

k=0

W−b∑

j=0

hkj +
L−b∑

k=0

W−a∑

j=0

vkj (3)

subject to:

min{r,L−a}∑

k=max{0,r−a}

min{s,W−b}∑

j=max{0,s−b}

hkj +
min{r,L−b}∑

k=max{0,r−b}

min{s,W−a}∑

j=max{0,s−a}

vkj ≤ 1

(r = 0, . . . , L − 1; s = 0, . . . ,W − 1), (4)

hkj ∈ {0, 1} (0 ≤ k ≤ L − a; 0 ≤ j ≤ W − b) (5)

vkj ∈ {0, 1} (0 ≤ k ≤ L − b; 0 ≤ j ≤ W − a) (6)
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Constraints (4) are covering constraints avoiding box overlapping. For each
pair (r, s) the constraint (4) guarantees that the corresponding unit square is
covered by one box at most.

The number of variables, (L − a) ∗ (W − b) + (L − b) ∗ (W − a), and con-
straints, (L − b) ∗ (W − b), involved in this formulation can be very high for
large problems, but it can be significantly reduced, as is shown in the next
subsection.

3.2 Reducing the number of variables and constraints

The set of positions for the boxes can first be reduced to the normal sets
proposed by Herz[20] and Christofides and Whitlock[10]

S(L) = S(L, a, b) = {r : r = αa + βb, r + b ≤ L, α, β ∈ Z+} (7)

S(W ) = S(W,a, b) = {r : r = αa + βb, r + b ≤ W,α, β ∈ Z+} (8)

Note that the elements of these normal sets correspond to the points at which
there would be a box in a feasible partition. As all the equivalent instances
have the same feasible partitions, they will have the same normal sets and
then the number of variables would be the same for all of them.

These sets can be further reduced using dominance considerations, as proposed
by Scheithauer and Terno[31]. If we denote:

〈s〉L := max{r ∈ S(L) : r ≤ s}

the new set of positions, raster points, are:

S̃(L) = S̃(L, a, b) = {〈L − r〉L : r ∈ S(L)} (9)

S̃(W ) = S̃(W,a, b) = {〈W − r〉W : r ∈ S(W )} (10)

Finally, we propose further reducing the number of variables by considering
hkj and vkj variables separately. Not all the positions in sets S̃(L) and S̃(W )
are non-dominated for both types of variables. For example, if we consider the
instance (11, 10, 4, 3) we have:

S̃(W,a, b) = S̃(10, 4, 3) = {0, 3, 4, 6, 7}

5



S̃(L, a, b) = S̃(11, 4, 3) = {0, 3, 4, 7, 8}

According to S̃(L, a, b) y S̃(W,a, b), (0, 6) is a non-dominated position for a
variable. This is true for a V-variable, v0,6, but not for the H-variable h0,6 which
would be dominated by h0,7, as can be seen in Figure 1: Given a solution in
which h0,6 = 1, we can obtain a new solution with an equal or greater number
of boxes changing h0,6 = 1 for h0,7 = 1. Therefore, the raster points are
different for H-variables and V-variables.

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

10

(a) Variable h0,6

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

10

(b) Variable h0,7

Figure 1. Reduction of variables. Instance (11,10,4,3)

The number of constraints can also be reduced. When considering the con-
straint corresponding to a unit square (r, s), if all the variables involved in the
constraint have appeared in a previous constraint (r′, s′) (to the left and/or to
the bottom of (r, s)), that is, if going up and/or right from (r′, s′) to (r, s) no
new variable has appeared, then the constraint at (r, s) is redundant. In this
case, the constraint avoiding the overlapping of square (r′, s′) is also respon-
sible for avoiding the overlapping of square (r, s).

The effect of the reductions on this small instance appears at Table 1.

H-variables V -variables Total variables Constraints

Initial 49 48 97 56

Normal sets 25 24 49 30

Raster points 20 20 40 25

New reduction 16 9 25 23

Table 1

Reductions for instance (11,10,4,3)

Comparing only the effect of the raster points of Scheithauer and Terno[31]
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and the new reduction on the complete sets Cover I and Cover II, we obtain
the average results in Table 2.

Raster points New reduction

Variables Constraints Variables Constraints

Cover I 373,46 212,34 266,37 211,89

Cover II 1406,35 753,03 1041,25 752,49

Table 2

Comparing raster points and the new reduction

3.3 An upper bound constraint

As was mentioned in the Introduction, there are good heuristic algorithms and
good upper bounds for the PLP. As the objective function is the number of
boxes packed onto the pallet, the optimal solution value has a narrow range of
possible values. In fact, given nheur, the value of a feasible solution, and nupper,
the value of an upper bound, we are looking for a solution with nopt boxes,
where nheur < nopt ≤ nupper. Taking advantage of this fact, in our search tree
we define a first level of branching in which each node has a fixed number
of boxes, decreasing from nupper to nheur + 1. We start searching the branch
with the maximal number of boxes and explore it until a feasible, and hence
optimal, solution is found or the branch has been completely studied. In this
case, we proceed to the next branch with one box less and so on.

Therefore, when we solve the linear relaxation of the integer formulation at
any node of the tree, we add the corresponding upper bound constraint:

max
L−a∑

k=0

W−b∑

j=0

hkj +
L−b∑

k=0

W−a∑

j=0

vkj ≤ B (11)

where B is the number of boxes corresponding to the current first level branch.

As a consequence the waste, that is the non-used surface of the pallet corre-
sponding to each branch, is also known. In a branch with n boxes, the waste is
U = L ∗W −n ∗a ∗ b. That can be used to improve the formulation. When we
described the reduction of constraints, we mentioned that a constraint can be
in charge of several unit squares. Hence, if all its variables are zero, not only
one, but several squares will be empty. If the number of squares associated
to a constraint is greater than the waste U , this constraint must be equal to
one. This change in the status of the constraint is not necessary in the integer
formulation, but is relevant in the linear relaxation.
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4 Reducing the PLP to a graph problem

The relationship between the PLP and the maximum independent set on a
conflict graph was introduced by Dowsland in 1987[14]. She used it to develop
an exact algorithm, adapting an existing tree search procedure. Here we will
take advantage of this relation and the extensive knowledge of the polyhe-
dron of the maximum independent set in order to develop efficient separation
procedures adapted to the PLP.

At each node, when the solution of linear relaxation is fractional, we define a
graph GPLP = (V,E). Initially, each vertex v ∈ V corresponds to a fractional
variable 0 < hkj < 1 (or 0 < vkj < 1) in the linear solution. In the imple-
mentation of the algorithm, only variables with values above a threshold of
0.005 define a vertex. In that way, we reduce the size of the graph to be ex-
plored by eliminating variables which add very little when looking for violated
inequalities.

We include an edge between each pair of vertices if the corresponding boxes
are in conflict, that is, if they cannot be together in a solution with the given
number of boxes. A first type of edges involves pairs of boxes that would
overlap. But beyond these evident conflicts, there are some others which can
be used to define new edges and to identify more violated inequalities in the
graph.

• Conflicts related to waste
Two boxes are in conflict if the waste that they would produce if they

appeared together in a solution is greater than the waste U associated to
the solution.

There are many situations in which these conflicts appear:
· Direct waste between boxes. In Figure 2, the shadowed region shows the

unavoidable waste associated to the presence of boxes 1 and 2.
· Indirect waste: Between the boxes being considered, some other boxes can

be placed, but even with the fullest usage of the space there would still
be some waste. In Figure 3, between boxes 1 and 2 there may be some
vertical or horizontal boxes, but the shadowed region is the minimum
waste involved.

· Waste in a corner of the pallet. In Figure 4, the space in the corner may
be filled in two different ways, each producing a waste. The lesser of the
two is the unavoidable waste involved.

• Conflicts related to dominance
We say that a pair of boxes is dominated by another pair if this second

pair uses a strictly smaller region of the pallet, leaving the rest of the layout
unchanged. A dominated pair of boxes can be eliminated from the solution

8



< b
1

2
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Figure 2. Direct waste
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(a) Horizontal

1

2
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(b) Vertical

Figure 3. Indirect waste

1
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d3

d2

1

2

1
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Figure 4. Waste in the corners

by adding an edge between them.
There are many situations in which these dominance conflicts appear. In

Figure 5, a simple dominance situation arises when one pair is dominated
by another in which a box of the original pair has been moved. Figure 6
shows two cases of dominance in which the dominant pair has a different
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layout. Figure 7 shows a dominance situation in a corner of the pallet.

1
2

1
2

Figure 5. Simple dominance

1

2

1

2

(a) Horizontal

1
2 1 2

(b) Vertical

Figure 6. Dominance with a change in the layout

1

2

d3

d2

1

1

1

2

Figure 7. Dominance in the corner

• Symmetry considerations
Very often we have feasible solutions that are symmetric to other solu-

tions, with respect to a vertical axis passing through the center of the pallet,
to a horizontal axis, or to both of them. This symmetry multiplies the num-
ber of solutions to explore. We can simplify the search by developing some
procedures that eliminate symmetric solutions, considering only solutions
in which the waste tends to be towards the top and the right of the pallet.

At each node of the tree, we know from the first level of branching the
number of boxes in the solution and the associated waste U . If we consider
the pallet divided vertically into two halves, we can restrict our study to
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solutions with Uleft ≤ U/2. In a similar way, considering the pallet divided
horizontally, we can only study solutions for which Ubottom ≤ U/2.

If we divide the pallet into four quarters, we can bound the maximum
admissible waste for each of them (See Appendix and Figure 8) :

UA ≤ U
4

UC ≤ ⌈3
4
U − 1⌉ + 1

4

UB ≤ U
2 UD ≤ U

Figure 8. Maximum waste at each quarter.

These bounds can be applied when adding edges related to waste. For
instance, if we are considering a direct waste between boxes in the first
quarter A, it suffices that this waste is greater than U/4 to include an edge
between them.

The edges related to the waste which can be included depend on the
quarter in which the waste is located and depend also on the instance we
are considering as representative of the equivalence class. For instance, let
us consider the instance (27,17,5,3) and suppose that we are looking for a
solution with 30 boxes. The associated waste will be U = 9 and the waste
relative to the box size:

U

(a ∗ b)
=

9

5 ∗ 3
= 0, 6

If we take another equivalent instance (40007,24005,8001,4001), the solu-
tion with the same number of boxes will have a waste U = 8005 and the
waste relative to the box size will in this case be:

U

(a ∗ b)
=

8005

8001 ∗ 40001
= 0, 00025

In (27,17,5,3) in position:

(1 ∗ a + 4 ∗ b, 1 ∗ a + 2 ∗ b) = (17, 11) we can put an H-box

(3 ∗ a + 3 ∗ b, 0 ∗ a + 4 ∗ b) = (24, 12) we can put a V-box

Similarly, in (40007,24005,8001,4001) in the corresponding position

(1 ∗ a + 4 ∗ b, 1 ∗ a + 2 ∗ b) = (24005, 16003) an H-box can be placed

(3 ∗ l + 3 ∗ w, 0 ∗ l + 4 ∗ w) = (36006, 16004) a V-box can be placed

In the first case, the pair of boxes would produce a direct waste of 4 units,
which would not be greater than the maximum allowable waste for the
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upper right quarter (9), and no edge between them could be added. (Figure
9(a)). But in the second case, the direct waste between the boxes would
be 4000*4000=16000000 greater than the maximum allowable waste (8005)
and an edge between them could be added (Figure 9(b)). Obviously, if the
two boxes cannot appear together in a solution of 30 boxes for the second
instance, they cannot appear together in a solution for the first instance, so
the edge could also be used for it. In this example, if we build the graph
corresponding to the instance (27,17,5,3) it has 279 edges, while the graph
corresponding to the instance (40007,24005,8001,4001) has 341 edges.

Waste: 2 × 2

(27,17,5,3)

(17,11) (22,11)

(24,12)

(a) Small relative waste

Waste: 4000 × 4000

(40007,24005,8001,4001)

(24005,16003) (32006,16003) (36006,16004)

(b) Large relative waste

Figure 9. Different behavior of equivalent instances

Instance (40007,24005,8001,4001) exhibits such good properties because
it is the element of the class with the smallest upper bound. Its relative waste
is very low (0.0025) and it is possible to detect many pairs of boxes which
are badly placed with respect to an optimal solution and to add many edges
to eliminate them. The differences between relative wastes among instances
of an equivalence class can be very large. When building the graph, we
use the instance with the smallest upper bound, obtained by following the
procedure proposed by Nelissen[26].

5 Valid inequalities and separation procedures

Given the graph GPLP = (V,E), we review the valid inequalities known for
the maximum independent set problem which will be used in the separation
procedures. The maximum independent set polyhedron is denoted by PIS.
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5.1 Cliques

A clique C in a graph G is a maximal complete subgraph of G. If C ⊆ V is a
clique, any independent set will have at most one node of C. Hence, the clique
inequality :

∑

v∈C

xv ≤ 1 (12)

is valid for PIS. Padberg [29] showed that inequality (12) defines a facet of
PIS iff C is a clique of G.

In the PLP it can be shown that if in the graph GPLP we consider only the
edges avoiding overlapping between boxes, the only cliques are the covering
constraints (4). However, if we add the edges related to waste and dominance,
there are other cliques which can be violated by linear solutions. In order to
identify them, we follow the strategy proposed by Hoffmann and Padberg[21],
combining an exhaustive and a greedy procedure, depending on the degree of
the vertex being explored.

Step 1. Take v ∈ V with smallest degree (d(v)).
Step 2. If d(v) = 0, Stop.
Step 3. • If v ∪ {star(v)} is a clique:

If the sum of its variables is greater than 1, add the con-
straint to the linear formulation. Delete v.

• Otherwise, go to Step 4.
Step 4. • If d(v) ≥ 25. Use a greedy constructive procedure to find

the maximum weight independent set.
If the sum of its variables is greater than 1, add the con-
straint to the linear formulation. Delete v. Go to Step 1.

• If d(v) < 25, use the exhaustive procedure by Bron and
Kerbosch[7] to find all the maximum cardinality indepen-
dent sets. Each of them whose sum of variables is greater
than 1 defines a new constraint. Delete v. Go to Step 1.

5.2 Odd cycles

If H is an odd cycle in G, the odd cycle inequality is

x(V (H)) ≤ ⌊|V (H)|/2⌋. (13)

Padberg[29] showed that these inequalities are valid for PIS, but they do not
usually define facets. In order to obtain facets, he proposes a sequential lift-
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ing procedure, starting from an odd cycle without chords, a hole, satisfying
inequality (13) and adding variables xv, one at a time, with coefficients αv,
obtained by solving a series of, usually small, 0-1 problems, finally producing
the inequality

x(V (H)) +
∑

v∈V \V (H)

αvxv ≤ ⌊|V (H)|/2⌋. (14)

We will follow a sequential lifting procedure adapted to our problem. First, the
solution graph may be non-connected. We start by identifying the connected
components and then we apply the procedure to each component. Second, we
cannot use a strategy like that used by Nemhauser and Sigismondi[28], who
first identify violated odd hole constraints and then lift them, because in our
problem the sum of the variables of the cycle produces a violated constraint on
few, if any, occasions. Only after lifting do we obtain the violated constraints
we are looking for. Therefore, our procedure has to find some odd cycles, lift
them, and see if the sum of the variables involved in the lifted inequality is
greater than the corresponding right hand side.

We have tested two different types of algorithm to find odd cycles:

• Minimum spanning tree algorithm.
We build the minimum spanning tree GLWlw and its co-tree. Then the cycles
are generated by including the edges of the co-tree in the spanning tree, and
we keep those of odd cardinality.

• An algorithm for searching holes (Hoffman and Padberg (1993)[21]).
The procedure chooses a vertex v as the root node and builds a tree level

by level. Each level is defined by the distance to the root, where distance
is the number of arcs between vertices. Therefore, all the vertices adjacent
to v are in level 1, the vertices adjacent to those of level 1, excluding v and
those in level 1, are in level 2 and so on. Any pair of nodes of level k with
disjoint paths to v define an odd hole containing v.

Our sequential lifting procedure follows a tree structure similar to that of
Nemhauser and Sigismondi[28], but unlike theirs we do not solve exactly the
maximum independent set problems corresponding to every coefficient because
we are looking for a very fast procedure. We start by identifying the set of
variables which can be lifted. These are (a) those adjacent to three or more
consecutive vertices of the cycle (Figure 12.a) and (b) those that produce even
chains, where by chain we mean consecutive vertices of the cycle (Figure 12.b).
However, the second type of variables are much more complicated to use in a
sequential procedure and we only use the first type of candidates.

Once the set of candidates has been defined, we use the following sequential
process, in which we denote by NC(v) the set of vertices of C adjacent to v:
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(a) Three or more consec-
utive adjacent vertices

(b) Even chains

Figure 10. Candidates for lifting

Step 1. Initialization.
p = 0.
E = ∅. Set of variables lifted in the node
L=List of candidates for lifting
Augment=0.

Step 2. Selecting the variable to lift.
If L = ∅, go to Step 4 (Backtrack).
Otherwise, take the first variable xk ∈ L, set L = L − {xk}

Step 3. Test of variable xk.

If, for all xv ∈ E





xv and xk are adjacent

or

|NC(v) \ NC(v′)| ≥ 2

Go to Step 4 (Branching), Augment=1.
Otherwise, go to Step 1.

Step 4. Branching (Variable xk is added to the constraint)
p = p + 1
E = E ∪ {xk}
Go to Step 2.

Step 5. Backtrack.
If Augment=1, save the constraint (set E).
Set Augment = 0.
p = p − 1
If p < 0 → Stop (Enumeration completed).
Otherwise, E = E −{xr}, where xr is the last variable of E
L = {xr+1, . . . , xn}
Go to Step 1.
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Figure 13 shows the two possibilities for lifting. If variables x1 and x2 have
already been included in the constraint, and variable x3 is being tested for
inclusion, then it will also be added because |NC(x3) \ NC(x1)| ≥ 2 and x3 is
adjacent to x2.

12

3

Figure 11. Sequential lifting of vertices

5.3 Wheels and other inequalities

In 1997, Cheng and Cunningham[9] introduced wheels, new classes of valid
inequalities. They discuss the conditions in which wheels define facets and
provide some separation procedures. However, as we are looking for fast and
simple identification schemes, we have not included these procedures in our
algorithm. Some other facet-defining inequalities have been described for the
maximum independent sets: antiholes, webs, antiwebs[2], fans, grilles[8], but
no separation procedures have been developed for them.

6 Rounding LP solutions

In the branch and cut procedure we solve many linear problems and obtain
fractional solutions. Every time we have a fractional solution we try to get an
integer solution from it by using some kind of rounding procedure. Sometimes
this process improves the best feasible solution known so far. We have studied
several rounding strategies:

• Simple deterministic and non-deterministic procedures
A simple procedure consists of ordering the fractional variables in a non-

increasing order of values. We take the first variable on the list and round
it up to 1, taking all its adjacent variables from the list, and repeat the
step while there are still variables left. Usually there will be many ties, and
it is reasonable to break ties at random and repeat the procedures a given
number of iterations.
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Bertsimas and Vohra[4] propose a non-deterministic method. Each frac-
tional variable has a probability to be rounded up to 1:

P{xj = 1} = f(x∗
j) = 1 − (1 − x∗

j)
k, k = log|V | (15)

• Minimum regret rounding
Strijk et al.[34] study the Map Labelling Problem and reduce it to a

Maximum Independent Set Problem. They propose a new rounding strat-
egy based on a regret function. Denote by I the collection of all independent
sets in GPLP . Suppose we have a solution x ∈ PIS with some fractional com-
ponents. This solution is rounded by repeatedly choosing an independent
set I∈ I with 0 < xI < 1, rounding xI up to 1 and xN(I) down to 0, until x
is integral. N(I) denotes the set of neighbors of I. This rounding operation
defines a function f mapping x on a vector x′ ∈ PE using I:

f : PE × I → PE : (x, I) → x′, where x′
u =





1, if u ∈ I;

0, if u ∈ N(I);

xu, otherwise.

(16)

Given x ∈ PIS and I∈ I, then f(x, I) ∈ PIS. The regretfunction is the
difference in the objective function when we go from x to x′ and we look
for the minimum decrease, minimum regret, when choosing the set I for
rounding.

The best results have been obtained by using the minimum regret rounding
algorithm and it has been used in the current implementation of our proce-
dures.

7 Branching strategies

We have studied several strategies:

• Branching on variables
The fractional variable with its value nearest to 0.5 is chosen as the

branching variable and in the next level two new nodes are created. On
the left branch, the variable is fixed to 1, on the right branch the variable
is fixed to 0.

• Branching on constraints
The covering constraint whose slack is nearest to 0.5 is chosen as the

branching constraint. On the left branch, the constraint is set equal to 1,
on the right branch it is set equal to 0. It may happen that a solution is
fractional but all the covering constraints have a slack of 1 or 0. In that
case, we switch to branching on variables.

17



• Other branching strategies
We have considered the branching scheme proposed by Rossi and Smri-

glio[30] in their work on the Maximum Independent Set Problem. At any
node t of the search tree the branching constraints fix a set U t ⊆ V (Lt ⊆ V )
of variables to 1 (to 0). Hence, we are left with a problem with variables
V t = V \ (U t ∪Lt). Let ᾱ be the best known solution and let ᾱt = ᾱ− |U t|.
If we can certify that the problem in the node has a solution which is lower
than or equal to ᾱt, then the node can be fathomed. The branching rule
then goes as follows: Let us consider a set W t ⊆ V t for which it is possible
to prove that the problem on that set has a solution which is lower than or
equal to ᾱt, and let Zt = V t \W t. If the problem in the node has a solution
greater than ᾱt, every solution must contain at least one variable in Zt.
Each vi ∈ Zt defines a branch. Rossi and Smriglio propose a procedure to
build W t and reference other proposals for obtaining Zt.

Our preliminary computational experience showed that the application of
Rossi and Smriglio’s [30] strategy to our problem resulted on sets Zt which
were too large and enumeration trees which were too wide, with respect to
those obtained by branching on variables or by branching on constraints.
Therefore, in the implementation of our algorithms we do not consider that
alternative.

For CoverI, the search trees are very small and therefore branching on
variables and branching on constraints produce similar results. For the
instances of CoverII, the strategy of branching on constraints produces
smaller trees and is used in the final implementation.

8 Variable and constraint setting by logical implications

Depending on the branching strategy, some variables or constraints can be set
for the remaining subtree being explored.

• Branching on variables
If a variable xj is set to 1, its corresponding box is put into the solution,

so all the variables corresponding to boxes which cannot appear with it in a
solution with the required number of boxes are set to 0. That involves boxes
which would overlap with it, but also those involved in the considerations
of waste and dominance and in the symmetry considerations described in
Section 4.

• Branching on constraints
Suppose we are in a branch with a known waste U . If a covering constraint

is set to 0, it would induce a waste of u. Therefore, the remaining covering
constraints which, if set to 0, would produce a waste greater than U − u,
can be set to 1.
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9 Computational results

9.1 Implementation details

The branch and cut algorithm has been implemented using ABACUS (A
Branch And CUt System) developed by Thienel[35] for the implementation
of Branch and Bound algorithms which use linear relaxations of integer for-
mulations and which can be complemented with the dynamic generation of
cutting planes (Branch and Cut), column generation (Branch and Price), or
both (Branch and Cut and Price). For a revision of the work done with that
software, refer to Elf et al.[17]. ABACUS provides a system of abstract C + +
classes from which the necessary classes for a specific problem can be derived.

The algorithms have been coded in C + + and run on a PCPentiumIII at
850Mhz.

9.2 Results on Cover I

Set CoverI contains 7827 equivalence classes corresponding to instances with
solutions up to 50 boxes. These problems have already been solved by other
procedures and we have used them as a test bench to study different strategies
to be applied later to larger problems.

Many of the problems in CoverI are very easy, because the solution of a simple
constructive heuristic, the five-block heuristic, matches the value of a simple
lower bound based on the restricted pallet area. In fact, that is the case for
6736 classes and they are not considered further.

We apply our algorithm to the remaining 1091 problems. In 592 cases the
solution of the first linear relaxation provides the optimal solution, either
because the solution value is equal to the heuristic solution or because the
linear solution is integer. Therefore, we are left with 499 problems in which
some cutting planes and/or branching phases are required. In the remainder
of this subsection we will refer only to that subset.

The Tables will show the results of the different strategies according to the
number of nodes (#nodes) and CPU time (Time). Table 3 shows the perfor-
mance of different separation procedures, called only at root node:

• Cliques: looking only for clique inequalities
• Cycles: looking only for odd cycles obtained from a minimum weight span-

ning tree and lifting them
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• Holes: looking only for holes and lifting them
• Fast: looking for cliques and for odd cycles from the minimum spanning

tree, but lifting only promising cycles, that is, cycles for which the sum of
variables before lifting is at least 0.95 of the corresponding right hand side
of the constraint.

Cliques Cycles Holes Fast

Time Maximum 31,04 835,03 15188,22 104,9

Average 3,14 28,34 179,91 8,45

St. deviation 4,2 71,74 905,61 12,85

#Nodes Maximum 33 17 165 35

Average 3,77 1,93 2,17 2,45

St. deviation 3,56 2,27 7,82 3,04

Solved at the Root Node 209 399 422 349

Table 3

Cover I. Separation procedures

In Table 3 we can observe that the procedure based on identifying and lifting
holes solves most of the problems without resorting to branching, but it is
too time consuming. The strategy of looking only for Cliques is very fast on
these small problems, but for larger problems we think that we will need more
powerful separation procedures. The strategy we have called Fast seems to
achieve a reasonable balance between the separation and branching phases
of the algorithm. Using this strategy, in Table 4 we investigate the effect of
different types of edges in the solution graph:

• Overlapping: Edges avoiding overlapping between boxes
• Waste: Edges based on allowable waste in the solution
• Dominance: Edges based on dominance considerations
• All: All types of edges

We can see in Table 4 that the computational effort increases as we add
new types of edges. If we were looking for an efficient algorithm for CoverI
problems we would not include these new edges. However, the second half
of the Table, and particularly its last line, shows that many more problems
are solved either without branching or with search trees which are smaller on
average, and this will be very useful in larger problems.

Table 5 shows the results of three versions of the complete algorithm, using
all types of edges and the Fast separation procedure.

• Branch&Cut: Separation procedures are invoked at each node of the tree
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Overlapping Waste Dominance All types

Time Maximum 16,09 71,4 98,7 104,9

Average 1,38 4,48 5,48 8,45

St. deviation 1,63 6,37 8,92 12,85

#Nodes Maximum 25 27 25 35

Average 4,18 3,38 3,41 2,45

St.deviation 3,7 3,6 3,6 3,04

Solved at the Root Node 185 257 271 349

Table 4

Cover I. Different types of edges

while some violated inequalities are found.
• B&C2Iter: Separation procedures are invoked at each node of the tree, but

at most twice at each node.
• CuttingPlanes: Separation procedures are used only at the root node, while

some violated inequalities are found.

Branch&Cut B&C2iter CuttingPlanes

Time Maximum 344,83 137,1 104,9

Average 12,07 4,73 8,45

St.deviation 27,16 8,3 12,85

#Nodes Maximum 27 29 35

Average 1,95 2,51 2,45

St.deviation 2,09 2,19 3,04

Solved at the Root Node 349 259 349

Table 5

Cover I. Comparing algorithms

As Table 5 shows, it seems more efficient to limit the number of times the
separation procedures are called at each node, or to limit their use to the root
node. Both algorithms, B&C2iter and CuttingPlanes, are very efficient and
will be used for solving problems in CoverII.

9.3 Results on Cover II

This set of 40609 equivalence classes has not been completely explored before,
either by heuristic or by exact techniques. As was done with CoverI, we first
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separate those easy problems for which the results of the five-block heuristic
is proven to be optimal by a simple upper bound. That leaves us with 10764
problems. In a second step, we solve these problems with an elaborated heuris-
tic, G4 [31], and Nelissen’s upper bound [27] and only for 2433 problems is
the heuristic solution not proved to be optimal.

We then apply our algorithm to those 2433 non-easy problems. 2192 of them
are solved by the first linear solution, either because the solution value is equal
to the heuristic solution, or because the linear solution is integer. There are
then 241 hard problems left in which some cutting planes and/or branching
phases are necessary.

Table 6 contains the CPU times required by B&C2iter, CuttingPlanes and
CPLEX 7.0, a state-of-the-art commercial code for linear and integer pro-
gramming, on these 241 hard problems. Figure 12 allows a direct comparison
between B&C2iter and CPLEX7.0. Both algorithms share the same formula-
tion, described in Section 3, and the differences correspond to the effect of the
specific separation procedures we have developed for the problem with respect
to the powerful, but general purpose, problem-solving strategies included in
CPLEX. The last column of the Table shows that there are still some very
hard problems exceeding the time limit of 54000 seconds. It has been neces-
sary to impose a limit because preliminary computational tests showed that
in some isolated cases the time required could be extremely long. For exam-
ple, CPLEX took 1423508 seconds for solving instance (89,75,10,7). Taking
averages on the computing times and number of nodes is not possible because
not all the problems have been solved. Besides that, the averages would be
severely distorted by the existence of a few extremely high values. A measure
which can be calculated and gives a robust indication of the central values of
computing times and number of nodes is the median, which appears in Table
7.

B&C2iter CuttingPlanes CPLEX

T < 10 137 127 85

10′ < T < 1h 57 77 84

1h < T < 2h 18 10 24

2h < T < 5h 15 15 16

5h < T < 10h 8 5 12

10h < T < 15h 1 0 1

T > 15h 3 7 19

Table 6

Cover II. Comparing algorithms

If the limit of 54000 CPU seconds (15 hours) seems too high for practical
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purposes, Table 8 shows the number of unsolved problems for several upper
limits. Note that, in general, unsolved would mean that the optimality of the
best current solution has not been proven, because the search has not been
able to completely discard the existence of a solution with one more box than
that provided by the best current solution.
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Figure 12. Comparing CPU times on Cover II

Median

CPU Time Number of nodes

B&C2iter 436,44 15

CuttingPlanes 506,91 21

CPLEX 1268,62 82

Table 7

Cover II. Medians for the algorithms

Unsolved problems at the limit

1 hour 2 hours 5 hours 10 hours 15 hours

B&C2iter 48 30 15 7 3

CuttingPlanes 37 27 12 7 7

CPLEX 72 48 32 20 19

Table 8

Cover II. Unsolved problems

23



10 Conclusions

We have developed a branch and cut algorithm for solving optimally PLP
instances of up to 100 boxes. Problems of this size had not been exhaustively
studied to date by exact methods. The proposed versions of the algorithm are
shown to be able to solve almost all the 40609 equivalence classes contained in
CoverII, though a small subset of very hard problems would need extremely
long solution times. The algorithm combines previous knowledge of the prob-
lem with some new features. Beasley’s 0-1 formulation is adapted to the PLP,
adding new constraints and new reduction procedures for variables and con-
straints. The separation procedures are based on known valid inequalities for
the maximum independent set on the solution graph, but the definition of
this graph includes new types of edges, characteristic of the PLP, and the
procedures applied to odd cycle identification are tailored to this problem.
This combination of known and new elements proves to work efficiently for
the target set of the study. In the near future, we will try to apply some of
these ideas to more general packing problems.

11 Appendix: Maximum waste at each quarter

1) The waste in quarter A, UA ≤
U

4
.

Proof:

Let us suppose that there is a solution with UA >
U

4

Then U − UA <
3U

4
⇒

U − UA

3
<

U

4
⇒ ∃ quarter with waste <

U

4
By symmetry A will be this quarter.

1.1) If L even and W even: UA ≤
⌊
U

4

⌋

Proof:

Let us suppose that UA >
⌊
U

4

⌋

As L even and W even, UA is integer and then UA ≥
⌊
U

4

⌋
+ 1

Hence, U − UA ≤ U −
⌊
U

4

⌋
− 1 < U −

U

4
=

3U

4

As U − UA is integer, U − UA ≤
⌊
3U

4

⌋
→

U − UA

3
≤

⌊
3U
4

⌋/

3 ⇒

we can write: U = 4a + b , b < 4 where a =
⌊
U

4

⌋
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Therefore, 3U = 12a + 3b

Dividing by 4 and rounding down to the nearest integers:
⌊
3U

4

⌋
= 3a +

⌊
3b

4

⌋

If we divide by 3:

⌊
3U

4

⌋/
3 = a +

⌊
3b

4

⌋/
3 =





a if b = 0

a if b = 1

a + 1
3

if b = 2

a + 2
3

if b = 3

Hence
⌊⌊

3U

4

⌋/
3
⌋

=
⌊
U

4

⌋
and

U − UA

3
≤

⌊
3U

4

⌋/
3

There is at least 1 quarter with
⌊
U − UA

3

⌋
≤

⌊⌊
3U

4

⌋/
3
⌋

=
⌊
U

4

⌋

By symmetry, this quarter will be A.

1.2) If L even or W even: UA =
⌊
U

4

⌋

0.5

(where ⌊⌋0.5 means rounding down to the nearest multiple of de 0.5)
Proof:

If UA >
⌊
U

4

⌋

0.5
→ UA ≥

⌊
U

4

⌋

0.5
+

1

2

U − UA ≤ U −
⌊
U

4

⌋

0.5
−

1

2
< U −

U

4
=

3U

4

As U ∈ Z and UA = ⌊UA⌋0.5 because L or W even → U − UA ≤
⌊
3U

4

⌋

0.5

U − UA

3
≤

⌊
3U

4

⌋

0.5

/
3

At least one quarter with
⌊
U − UA

3

⌋

0.5
≤

⌊⌊
3U

4

⌋

0.5

/
3
⌋

0.5

=
⌊
U

4

⌋

0.5

2) The waste in the second quarter B, UB ≤
U

2
.

This waste corresponds to the left side of the pallet.

3) The waste in the third quarter C, UC ≤
⌈
3

4
U − 1

⌉
+

1

4
Proof:

If UC >
⌈
3

4
U − 1

⌉
+

1

4
→ UC ≥

⌈
3

4
U − 1

⌉
+

1

2

Therefore, U − UC ≤ U −
⌈
3

4
U − 1

⌉
−

1

2
= ∆
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Let us see the value of ∆:

Let U = 4a + b (b < 4), where a =
⌊
U

4

⌋

3U = 12a + 3b

3U

4
= 3a +

3

4
b →

3U

4
− 1 = 3a − 1 +

3

4
b →

⌈
3U

4
− 1

⌉
= 3a − 1 +

⌈
3

4
b
⌉

⌈
3U

4
− 1

⌉
+

1

2
= 3a −

1

2
+

⌈
3

4
b
⌉

∆ = U −
(⌈

3U

4
− 1

⌉
+

1

2

)
= (4a + b) −

(
3a −

1

2
+

⌈
3

4
b
⌉)

=

= a +
1

2
+

(
b −

⌈
3

4
b
⌉)





b −
⌈

3
4
b
⌉

= 0 → if b = 0

b −
⌈

3
4
b
⌉

= 0 → if b = 1

b −
⌈

3
4
b
⌉

= 0 → if b = 2

b −
⌈

3
4
b
⌉

= 0 → if b = 3

Therefore, ∆ = a +
1

2
=

⌊
U

4

⌋
+

1

2
and, U − UC ≤ ∆ = ⌊

U

4
⌋ +

1

2

The waste in the other 3 quarters is lower than or equal to⌊
U

4
⌋ +

1

2
3.1) If L and W even, the waste in C must be integer.

Therefore, U − UC ≤
⌊
U

4

⌋

that is, the waste in the other 3 quarters would be at most⌊
U

4
⌋

By horizontal symmetry: C ↔ D and A ↔ B,

we can obtain a valid solution with UA ≤ ⌊
U

4
⌋ and UC ≤

⌈
3

4
U − 1

⌉
+

1

4
3.2) L odd, W even (there may be a fractional waste of 0.5 in C).

If UC >
⌈
3

4
U − 1

⌉
+

1

4
, then U − UC ≤ ∆ = ⌊

U

4
⌋ +

1

2

The waste in the other 3 quarters is lower than or equal to⌊
U

4
⌋ +

1

2
.

If U − UC = ⌊
U

4
⌋ we are in case (3.1).

If U − UC = ⌊
U

4
⌋ +

1

2
there is at least a waste of

1

2
in quarter A.

Therefore, UB ≤ ⌊
U

4
⌋. With an horizontal symmetry we obtain

a solution with UC ≤ ⌊
3

4
U − 1⌋ +

1

4
satisfying UA ≤ ⌊

U

4
⌋.

3.3) L even, W odd.
The same argument of previous case with a waste of 1

2
in quarter D.

3.4) L, W odd (there may be a fractional waste of 0.25 in C)

If UC >
⌈
3

4
U − 1

⌉
+

1

4
, then U − UC ≤ ∆ = ⌊

U

4
⌋ +

1

2
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The waste in the other 3 quarters is lower than or equal to ⌊
U

4
⌋ +

1

2

If U − UC = ⌊
U

4
⌋ +

1

2
there is either a waste of

1

2
in quarter A or D

or a waste of
1

4
in quarter A and

1

4
in quarter D.

In both cases, UB ≤ ⌊
U

4
⌋. With an horizontal symmetry we obtain

a solution with UC ≤ ⌈
3

4
U − 1⌉ +

1

4
satisfying UA ≤ ⌊

U

4
⌋

4) Obviously, in the last quarter D, UD ≤ U .
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