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Tel. +34.96.364.3560 (direct), +34.96.386.4362 (office).
Fax +34.96.364.3560 (direct), +34.96.386.4735 (office).
Internet: jose.m.bernardo@uv.es, Web: http://www.uv.es/˜bernardo/

Typesetted on October 3, 2002
To appear at Internat. Statist. Rev.

A Bayesian Approach to some Cryptic Issues
on the Nature of Statistical Inference
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SUMMARY

This note summarizes the basic argument for a Bayesian approach to statistical inference and, from that
perspective, provides a possible answer to each of the fourteen ‘cryptic’ issues on the nature of statistical
inference formulated by Sir David Cox within his 1997 Bernoulli Lecture at the University of Groningen.
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ANALYSIS.

On the occasion of his 1997 Bernoulli Lecture at Groningen University (The Netherlands),
Sir David Cox exercised his usual wit to propose consideration of 14 cryptic issues on the
nature of statistical inference. A group of scholars (Kardaun et al., 2002) formulated some sort
of commmunis opino on these matters from a traditional, mostly frequentist, viewpoint. In a
somewhat telegraphic style, a possible alternative approach to those issues is described below
from very different viewpoint. In Section 1, some required foundational points are discussed;
Section 2 contain a possible Bayesian approach to the 14 issues discussed.

1. FOUNDATIONS

(i) Bayesian decision theory . Established on a solid mathematical basis, Bayesian decision
theory provides a privileged platform to coherently discuss basic issues on statistical inference.
Indeed, even from a strictly frequentist perspective, most purely inferential problems are best
analyzed as decision problems under uncertainty. Thus, for data z ∈ Z whose probabilistic
behaviour is assumed to be described by some probability model {p(z |θ),θ ∈ Θ}, any sta-
tistical procedure may be identified with some (possibly complicated) function t = t(z) ∈ T
(where T may well be a function space). Obvious examples include a point estimator, a con-
fidence region, a test procedure or a posterior distribution. For each particular procedure, it
should be possible to define a loss function L{t(z),θ} which somehow measures the ‘error’
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committed by the procedure as a function of θ. Usual loss functions include the quadratic
loss L{θ̃,θ} = (θ̃ − θ)′(θ̃ − θ) associated to a point estimator θ̃ and the logarithmic loss
L{πθ(. |z),θ} = − log[π(θ |z)] associated to a posterior density πθ(. |z).

Conditional on observed data z, the Bayes procedure tb(z) which corresponds to a proper
prior π(θ) is that minimizing the corresponding posterior loss

tb(z) = arg inf
t∈T

∫
Θ
L{t(z),θ}π(θ |z) dθ, π(θ |z) ∝ p(z |θ)π(θ).

A procedure t∗(z) is a generalized Bayes procedure if there exists a sequence {πn(θ)} of proper
priors yielding a sequence of Bayes procedures {tbn(z)} such that t∗(z) = limn→∞ tbn(z).

(ii) Admissibility Conditional on θ and considered as a function of the data z, the loss function
L{t(z),θ} is a random quantity, whose expectation (under repeated sampling),

Rt(θ |L) = Ez | θ[L{t(z),θ}] =
∫
Z
L{t(z),θ} p(z |θ) dz,

provides a a description of the average risk involved in using the procedure t = t(z) as a
function of the unknown parameter vector θ. A relatively small average risk Rt(θ |L) with
respect to reasonable loss functions L is certainly a necessary condition for the procedure t to
be sensible, but it is hardly sufficient: the procedure may well have an unacceptable behaviour
with specific data z and yet produce an small average risk, either because those data are not
very likely, or because errors are somehow averaged out.

When comparing the risks associated to two alternative procedures designed to perform
the same task, it may well happen that (with respect to a particular loss function L) a pro-
cedure t1(z) is uniformly better than another procedure t2(z) in the sense that ∀θ ∈ Θ,
Rt1(θ |L) < Rt2(θ |L); it is then said that t2(z) is dominated by t1(z), and t2(z) is de-
clared to be inadmissible with respect to that loss function. A crucial, too often ignored result
(Savage, 1954; Berger, 1985, Ch. 8, and references therein) says however that, under suitable
regularity conditions, a necessary and sufficient condition for a procedure to be admissible is
to be a generalized Bayes procedure. It follows that, even from a purely frequentist viewpoint,
one should strive for (generalized) Bayes procedures.

(iii) Objective Bayesian Procedures As Kardaun et al. (2002) (and many people before them)
point out, one role of statistical theory is to provide a broadly acceptable framework of concepts
and methods which may be used to provide a ‘professional’ answer. If it may reasonably
be assumed that the probability model {p(z |θ),θ ∈ Θ} encapsulates all objective available
information on the probabilistic structure of the data, then such a professional answer should
not depend on a subjectively assessed prior π(θ). Note, that structural assumptions on the data
behaviour (such as partial exchangeability) are easily accommodated within this framework;
one would then have some form of hierarchical model, {p(z |φ), π(φ |θ)}, where θ would
be a hyperparameter vector, p(z |θ) =

∫
Φ p(z |φ)π(φ |θ) dφ would be the corresponding

‘integrated’ model, and a prior π(θ) would be required for the original hyperparameters.

An objective Bayesian procedure to draw inferences about some quantity of interest φ =
φ(θ), requires an objective ‘non-informative’ prior (‘objective’ in the precise sense that it ex-
clusively depends on the the assumed model {p(z |θ),θ ∈ Θ} and the quantity of interest),
which mathematically describes lack on relevant information about the quantity of interest φ.
The statistical literature contains a number of requirements which may be regarded as neces-
sary properties of any algorithm proposed to derive these ‘baseline’ priors; those requirements
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include general applicability, invariance under reparametrization, consistent marginalization,
and appropriate coverage properties. The reference analysis algorithm, introduced by Bernardo
(1979b) and further developed by Berger and Bernardo (1992), provides a general method to
derive objective priors which apparently satisfies all these desiderata, and which is shown to
contain many previous results (e.g., maximum entropy and univariate Jeffreys’ rule) as particular
cases.

Reference priors are defined as a limiting form of proper priors (obtained by maximiza-
tion of an information measure), and are shown to yield generalized Bayes procedures. Thus,
reference analysis may be used to obtain objective Bayesian solutions which show both appro-
priate conditional properties (for they condition on the actual, observed data) and an appealing
behaviour under repeated sampling (for they are typically admissible).

2. THE CRYPTIC ISSUES

A possible Bayesian answer is now provided to each of the fourteen issues under discussion.
Unless otherwise indicated, the statements made are valid whatever the procedure used to specify
the prior: objective (model-based), or subjectively assessed.

1. How is overconditioning to be avoided? Both overconditioning and overfitting are aspects
of inappropriate model choice. Model choice is best described as a decision problem where
the action space is the class of models {Mi ∈ M} which one is prepared to consider, and
its solution requires specifying a loss function which measures, as a function of the quantity
of interest φ, the consequences L(Mi,φ) of using a particular model Mi within the specific
context one has in mind.

For instance, if given a random sample z = {x1, . . . , xn} one is interested in prediction of
a future observation x, an appropriate loss function might be written in terms of the logarithmic
scoring rule, so that L{Mi, x} = − log{pi(x | z)}, and the best available model would be that
which minimizes withinM the corresponding (posterior) expected loss,

L(Mi |z) =
∫
X
L{Mi, x} p(x |z) dx = −

∫
X
p(x |z) log{pi(x | z) dx,

a predictive cross-entropy. Since the true model, and hence the true predictive density p(x |z),
are not known, some form of approximation is necessary; direct Monte Carlo approximation to
the integral above leads to

L(Mi |z) ≈ −
1
n

n∑
j=1

log{pi(xj | zj), zj = z − {xj},

closely related to cross-validation techniques; (for details, see Bernardo and Smith, 1994, Ch. 6).

2. How convincing is the likelihood principle? An immediate consequence of Bayes theorem
is that, conditional to a given prior π(θ), the posterior distributions obtained from proportional
likelihoods are identical. In this limited sense, the likelihood ‘principle’ is an obvious con-
sequence of probability theory, and any statistical procedure which violates this should not be
trusted. That said, there are many statistical problems which require consideration of the sample
space and will, therefore, typically yield different answers for different models, even if those
happen to yield proportional likelihood functions. Design of experiments, a decision problem
where the best experiment within a given class must be chosen, or prediction problems, where
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the predictive posterior distribution of some future observables must be found, are rather obvi-
ous examples. The likelihood principle should certainly not be taken to imply that the sample
space is irrelevant.

Objective Bayesian inference in another example where the sample space matters. The
reference prior is defined as that which maximizes the missing information about the quantity
of interest which could be provided by the experiment under consideration; thus, different
probability models, even those with proportional likelihood functions, will generally yield
different reference priors. For instance, the reference prior which corresponds to binomial
sampling is π∗(θ) ∝ θ−1/2(1 − θ)−1/2, but the reference prior which corresponds to inverse
binomial sampling is π∗(θ) ∝ θ−1(1 − θ)−1/2, a difference which reflects the fact that in the
second case one is implicitly assuming that one success will eventually be observed; for details,
see Bernardo and Smith, 1994, Ch. 5.

3. What is the role of probability in formulating models where hypothetical repetition is hard
to envisage? Probability is a measure on degree of rational belief conditional on any available
information. This concept of probability does not require symmetries or hypothetical repetitions,
although it obviously will take these into account as relevant information when available.

We certainly agree with the statement by Kardaun et al. (2002) that algorithms ‘should work
well with simulated data’. Indeed, when teaching Bayesian methods, it is important to display the
results from simulated data for the student to see that, as one would certainly expect, the posterior
density of any parameter concentrates around its true value, or the predictive distribution of
a future observation approaches the true model. That said, the frequentist interpretation of
probability is simply too narrow for many important applications of statistics. Probability may
always be interpreted in its epistemological sense in ordinary language: as a conditional measure
or rational belief.

4. Should nonparametric and semiparametric formulations be forced into a likelihood-based
framework? Nonparametrics is something of a misnomer. When a model is assumed to be of
the form {p(z |θ),θ ∈ Θ} nothing is said about the nature of the parameter space Θ, which may
well label, say, the class of all absolutely continuous densities of z ∈ Z . It is just a convention
to call ‘parametric’ those problems where Θ ⊂ �k, so that θ is a vector of finite dimension k.
Whether or not it is better to use a ‘nonparametric’ (infinitely dimensional) formulation, certainly
more general but requiring a prior distribution defined on a function space, than it is to work
with a model labeled by a parameter with finite dimension is just another example of a problem
of model choice, to which the comments in (i) above are directly relevant.

5. Is is fruitful to treat inference and decision analysis somewhat separately? At a foundational
level certainly it is not: decision analysis provides the coherent framework which guarantees
that no inconsistencies and/or obviously wrong answers (a negative unbiased estimate of a
probability, or a 95% confidence region for a real-valued quantity which happens to be the
entire real line, say), will be derived. For an interesting collection of counterexamples to
conventional frequentist methods see Jaynes (1976) and references therein.

That said, it is important to formalize those situations where ‘pure’ inference is of interest,
as opposed to specific (context dependent) decision problems. This is easily done however
within the context of decision analysis: for instance, pure, abstract inference on the value of θ
may be described a decision problem on the best way to describe the posterior uncertainty on
the value of θ, where the value of the consequences are described with an information measure
(Bernardo, 1979a). The simple decision-theoretical formulation of most text-book statistical
procedures is well known: point estimation is best seen as a decision problem where the action
space is the parameter space; testing a null hypothesisH0 ≡ {θ ∈ Θ0} is best seen as a decision
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problem on whether or not to work as if θ ∈ Θ0. Practical application of these ideas require
however the identification of appropriate loss functions; for some new ideas in this area, see
Bernardo and Rueda (2002) and Bernardo and Juárez (2003).

6. How possible and fruitful is to treat qualitatively uncertainty not derived from statistical
variability? In statistical consulting one is routinely forced to consider uncertainties which are
not derived from statistical variability, and hence ‘professional’ statistical answers must be able
to deal with them. This is naturally done within a Bayesian framework, and simply cannot be
done within a frequentist framework. Other approaches to quantify uncertainty (belief functions,
discord,...) have so far failed to provide a consistent mathematical framework which could be
used instead of probability theory to measure and to operate with uncertainty.

7. Are all sensible probabilities ultimately frequency based? Although one could certainly use a
different word than probability for a rational degree of belief (say ‘credence’ or ‘verisimilitude’)
this is not really needed: mathematically, probability is a well-defined concept, a measure
function endowed with certain properties, and the foundations of decision theory prove that
degrees of belief must have this mathematical structure; hence they are probabilities in the
mathematical sense of the word.

That said, the important frequentist interpretation of probability models based on the concept
of exchangeability (de Finetti, 1937; Hewitt and Savage, 1955; Bernardo and Smith, 1994,
Ch. 4) is often neglected: all random samples are necessarily exchangeable and, by virtue
of the probability theory-based general representation theorem, the parameter identifying the
model which describes its probabilistic behaviour is defined in terms of the long-term behaviour
of some function of the observations. Thus, a set of exchangeable Bernoulli observations is
necessarily a random sample of dichotomous observations with common parameter θ, defined
as the long-term limit of the relative frequency of successes.

The representation theorem further establishes the existence of a prior π(θ) for the parame-
ter, so that (whenever one has exchangeable observations, and—to insist—all random samples
are exchangeable) the frequently heard sentence ‘there is no prior distribution’ is simply incom-
patible with probability theory.

8. Was R. A. Fisher right to deride axiomatic formulations in statistics? If he did, he was
entirely wrong. Ever since classical Greece, mathematicians have strived to provide axiomatic
foundations on their subject as a guarantee of self-consistency. By the early 20th century this
process had been completed in all mathematical branches (including probability theory) except
mathematical statistics. No wonder that contradictions arose in conventional statistics, and no
surprise at the often derogatory attitude of mathematicians to mathematical statistics, too often
presented as an ‘art’ where contradictions could be acknowledged and were to be decided by
the wit of the ‘artist’ statistician.

To argue that axiomatics ‘ought not to be taken seriously in a subject with real applications
in view’ (is geometry void of real applications?), just because new concepts might be necessary
is to ignore how science progresses. A paradigm is obviously only valid until it cannot explain
new facts; then a new, self-consistent paradigm must be found (Kuhn, 1962). The frequentist
paradigm is simply not sufficient for present day applications of statistics; at least today, the
Bayesian paradigm is.

It may well be that alternative axiomatic basis for mathematical statistics are possible beyond
that provided by decision theory (which leads to a Bayesian approach), although none has been
presented so far. But, whether or not alternatives appear, statistical inference should not be
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deprived of the mathematical firmware provided by sound foundations; or would anyone trust
an architect trying to build a beautiful house on shaky foundations?

9. How can randomization be accommodated within statistical theory? Randomization is
not necessary for a single decision maker: if a1 and a2 (which may well be two alternative
designs) have expected utilities U(a1 |z) and U(a2 |z), the randomized action which takes a1
with probability γ and a2 with probability 1 − γ, (0 ≤ γ ≤ 1) has an expected utility given
by γU(a1 |z) + (1 − γ)U(a2 |z), so that randomization for a single decision maker could
apparently only be optimal if U(a1 |z) = U(a2 |z) and then only as good as a non-randomized
action. The situation is however very different if more than one decision maker is involved.
As suggested by Stone (1969), randomization becomes optimal if the decision maker takes into
account that he/she has to convince other people, not just him/her self. For details, see Berry
and Kadane (1997).

10. Is the formulation of personalistic probability by de Finetti and Savage the wrong way
round? Kardaun et al. (2002) (and, again, many before them) suggest that there are no com-
pelling reasons for epistemic probabilities to behave as mathematical probabilities. Yet, it is
difficult to imagine something more compelling than a mathematical proof; it is not simply that
it makes intuitive sense to use probabilities: the fact is that behaviour of epistemic probabilities
as mathematical probabilities follows from rather intuitive axioms on coherent behaviour. Kar-
daun et al. (2002) seem to be happy with the rather obvious inconsistencies of the conventional
paradigm when they say ‘the incoherent behaviour thus displayed will hopefully lead to a higher
degree of verisimilitude than the coherent behaviour...’(!); one is lead to wonder how would they
react when approached by a car salesman who admits that the car he suggests gets bad mileage
both in town conditions and in road conditions, only to claim that it gets a good mileage overall.

11. How useful is a personalistic theory as a base for public discussion? If by personalistic it is
meant subjective, not much (although it will have the merit of making explicit peoples’ assump-
tions, which is more than one often gets from public discussion). However, if by personalistic
one merely means epistemic probability, i.e., probabilities interpreted as rational degrees of
belief conditional only to whatever ‘objective’ (often meaning intersubjective) assumptions one
is prepared to make, then this is precisely the base for public discussion. And this is precisely
the type of result that objective Bayesian methods provide.

Indeed, in any given experimental situation, the scientist typically wants to make an infer-
ential claim, say the result t(z) of a statistical procedure, conditional on any assumptions made,
and given the observed data z. What might have happened had other data z ∈ Z been obtained
might relevant to calibrate the procedure (see Section 1 above); however, what is actually re-
quired to describe the inferential content of the experimental results is a measure on the degree
of rational belief on the conclusion advanced, not a measure of the behaviour of the procedure
under repeated sampling.

As Kardaun et al. (2002) write, ‘statisticians are hired... to make scientifically sound
statistical inferences in the light of data and in spite of some unavoidable uncertainty’. However,
this is precisely what objective Bayesian methods do, but frequentist computations do not.

12. In a Bayesian formulation should priors be constructed retrospectively? From a subjec-
tivist viewpoint construction may proceed either way, provided all conditioning operations are
properly done: one may directly assess the posterior distribution! However, subjective proba-
bility assessment is a very hard task, and any appropriate mechanism such as Bayes theorem or
extending the conversation to include other variables, should be used to help in completing the
task.
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Note, however, that if one is directly interested in objective Bayesian methods the question
does not arise. Given dataz ∈ Z and model{p(z |θ),θ ∈ Θ}, the priorπ∗φ(θ) required to obtain
a reference posterior distribution π∗(φ |z) for a particular quantity of interest φ = φ(θ), that
which maximizes the missing information about the value of φ, is a well-defined mathematical
function of the probability model {p(z |θ),θ ∈ Θ} and the quantity of interest φ(θ).

13. Is the only justification of much current Bayesian work using rather flat priors the generation
of (approximate) confidence limits? or do the various forms of reference priors have some other
viable justification? In their discussion of this issue, Kardaun et al. (2002) have unfortunately
chosen to ignore over 30 years or research: what they write could have been written as part
of one of the many discussions on this topic published in the 60’s and 70’s. We do not have
space here to describe the basics of Bayesian objective methods, let alone to document the huge
relevant literature. For a textbook level description of some objective Bayesian methods see
Bernardo and Smith (1994, Ch. 5); for critical overviews of the topic, see Kass and Wasserman
(1996), Bernardo (1997), references therein and ensuing discussion.

Reference analysis has been mentioned in Section 1 as an advanced procedure to derive
objective priors (which, except for location parameters, are certainly not ‘flat’). Just to give a
hint of the ideas behind, the basic definition of reference priors in the one-parameter case is
quoted below.

The amount of information Iθ{Z, πθ(.)}which an experiment yielding data z ∈ Z may be
expected to provide about θ, a function of the prior πθ(.), is (Shannon, 1948)

Iθ{Z, πθ(.)} =
∫
Z
p(z)

∫
Θ
π(θ |z) log

π(θ |z)
π(θ)

dθdz.

If this experiment were continuously replicated, the true value of θ would eventually be learnt.
Thus, the amount of information to be expected from k replicates of the original experiment,
Iθ{Zk, πθ(.)}, will converge (as k →∞) to the missing information about θ associated to the
priorπθ(.). Intuitively, the reference priorπ∗θ(.) is that which maximizes the missing information
about θ within the class of priors compatible with accepted assumptions.

Formally, if P is the class of accepted priors in the problem considered (which may well
be the class of all priors), the reference posterior π∗(θ |z) is defined by

π∗(θ |z) = limπk(θ |z),

where the limit is taken in the (information) sense that

lim
k→∞

∫
Θ
πk(θ |z) log

πk(θ |z)
π(θ |z) dθ = 0,

and where πk(θ |z) ∝ p(z | θ)πk(θ) is the posterior which corresponds to the prior

πk(θ) = arg sup
π(θ)∈P

Iθ{Zk, π(θ)}.

maximizing in P the amount of information to be expected from k replicates of the original
experiment. Finally, a reference ‘prior’ is any positive function π∗(θ) such that

π∗(θ |z) ∝ p(z | θ)π∗(θ),

so that the reference posterior may be simply obtained by formal use of π∗(θ) as a (typically
improper) prior.
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It may be proved that if the parameter space Θ is finite this leads to maximum entropy
and if Θ is non-countable, p(z | θ) regular and P is the class of all strictly positive priors, this
leads to (univariate) Jeffreys’ prior. Problems with many parameter are shown to reduce to a
sequential application of the one parameter algorithm (and this does not lead to multivariate
Jeffreys’ rule). For key developments in the theory of reference analysis, see Bernardo (1979b)
and Berger and Bernardo (1992); for a simple introduction see Bernardo and Ramón (1998).

14. What is the role in theory and in practice of upper and lower probabilities? Upper and
lower probabilities have been important players in the theoretical search for descriptions of
uncertainty which might provide an alternative (or a generalization) to the use of probability
theory for this purpose. For instance, proponents of ‘knowledge-based expert systems’ have
argued that (Bayesian) probabilistic reasoning is incapable of analyzing the loosely structured
spaces they work with, and that novel forms of quantitative representations of uncertainty are
required. However, alternative proposals, which include ‘fuzzy logic’, ‘belief functions’ and
‘confirmation theory’ are, for the most part, rather ad hoc and have so far failed to provide a
general alternative. For some interesting discussion on this topic, see Lauritzen and Spiegelhalter
(1988).

Any acceptable approach to statistical inference should be quantitatively coherent. The
question of whether quantitative coherence should be precise or allowed to be imprecise is
certainly an open, debatable one. We note, however, that it is possible to formalize imprecision
within the Bayesian paradigm by simultaneously considering all probabilities compatible with
accepted assumptions. This ‘robust Bayesian’ approach is reviewed in Berger (1994).

REFERENCES
Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Berlin: Springer.
Berger, J. O. (1994). A review of recent developments in robust Bayesian analysis. Test 3, 5–124., (with discussion).
Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors. Bayesian Statistics 4 (J. M. Ber-

nardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford: University Press, 35–60 (with discussion).
Bernardo, J. M. (1979a). Expected information as expected utility. Ann. Statist. 7, 686–690.
Bernardo, J. M. (1979b). Reference posterior distributions for Bayesian inference. J. Roy. Statist. Soc. B 41, 113–

147 (with discussion). Reprinted in Bayesian Inference (N. G. Polson and G. C. Tiao, eds.), Brookfield, VT:
Edward Elgar, (1995), 229–263.

Bernardo, J. M. (1997). Noninformative priors do not exist. J. Statist. Planning and Inference 65, 159–189 (with
discussion).

Bernardo, J. M. and Juárez, M. (2003). Intrinsic Estimation. Bayesian Statistics 7 (J. M. Bernardo, M. J. Bayarri,
J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.). Oxford: University Press, (to
appear).

Bernardo, J. M. and Ramón, J. M. (1998). An introduction to Bayesian reference analysis: inference on the ratio
of multinomial parameters. The Statistician 47, 1–35.

Bernardo, J. M. and Rueda, R. (2002). Bayesian Hypothesis Testing: A Reference Approach. Internat. Statist.
Rev. 70, (to appear).

Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian Theory. Chichester: Wiley.
Berry, S. M. and Kadane J. B. (1997). Optimal Bayesian randomization. J. Roy. Statist. Soc. B 59, 813–819.
de Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré 7, 1–68.

Reprinted in 1980 as ‘Foresight; its logical laws, its subjective sources’ in Studies in Subjective Probability
(H. E. Kyburg and H. E Smokler, eds.). New York: Dover, 93–158.

Jaynes, E. T. (1976). Confidence intervals vs. Bayesian intervals. Foundations of Probability Theory, Statistical
Inference and Statistical Theories of Science 2 (W. L. Harper and C. A. Hooker eds.). Dordrecht: Reidel,
175–257 (with discussion).

Hewitt, E. and Savage, L. J. (1955). Symmetric measures on Cartesian products. Trans. Amer. Math. Soc. 80,
470–501.



J. M. Bernardo. Cryptic Issues on Statistical Inference: A Bayesian View 9

Kardaun, O. J., Salomé, D., Schaafsma, A. G. M., Willems, J. C. and Cox, D. R. (2002). Reflections on fourteen
cryptic issues concerning the nature of statistical inference, Internat. Statist. Rev. 70, (in this issue).

Kass, R. E. and Wasserman, L. (1996). The selection of prior distributions by formal rules. J. Amer. Statist. Assoc. 91,
1343–1370.

Kuhn, T. S. (1962). The Structure of Scientific Revolution. Chicago: Phoenix Books.
Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures, and

their application to expert systems. J. Roy. Statist. Soc. B 50, 157–224 (with discussion).
Savage, L. J. (1954). The Foundations of Statistics. New York: Wiley. Second ed. in 1972, New York: Dover.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Tech. J. 27 379–423 and 623–656.

Reprinted in The Mathematical Theory of Communication (Shannon, C. E. and Weaver, W., 1949). Urbana,
IL.: Univ. Illinois Press.

Stone, M. (1969). The role of experimental randomization in Bayesian statistics: Finite sampling and two Bayesians.
Biometrika 56, 681–683.


