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Universitat de València, Spain
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SUMMARY

In this paper the problem of parametric point estimation is addressed from an objective Bayesian view-
point. Arguing that pure statistical estimation may be appropriately described as a precise decision
problem where the loss function is a measure of the divergence between the assumed model and the
estimated model, the information-based intrinsic discrepancy is proposed as an appropriate loss func-
tion. The intrinsic estimator is then defined as that minimizing the expected loss with respect to the
reference posterior distribution. The resulting estimators are shown have attractive invariance proper-
ties. As demonstrated with illustrative examples, the proposed theory either leads to new, arguably better
estimators, or provides a new perspective on well-established solutions.
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1. INTRODUCTION

It is well known that, from a Bayesian viewpoint, the final result of any problem of statistical
inference is the posterior distribution of the quantity of interest. However, in more than two
dimensions, the description (either graphical or analytical) of the posterior distribution is difficult
and some “location” measure is often required for descriptive purposes. Moreover, there are
many situations where a point estimate of the quantity of interest is specifically needed (and
often even legally required) as part of the statistical report; simple examples include quoting the
optimal dose of a drug per kg. of body weight, or estimating the net weight of a canned food.

The universally agreed Bayesian approach to point estimation formulates the problem as a
decision problem where the action space is the set of possible values of the quantity of interest.
For each loss function and prior distribution on the model parameters, the Bayes estimator is
obtained as that which minimizes the corresponding posterior expected loss. It is well known
that the solution may dramatically depend both on the choice of the loss function and on the
choice of the prior distribution.

In practice, in most situations where point estimation is of interest, an objective point
estimate of the quantity of interest is actually required: objective in the very precise sense of
exclusively depending on the assumed probability model (i.e., on the conditional distribution of
the data given the parameters) and the available data. Moreover, in purely inferential settings
(where interest focuses on the actual mechanism which goveres the data) this estimate is typically
required to be invariant under one-to-one transformations of either the data or the parameter



2

space. In this paper an information-theory based loss function is combined with reference
analysis to propose an objective Bayesian approach to point estimation which satisfies those
desiderata.

In Section 2, the standard Bayesian formulation of point estimation as a decision problem
is recalled and its conventional “automatic” answers are briefly discussed. Section 3 presents
the methodology proposed. A number of illustrative examples are given in Section 4. Finally,
Section 5 contains some final remarks and suggests areas for additional research.

2. THE FORMAL DECISION PROBLEM

Let {p(x |θ),x ∈ X,θ ∈ Θ} be a probability model assumed to describe the probabilistic
behavior of the observable data x, and suppose that a point estimator θe = θe(x) of the
parameter θ is required. It is well known that this problem may appropriately be formulated
as a decision problem under uncertainty where the action space is the class A = {θe ∈ Θ} of
possible parameter values. In a purely inferential setting, the optimal estimate θ∗ is supposed to
identify the best proxy, p(x |θ∗), to the unknown probability model, p(x |θa), where θa stands
for the actual (unknown) value of the paremeter.

Let l(θe,θa) be a loss function measuring the consequences of estimating θa by θe. In
a purely inferential context l(θe,θa) should measure the consequences of using the model
p(x |θe) instead of the true, unknown model p(x |θa). For any loss function l(θe,θa) and
(possibly improper) prior p(θ), the Bayes estimator θb = θb(x) of the parameter θ is that
minimizing the corresponding posterior loss, so that

θb(x) = arg min
θe∈Θ

∫
Θ
l (θe,θ) p (θ |x) dθ, (1)

where p (θ |x) ∝ p(x |θ)p(θ) is the posterior distribution of the parameter vector θ.

A number of conventional loss functions have been proposed in the literature, and its
associated Bayes estimators are frequently quoted in Bayesian analysis:

Squared loss. If the loss function is quadratic, of the form (θe − θ)tH(θe − θ), whereH
is a (known) positive definite matrix, then the posterior expected loss is minimized by the
posterior mean E[θ |x] if this exists, which is then the Bayes estimator.

Zero-one loss. If the loss function takes the value zero if θe belongs to a ball of radius
ε centered at θ, and the value one otherwise, then the Bayes estimator tends towards the
posterior mode Mo[θ |x] as ε→ 0, if the mode exists and is unique.

Absolute value loss. If θ is one-dimensional, and the loss function is of the form c |θe− θ|,
for some c > 0, then the Bayes estimator is the posterior median Me[θ |x].

Neither the posterior mean nor the posterior mode are invariant under one-to-one transfor-
mations of the parameter of interest; yet, a solution where θe is declared to be the best estimator
of θa, but where φ(θe) is declared not to be the best estimator for φa = φ(θa), is not easily
acceptable within a scientific, purely inferential context, where interest is explicitly focused on
identifying the actual probability model p(x |θa) = p(x |φa). The one-dimensional posterior
median is invariant, but the argument is not easily extended to more than one dimension. In the
next section it is argued that, in a purely inferential context, the loss function l(θe,θ) should
not be chosen to measure the discrepancy between θe and θa, but to directly measure the dis-
crepancy between the models p(x |θe) and p(x |θa) which they label. This type of intrinsic
loss is typically invariant under reparametrization, and therefore produces invariant estimators.
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An appropriate choice of the loss function is however only part of the solution. To obtain
an objective Bayes estimator, an objective prior must be used. In the next section it is argued
that reference analysis may successfully be used to provide an adequate prior specification.

3. INTRINSIC ESTIMATION

3.1. The loss function

Conventional loss functions typically depend on the particular metric used to index the model;
indeed they are all defined as some kind of measure of the discrepancy between the parameter
and its estimate. We argue that, in a purely inferential context one is not specially interested in
the discrepancy between the parameter and its estimate, but rather in the discrepancy between
the models labelled by them. A loss function of the form l (θ1,θ2) = l {p (x |θ1) , p (x |θ2)}
is called an intrinsic loss (Robert,1996).

Bernardo and Smith (1994) argue that scientific inference is well described as a formal
decision problem, where the terminal loss function is a proper scoring rule. One of the most ex-
tensively studied of these is the directed logarithmic divergence (Gibbs, 1902; Shannon, 1948;
Jeffreys, 1948; Good, 1950; Kullback and Leibler, 1951; Savage, 1954; Chernoff, 1952; Huzur-
bazar, 1955; Kullback, 1959; Jaynes, 1983). If p(x |θ1) and p(x |θ2) are probability densities
with the same support X , the directed logarithmic divergence of p(x |θ2) from p(x |θ1) is
defined as

kX(θ2 |θ1) =
∫
X
p(x |θ1) log

p (x |θ1)
p (x |θ2)

dx. (2)

The directed logarithmic divergence (often referred to as Kullback-Leibler information) is non-
negative, and it is invariant under bijections of both x and θ. It is also additive in the sense that,
if x ∈ X and y ∈ Y are conditionally independent given θ1, then the divergence kX,Y (θ2 |θ1)
of p(x,y |θ2) from p(x,y |θ1) is simply kX(θ2 |θ1) + kY (θ2 |θ1); in particular, if data x are
assumed to be a random samplex = {x1, . . . , xn} from p(x |θ), then the divergence of p(x |θ2)
from p(x |θ1) is simply n times the divergence of p(x |θ2) from p(x |θ1). Under appropri-
ate regularity conditions, there are many connections between the logarithmic divergence and
Fisher’s information (see e.g., Stone, 1959; Bernardo and Smith, Ch. 5, and Schervish, 1995,
p. 118). Furthermore, kX(θ2 |θ1) has an attractive interpretation in information-theoretical
terms: it is the expected amount of information (in natural units, nits) necessary to recover
p (x |θ1) from p (x |θ2).

However, the directed logarithmic divergence is not symmetric and diverges if the support of
p (x |θ2) is an strict subset of the support of p (x |θ1). To simultaneously address those two un-
welcome features we propose to use the symmetric intrinsic discrepancy δX(θ1,θ2), introduced
in Bernardo and Rueda (2002), and defined as δX(θ1,θ2) = min {kX(θ1 |θ2), kX(θ2 |θ1)}.
To simplify the notation, the subindexX we will dropped from both δX(θ2 |θ1) and kX(θ2 |θ1)
whenever there is no danger of confusion.

Definition 1. (Intrinsic Discrepancy Loss). Let {p(x |θ),x ∈ X(θ),θ ∈ Θ} be a family of
probability models for some observable data x, where the sample space may possibly depend
on the parameter value. The intrinsic discrepancy, δX(θ1,θ2), between p(x |θ1) and p(x |θ2)
is defined as

δX(θ1,θ2) = min

{∫
X(θ1)

p(x |θ1) log
[p(x |θ1)
p(x |θ2)

]
dx,

∫
X(θ2)

p(x |θ2) log
[p(x |θ2)
p(x |θ1)

]
dx

}

provided one of the two integrals is finite.
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The intrinsic discrepancy inherits a number of attractive properties from the directed loga-
rithmic divergence. Indeed, it is non-negative and vanishes if, and only if, p(x |θ1) = p(x |θ2)
almost everywhere; it is invariant under one-to-one transformations of either x or θ; if the
available data x consist of a random sample x = {x1, . . . , xn} from p(x |θ) then the in-
trinsic divergence between p(x |θ1) and p(x |θ2) is simply n times the intrinsic divergence
between p(x | θ1) and p(x | θ2). However, in contrast with the directed logarithmic divergence,
the intrinsic discrepancy is symmetric and, if p(x |θ1) and p(x |θ2) have nested supports, so
that p (x |θ1) > 0 iff x ∈ X(θ1), p (x |θ2) > 0 iff x ∈ X(θ2), and either X(θ1) ⊂ X(θ2)
or X(θ2) ⊂ X(θ1), then the intrinsic discrepancy is typically finite, and reduces to a directed
logarithmic divergence. More specifically, δ (θ1,θ2) = k (θ1 |θ2) whenX(θ2) ⊂ X(θ1), and
δ (θ1,θ2) = k (θ2 |θ1) when X(θ1) ⊂ X(θ2).

3.2. The Prior Function

Under the Bayesian paradigm, the outcome of any inference problem (the posterior distri-
bution of the quantity of interest) combines the information provided by the data with relevant
available prior information. In many situations, however, either the available prior information
on the quantity of interest is too vague to warrant the effort required to have it formalized in the
form of a probability distribution, or it is too subjective to be useful in scientific communication
or public decision making. It is therefore important to be able to identify the mathematical
form of a “relatively uninformative” prior function, i.e., a function (not necessarily a probability
distribution) that, when formally used as a prior distribution in Bayes theorem, would have a
minimal effect, relative to the data, on the posterior inference. More formally, suppose that the
probability mechanism which has generated the available data x is assumed to be p(x |θ), for
some θ ∈ Θ, and that the quantity of interest is some real-valued function φ = φ(θ) of the
model parameter θ. Without loss of generality, it may be assumed that the probability model
is of the form p(x |φ,λ), φ ∈ Φ, λ ∈ Λ, where λ is some appropriately chosen nuisance
parameter vector. What is then required is to identify that joint prior function πφ(φ,λ) which
would have a minimal effect on the corresponding marginal posterior distribution of the quan-
tity of interest φ, π(φ |x) ∝

∫
Λ p(x |φ,λ)πφ(φ,λ) dλ, a prior which, to use a conventional

expression, “would let the data speak for themselves” about the likely values of φ. Note that,
within a given probability model p(x |θ), the prior which could be described as “relatively
uninformative” about the value of φ = φ(θ) will typically depend on the particular quantity of
interest, φ = φ(θ).

Much work has been done to formulate priors which would make the idea described above
mathematically precise. Using an information-theoretical based approach, Bernardo (1979)
introduced an algorithm to derive reference distributions which may be argued to provide the
most advanced general procedure available. In that formulation, the reference prior πφ(θ)
identifies a possible prior for θ, namely that describing a situation were relevant knowledge
about the quantity of interest φ = φ(θ) (beyond that universally accepted) may be held to
be negligible compared to the information about that quantity which repeated experimentation
from a particular data generating mechanism p(x |θ) might possibly provide. More recent work
containing many refinements to the original formulation include Berger and Bernardo (1989,
1992), Bernardo and Smith (1994, Ch. 5) and Bernardo (1997). Bernardo and Ramón (1998)
offers a simple intruduction to reference analysis.

Any statistical analysis obviously contains a fair number of subjective elements; these
include (among others) the data selected, the model assumptions, and the choice of the quantities
of interest. Reference analysis may be argued to provide “objective” Bayesian inferences in
precisely the same sense that conventional statistical methods claim to be “objective”: in that
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the solutions exclusively depend on model assumptions and observed data.
In any decision problem, the quantity of interest is that function of the parameters which

enters the loss function. Formally, in a decision problem with uncertainty about θ, actions
{a ∈A}, and loss function l(a, φ(θ)), the quantity of interest is φ = φ(θ). We have argued that
in point estimation an appropriate loss function is the intrinsic discrepancy l(θe,θ) = δ(θe,θ).
It follows that, to obtain an objective (reference) intrinsic estimator, one should minimize the
expected intrinsic loss with respect to the reference posterior distribution πδ(θ |x), derived
from the refence prior πδ(θ) obtained when the quantity of interest is the intrinsic discrepanct
δ = δ(θe,θ).

d(θe |x) =
∫

Θ
δ(θe,θ)πδ(θ |x) dθ = E[δ |x]. (3)

Definition 2. (Intrinsic Estimator). Let {p(x |θ),x ∈ X(θ),θ ∈ Θ} be a family of proba-
bility models for some observable data x, where the sample space may possibly depend on the
parameter value. The intrinsic estimator,

θ∗(x) = arg min
θe∈Θ

∫
Θ
δ (θe,θ) πδ (θ |x) dθ

is that minimizing the reference posterior expectation of the intrinsic discrepancy.

Reference distributions are known to be invariant under piecewise invertible transformations
of the parameter (Datta and Ghosh, 1996) in the sense that, for any such transformation ω =
ω(θ) of θ, the reference posterior of ω, π(ω |x), is that obtained from π(θ |x) by standard
probability calculus. Since the intrinsic discrepancy is itself invariant, it follows that (for any
dimensionality) the intrinsic estimator is invariant under piecewise invertible transformations:
ω∗(x) = ω(θ∗(x)).

3.1. A Simple Example: Bernoulli Data

Let data x = {x1, . . . , xn} consist of n conditionally independent Bernoulli observations with
parameter θ, so that p(x | θ) = θx(1 − θ)1−x, x ∈ {0, 1}. It is immediately verified that the
directed logarithmic divergence of p(x | θ2) from p(x | θ1) is

k(θ2 | θ1) = θ1 log[θ1/θ2] + (1− θ1) log[(1− θ1)/(1− θ2)]

Moreover, it is easily shown that k(θ2 | θ1) < k(θ1 | θ2) iff θ1 < θ2 < 1− θ1; thus, the intrinsic
discrepancy between p(x | θe) and p(x | θ), represented in the left pane of Figure 1, is

δ(θe, θ) = n

{
k(θ | θe) θ ∈ (θe, 1− θe),
k(θe | θ) otherwise
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Figure 1. Intrinsic discrepancy and reference posterior density for a Bernoulli parameter.
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Since δ(θe, θ) is a piecewise invertible function of θ, the δ-reference prior is just the θ-reference
prior and, since Bernoulli is a regular model, this is Jeffreys prior, π(θ) = Be(θ | 12 , 1

2). The
corresponding reference posterior is the Beta distribution π(θ |x) = Be(θ | r + 1

2 , n− r + 1
2),

with r =
∑
xi, and the reference expected posterior intrinsic discrepancy is the concave

function d (θe,x) =
∫ 1
0 δ (θe, θ) Be(θ | r+ 1

2 , n−r+ 1
2) dθ. The intrinsic estimator is its unique

minimum θ∗(x) = arg minθe∈(0,1) d (θe,x) , which is easily computed by one-dimensional
numerical integration. A very good approximation is given by the arithmetic average of the
Bayes estimators which would correspond to using k(θ | θe) and k(θ | θe) as loss functions,

θ∗(x) ≈ 1
2

(
r + 1/2
n+ 1

+
exp[Ψ(r + 1/2)]

exp[Ψ(r + 1/2)] + exp[Ψ(n− r + 1/2)]

)
, (4)

where Ψ(.) is the Digamma function.
As a numerical illustration, consider that to investigate the prevalence of a rare disease, a

random sample of size n = 100 has been drawn and that no person affected has been found,
so that r = 0. The reference posterior is Be(θ | 0.5, 100.5) (shown in the right hand pane of
Figure 1), and the exact intrinsic estimator (shown with a dashed line) is θ∗(x) = 0.00324. The
approximation yields θ∗(x) ≈ 0.00318. The median is 0.00227.

4. FURTHER EXAMPLES

To illustrate the methodology described above, and to compare the resulting estimators with
those derived by conventional methods, a few more examples will now be discussed.

4.1. Uniform model, Un(x | θ)
Consider now a simple non-regular example. Let x = {x1, . . . , xn}, be a random sample from
the uniform distribution Un(x | θ) = θ−1, 0 < x < θ, θ > 0. It is immediately verified that
t = max {x1, . . . , xn}, the mle estimator, is a sufficient statistic. The directed logarithmic
divergence of Un(x | θ2) from Un(x | θ1) is

k (θ1 | θ2) = n

{
log (θ1/θ2) θ1 ≥ θ2
∞ θ1 < θ2,

and thus the intrinsic discrepancy between p(x | θe) and p(x | θ) is

δ(θe, θ) = n

{
log (θe/θ) θ ≤ θe

log (θ/θe) θ ≥ θe,

shown in the left pane of Figure 2. Since the intrinsic discrepancy δ(θe, θ) is a piecewise
invertible function of θ, the δ-reference prior is also the θ-reference prior. Since the sample space
X(θ) = (0, θ) depends on the parameter θ, this is not a regular problem and, hence, Jeffreys
prior is not defined. The general formula for the reference prior in one-dimensional continuous
problems with an asymptotically sufficient, consistent estimator θ̃ = θ̃(x) is (Bernardo and
Smith, 1994, p. 312)

π(θ) ∝ p∗(θ | θ̃)
∣∣∣
θ̃=θ

(5)

where p∗(θ | θ̃) is any asymptotic approximation to the posterior distribution of θ (a formula
which reduces to Jeffreys’ prior in regular problems).
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Figure 2. Intrinsic discrepancy and reference posterior density for the parameter of a uniform model.

In this problem, the likelihood function is L(θ |x) = θ−n, if θ > t, and zero otherwise,
where t = max{x1, . . . , xn}. Hence, one asymptotic posterior is p∗(θ | t) ∝ θ−n, θ > t.
Computing the missing proportionality constant, this yields p∗(θ | t) = (n−1)tn−1θ−n. Since t
is a sufficient, consistent estimator of θ, equation (5) may be used to obtain the θ-reference prior
as π(θ) ∝ tn−1θ−n|t=θ = θ−1.The corresponding posterior is the Pareto distribution π(θ |x) =
Pa(θ |n, t) = n tn θ−(n+1), θ > t. The reference expected posterior intrinsic discrepancy is
then easily found to be d (θe,x) =

∫∞
t δ(θe, θ) Pa(θ |n, t) dθ = 2(t/θe)n − n log(t/θe) − 1,

which is minimized at θe = 21/n t. Hence, the intrinsic estimator is θ∗(x) = 21/n t, which is
actually the median of the reference posterior.

As an illustration, a random sample of size n = 10 was simulated from a Uniform distri-
bution Un(x | 0, θ) with θ = 2, yielding a maximum t = 1.897. The corresponding reference
posterior, Pa(θ | 10, 1.897) is shown in the right pane of Figure 2. The intrinsic estimator,
θ∗(x) = 2.033 is indicated with a dashed line.

4.2. Normal Mean and Variance
Let x = {x1, . . . , xn} be a random sample from a Normal N(x |µ, σ2) distribution, and let x
and s2 respectively be the corresponding sample mean and variance, with nx =

∑
j xj , and

ns2 =
∑

j(xj − x)2. In terms of precisions, λi = σ−2
i the directed logarithmic divergence

k{µ2, λ2 |µ1, λ1} of N(x |µ2, λ2) from N(x |µ1, λ1) is∫ ∞
−∞

N(x |µ1, λ
−1
1 ) log

N(x |µ1, λ
−1
1 )

N(x |µ2, λ
−1
2 )

dx =
1
2

[
log

λ1

λ2
− 1 +

λ2

λ1
+ λ2(µ1 − µ2)2

]
and the intrinsic discrepancy between the estimated model N(x |µe, λe) and the assumed model
N(x |µ, λ) is

δ{µe, λe, µ, λ} = min[k{µe, λe |µ, λ}, k{µ, λ |µe, λe}],
a piecewise invertible function of µ and λ. The reference prior when both µ and λ are of
interest is π(µ, λ) = λ−1, and the corresponding (joint) reference posterior is the Normal-
Gamma π(µ, λ |x) = N(µ |x, (nλ)−1) Ga(λ | (n−1)/2, ns2/2). Thus, the reference posterior
expected intrinsic loss may then be computed as

d(µe, λe |x) =
∫ ∞

0

∫ ∞
−∞

δ{µe, λe, µ, λ}π(µ, λ |x) dµ dλ,

a concave function of the form described in the left pane of Figure 3. The intrinsic estimator
{µ∗, λ∗} is its unique minimum {x, λ∗(x)}, where the exact value of λ∗(x) requires one-
dimensional numerical integration, but which is very well approximated by

λ∗(x) ≈ n− 2
ns2 = 1

2 (E[λ |x] + Mo[λ |x]) ,
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the arithmetic average of the posterior mode and the posterior mean. Since intrinsic estimation
is invariant, the intrinsic estimator ω∗(x) of any function ω = ω(µ, λ) is simply ω(µ∗, λ∗). In
particular, the intrinsic estimator of the variance is σ2∗ = (λ∗)−1 ≈ (ns2)/(n− 2), larger than
both the mle and the conventional unbiased estimator.

-2

0

2

4

1

2

3

0

20

40

-2

0

2 2 4 6 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7
d(µe, σ2e |x)

σ2

π(σ2 |x)

Figure 3. Reference posterior expected intrinsic loss for estimates {µe, σ2e} of the normal parameters
and marginal reference posterior of the variance σ2, given a simulated random sample of size n = 10
from Normal N(x | 0, 22) distribution.

As a numerical illustration, a sample of size n = 10 was simulated from a Normal dis-
tribution, N(x | 0, 22), yielding x = 0.595 and s2 = 1.167. Note that s2 happened to be
much smaller than σ2; hence the reference posterior of σ2 will concentrate on lower values,
and all point estimators will underestimate the true value of σ2. The intrinsic estimator re-
sulted {x, σ2∗} = {0.595, 1.520}. The mle and the unbiased estimators or the variance are
respectively 1.167 and 1.297. The intrinsic estimator of the variance is well approximated
by ns2/(n − 2) = 1.459. The posterior median is 1.399. The marginal reference posterior
distribution of σ2 is the inverted gamma represented in the right pane of Figure 3, where its in-
trinsic estimator is indicated by a dashed line. In this particular simulation, the sample variance
s2 = 1.167 turned out to be much smaller that the true value σ2 = 4. It may be appreciated that
the intrinsic estimator compensates far better than the conventional alternatives. To conclude
with a pragmatic advice, if you ever have to estimate some function ω[µ, σ2] of the normal
parameters with a not too small sample, simply use ω[x, ns2/(n− 2)].

4.3. Multivariate Mean Vector

Let data consist of the mean vector x from k-variate normal Nk(x |µ, n−1I). The directed
logarithmic divergence of p(x |µe) from p(x |µ) is symmetric in this case, and hence equal to
the intrinsic discrepancy, δ(µe,µ) = n

2 (µe−µ)t(µe−µ) = n
2 φ,whereφ = (µe−µ)t(µe−µ).

Thus, in the normal case, the intrinsic discrepancy loss is just a quadratic loss.
The intrinsic discrepancy is a linear function of φ = ‖µe − µ‖. Changing to centered

generalized polar coordinates, it is found (Bernardo, 1979; Ferrándiz, 1985; Berger, Philippe
and Robert, 1998) that a reference posterior density for φ is

π(φ |x) = π(φ | t) ∝ p(t |φ)π(φ) ∝ χ2(nt | k, nφ)φ−1/2,

where t = (µe − x)t(µe − x). Note that this is very different from the posterior for φ which
corresponds to the usual uniform prior for µ, known to lead to Stein’s (1959) paradox. The
expected reference posterior intrinsic loss may then be expressed in terms of the hypergeomet-
ric 1F1 function as

d(µe,x) =
n

2
E[φ |x] =

1
2

1F1(3/2, k/2, nt/2)
1F1(1/2, k/2, nt/2)

= d(nt, k),
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which only depends on the data through t = t(µe,x) = ‖µe − x‖. The expected intrinsic loss
d(nt, k) increases with nt for any dimension k and attains its mimimum at t = 0 and, hence, iff
µe = x. The behaviour of d(nt, k) as a function of nt is shown in the left pane of Figure 4 for
different values of k. It follows that if the model is multivariate normal, and there is no further
assumption on exchangeability of the µj’s, then the intrinsic estimator µ∗ is simply the sample
meanx. The expected intrinsic loss of the Bayes estimator,µ∗ = x, is d(µ∗,x) = d(0, k) = 1

2 .
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Figure 4. Reference expected posterior losses in estimating a multivariate normal mean.

Pooling towards the overall mean x0, leading to ridge-type estimates of the general form
µ̃(α) = αx0 + (1− α)x, will only increase the expected loss. Indeed,

d(µ̃(α),x) =
1
2

1F1(3/2, k/2, nr/2)
1F1(1/2, k/2, nr/2)

, r = r(α) =
α2

k

∑
i�=j

(µi − µj)2,

an increasing function ofnr and, hence, an increasing function ofα. It follows that, with respect
to the reference posterior, all ridge estimators have a larger expected loss than the sample mean.
Similarly, James-Stein estimator (James and Stein, 1961), µ̃js = (1− (k− 2)||x||−1)x, k > 2,
pooling towards the origin rather than towards the overall mean, corresponds to r = 1 and hence,
it also has a larger expected loss than the sample mean. The expected intrinsic losses (quadratic
in this case) of those estimators, for k = 3 and the random sample x = {0.72,−0.71, 1.67}
simulated from N3(x | 0, I3), may be compared in the right pane of Figure 4.

The preceding analysis suggests that the frequent practice of pooling towards either the
origin or the overall mean may be inappropriate, unless there is information which justifies an
exchangeability assumption for the µi’s; in this case, a hierarchical model should be set up,
and the intrinsic estimator will indeed be a ridge-type estimator. However, with a plain normal
multivariate assumption, pooling will only increase the (reference) expected loss. Thus, do not
pool without a good reason!

5. FINAL REMARKS
The information-theory based intrinsic discrepancy, δ{p1, p2} = min[k{p1 | p2}, k{p2 | p1}],
introduced in this paper for densities which either have the same or nested supports, has been
shown to have many attractive properties. It is symmetric, it is invariant, it is typically finite
for non-regular problems, and it is calibrated in natural information units. Indeed, the intrinsic
divergence may be used to define a new type of convergence which is natural to consider in
Bayesian statistics,

Definition 3. (Intrinsic Convergence). The sequence of probability densities {pi}∞i=1 intrin-
sically converges to the probability density p if, and only if, limi→∞ δ{pi, p} = 0.

Exploring the properties of this new definition of convergence will be the object of future
research. Further work is also needed to extend this definition to situations where the densities
are defined over arbitrary supports.
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Intrinsic estimators were obtained by minimizing the (reference posterior) expected pos-
terior intrinsic loss, d(θe |x) =

∫
Θ δ(θe,θ)πδ(θ |x) dθ. Conditional on the assumed model,

the positive statistic d(θe |x) is a natural measure of the compatibility of θe with the observed
data x. Consequently, the intrinsic statistic d(θe |x) is a natural test statistic which finds im-
mediate applications in precise hypothesis testing (cf. the Bayesian reference criterion (BRC),
Bernardo, 1999; Bernardo and Rueda, 2002).

We have focused on the use of the intrinsic discrepancy in reference problems, where no
prior information is assumed on the paramater values. However, because of its nice properties,
the intrinsic discrepancy might be a reasonable loss function to consider in problems where
prior information (possibly in the form of a hierarchical model) is fact available.
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