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3 Unidad Mixta de Investigación de Genómica y Salud (Centro Superior de Investigación en Salud Pública, CSISP/Institut Cavanilles), Universitat de València, València,
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Abstract

Background: Genome reduction is a common evolutionary process affecting bacterial lineages that establish symbiotic or
pathogenic associations with eukaryotic hosts. Such associations yield highly reduced genomes with greatly streamlined
metabolic abilities shaped by the type of ecological association with the host. Sodalis glossinidius, the secondary
endosymbiont of tsetse flies, represents one of the few complete genomes available of a bacterium at the initial stages of
this process. In the present study, genome reduction is studied from a systems biology perspective through the
reconstruction and functional analysis of genome-scale metabolic networks of S. glossinidius.

Results: The functional profile of ancestral and extant metabolic networks sheds light on the evolutionary events underlying
transition to a host-dependent lifestyle. Meanwhile, reductive evolution simulations on the extant metabolic network can
predict possible future evolution of S. glossinidius in the context of genome reduction. Finally, knockout simulations in
different metabolic systems reveal a gradual decrease in network robustness to different mutational events for bacterial
endosymbionts at different stages of the symbiotic association.

Conclusions: Stoichiometric analysis reveals few gene inactivation events whose effects on the functionality of S.
glossinidius metabolic systems are drastic enough to account for the ecological transition from a free-living to host-
dependent lifestyle. The decrease in network robustness across different metabolic systems may be associated with the
progressive integration in the more stable environment provided by the insect host. Finally, reductive evolution simulations
reveal the strong influence that external conditions exert on the evolvability of metabolic systems.
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Introduction

Genome reduction is a common evolutionary process observed

in bacterial lineages that have established associations, both

symbiotic and pathogenic, with eukaryotic hosts. In advanced

stages of the process one finds highly streamlined genomes and

minimal metabolic systems unable to function outside their hosts

[1]. This process has been extensively characterized in bacterial

endosymbionts of insects, where nutritional associations with

bacterial endosymbionts allow insects to colonize novel ecological

niches with unbalanced nutritional sources [2,3]. This is due to

drastic changes in the population structure and selective pressures

associated with the evolutionary transition from a free-living to a

host-dependent lifestyle. During this transition, inactivating

mutations are accumulated over non-essential genes leading to a

massive accumulation of pseudogenes throughout the bacterial

chromosome [4]. Characteristically, there is also a massive

proliferation of different types of mobile genetic elements in these

initial stages of genome reduction, representing an important

source of genome rearrangements [5,6]. This gene inactivation

process is enhanced by drastic reduction in the effective population

size of these bacterial endosymbionts (i.e. population bottlenecks

associated to their strict vertical transmission from mothers to

offspring), allowing the accumulation of slight deleterious muta-

tions by random genetic drift in a process known as Muller’s

ratchet [7]. This large amount of non-functional DNA is

subsequently lost in long-term bacterial endosymbionts through

a stepwise process, involving many small and some large deletion

events [8,9,10,11]. This process eventually leads to very small

bacterial genome sizes such as those of the aphid endosymbiont

Buchnera aphidicola [12,13,14,15], the ant endosymbiont Blochmannia

[16,17], or the psyllid endosymbiont Carsonella rudii [18,19]. The

dynamics of gene loss in long-term symbiotic associations can be

studied by comparative genomics [20,21,10]. However, in ancient

endosymbiont-insect host associations, it is difficult to determine

the evolutionary events triggering the initial transition to a host-

dependent lifestyle, or the point at which the free-living ancestor

lost the extracellular replicative stage.
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S. glossinidius, the secondary endosymbiont of tsetse flies,

represents one of the few available complete genomes of a

bacterium at the initial stages of symbiosis [22]. Tsetse flies also

harbour the obligatory mutualistic bacteria Wigglesworthia glossini-

dia. The latter has an ancient association with the tsetse host,

having a highly streamlined genome (698 kb) that mostly retains

cofactor biosynthetic pathways responsible for supplying the host

with vitamins lacking in vertebrate blood, its sole nutrient source

[23]. By contrast, S. glossinidius represents a much more recent

symbiotic association. This is revealed by the fact S. glossinidius can

be cultured under laboratory conditions, as can other recent

bacterial endosymbionts, like secondary endosymbiont of hippo-

boscid louse flies [24]. Moreover, its genome size is 4.2 megabases,

closer to a free-living bacterium like Escherichia coli, without any

compositional bias [22,25,26]. However, the most important

feature of this genome is its extremely low coding density,

consequence of a massive process of gene inactivation, with 972

pseudogenes described in the original genome annotation and

extended to 1501 pseudogenes in a recent re-annotation [27]. This

makes S. glossinidius an ideal model system to study the complete

genome reduction process covering both the initial transition from

free-living to host-dependent lifestyle and the reductive evolution

towards minimal metabolic systems associated to long-term

symbiotic associations. This is because its current gene content,

with the whole set of genes and pseudogenes, represent a direct

hallmark of the ancestral gene content of the bacteria before the

ecological transition to host-dependent lifestyle, after which the

changes in selective pressures and population dynamics of the

bacteria generates the massive accumulation of pseudogenes

observed in the actual genome. Furthermore, predictions can be

made as to how the current system could evolve further within the

context of a reductive evolutionary process. This can be analyzed

through the reconstruction of S. glossinidius metabolic networks at

different stages of the genome reduction process and through

functional analysis by Flux Balance Analysis (FBA). FBA enables

quantitative assessment of the function of metabolic systems by

finding the optimal distributions of metabolic fluxes across

reactions of the network that optimize a particular objective

function, normally defined through a biomass equation. Biomass

production maximization is equivalent to experimentally deter-

mined cellular growth phenotypes, as demonstrated in model

organisms like E. coli K12 [28,29].

Available genome-scale metabolic networks range from impor-

tant model organisms to pathogens and bacterial species of

biotechnological interest [30]. Recently, a genome-scale metabolic

network of B. aphidicola from the pea aphid Acyrthosiphon pisum was

published, revealing a highly streamlined functional profile and

high fragility [31]. In the context of bacterial evolution, FBA of the

E. coli K12 metabolic network, combined with comparative

genomics, have revealed the predominant role of horizontal gene

transfer over gene duplication in the recent evolution of E. coli

K12, with horizontally transferred genes playing an essential role

under specific external conditions [32,33]. More specifically

related with the reductive genome evolutionary process, the gene

content of real minimal genomes, like in B. aphidicola and W.

glossinidia, can be accurately predicted by successive gene deletions

in the E. coli K12 metabolic network. This is possible because

external conditions mimic the nutrient availability within the

insect host corresponding to each bacterium [34]. Recently, the

work of Pal et al. has been extended to predict dynamic aspects of

the gene loss process in the B. aphidicola lineage [35], in an effort to

predict how much of the gene loss process in this ancient bacterial

endosymbiont can be accounted for by metabolic constraints.

However, although these approaches provide novel insights into

the dynamics and final stages of genome reduction in endosym-

biotic bacteria that have long-term associations with their insect

host, there is a critical issue that remains unanswered: What are

the evolutionary events that determine the initial change from the

free-living to the endosymbiotic state?

Gene loss dynamics can be studied by comparative genomics in

many of these ancient symbiotic lineages from the point of

divergence from their hypothetical free-living ancestor [10,36,37].

However, such approaches cannot quantitatively evaluate which

of these gene loss events had the greatest impact on the overall

functionality of the system and, consequently, on the loss of the

free-living state triggering the genome reduction process. In this

context, genome-scale metabolic modelling of a bacterium that has

recently adopted a host-dependent lifestyle, like S. glossinidius, can

quantitatively assess the gene loss events in a system for which the

ancestral genome can be reliably inferred from the whole set of

genes and pseudogenes.

The present work reports the reconstruction of genome-scale

metabolic networks of S. glossinidius at different stages of the

genome reduction process, in order to study its reductive evolution

from a systems biology perspective. Metabolic phenotypes of

ancestral and extant metabolic networks were quantitatively

assessed by FBA, to determine the evolutionary events that could

account for the transition from a free-living to a host-dependent

lifestyle. Finally, the robustness of these metabolic systems to gene

deletion events was compared to analyze how the transition to a

host-dependent lifestyle correlates with the ability of a metabolic

system to adapt to deletion changes.

Results

Reconstruction of S. glossinidius metabolic networks
The ancestral metabolic network of S. glossinidius comprised 668

gene products, 741 internal reactions, and 690 metabolites, of

which 547 metabolites were cytoplasmic and 143 were extracel-

lular (File S1). This network contained not only functional genes

but also pseudogenization and gene deletion events taking place

during S. glossinidius evolution from its free-living ancestor. Gene

deletion events had been restricted to those genes presents in closer

relative enterobacterial genomes and for which the genomic

context is extensively conserved between S. glossinidius and E. coli

K12, in order to exclude deleted genes originated by horizontal

gene transfer events that may not be functional in the ancestor. Of

the 668 gene products, 479 corresponded to functional genes, 148

to pseudogenes, and 41 to genes deleted during the evolution of S.

glossinidius from its free-living ancestor. The 627 CDSs represented

16% of the total number of CDSs (genes and pseudogenes) in the

genome, which was in the range of other genome-scale network

reconstructions (see Table 1). Out of the 741 internal reactions

included in the network, 683 reactions (92.2%) had at least one

assigned gene, pseudogene or deleted gene. This ancestral

metabolic network included 27 pseudogenes without sequence

similarity with E. coli K12 and with specific metabolic functions in

terms of reaction stoichiometry based on the results of functional

re-annotation of the genome. Most of these pseudogenes encode

isozymes of functional enzymatic activities although they also

include seven reactions not present in E. coli K12 iJR904,

representing functional abilities of the S. glossinidius ancestral

metabolism (see Table S1).

The extant metabolic network was reconstructed by removing

all reactions catalyzed by the 148 pseudogenes and the 41 deleted

genes from the ancestral network. This rendered an extant

network composed of 458 gene products, 560 internal reactions

including transport processes, cytoplasmic reactions and biomass

Metabolic Networks of Sodalis glossinidius
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equation, and 624 metabolites, of which 481 were cytoplasmic and

143 were extracellular (see Table 1, File S2). Of the 560 internal

reactions, 502 had at least one gene assigned (90%). The 458 genes

in the extant network represented 18.8% of S. glossinidius genes. In

the transition to the extant network, 21 functional genes were

removed due to their inclusion in enzymatic complexes where at

least one of the components was pseudogenized or deleted. In

addition, 13 functional genes, without sequence similarity with E.

coli K12 by OrthoMCL, were incorporated to both ancestral and

extant networks of S. glossinidius based on the functional re-

annotation of the genome [27] (see Table S2).

Analysis of S. glossinidius metabolic networks by FBA:
Transition to the host-dependent lifestyle

Functionality of both metabolic networks of S. glossinidius

(ancestral and extant) was analyzed by FBA and compared with

the functional profile of a free-living relative, like E. coli K12. As

objective function, the biomass equation defined for the E. coli

K12 iJR904 network [38] was included in both ancestral and

extant networks of S. glossinidius. This biomass equation reflects

the basic requirements in terms of essential metabolites (amino

acids, nucleotides, phospholipids, cofactors) ensuring cell survival.

The recent transition of S. glossinidius to a host-dependent lifestyle

can be tested by evaluating the functionality of its ancestral and

functional metabolic networks in a minimal aerobic environment

with glucose as sole external carbon source for biomass

production. This was done by fixing the lower bounds of their

corresponding exchange reactions to 26 mmol gr DW21 hr21

for glucose and to 220 mmol gr DW21 hr21 for molecular

oxygen (O2), as described in the E. coli K12 iJR904 metabolic

network [38]. With glucose as sole external carbon source, the

ancestral metabolic network of S. glossinidius showed a biomass

production rate of 0.545 gr DW (mmol Glucose)21, very similar

to the biomass yield of the E. coli K12 iJR904 network (0.5391 gr

DW (mmol Glucose)21). By contrast, the S. glossinidius extant

network was completely non-functional under these minimal

conditions. This was due to two main gene inactivation events

affecting biosynthetic pathways and a single pseudogenization

event affecting an essential enzyme activity of the central

metabolism, occurring during S. glossinidius evolution. First, the

pseudogenization of genes glgA and glgB, encoding glucose 1-

phosphate adenylyltransferase and glycogen synthase respective-

ly, impeded glycogen biosynthesis from ATP and a-D-glucose 1-

phosphate. Glycogen was a component of biomass equation, and

consequently these two pseudogenization events render a lethal

phenotype in terms of biomass production in the S. glossinidius

extant network. The elimination of glycogen from the biomass

equation solved this problem and rendered a functional

phenotype in terms of biomass production. Second, the

pseudogenization of genes argA, argG, argD and argC prevented

L-arginine biosynthesis from L-glutamate, as recently described

in the re-annotation of the genome [27]. L-arginine was also a

biomass constituent, but unlike glycogen, its removal from the

biomass equation still rendered a lethal phenotype in terms of

biomass production. This was because the inactivation of the L-

arginine biosynthesis pathway prevented both putrescine and

spermidine biosynthesis. These two polyamines can only be

synthesized from L-arginine (see Figure 1) due to pseudogeniza-

tion of the speC gene, which encodes an L-ornithine decarbox-

ylase (ps_SGL1267c) catalyzing single-step decarboxylation of L-

ornithine to putrescine [39]. A viable phenotype in terms of

biomass production was obtained for the S. glossinidius extant

network by incorporating an external source of L-arginine

(0.7509 gr DW (mmol Glucose)21).

In addition to these pseudogenization events affecting biosyn-

thetic pathways, the pseudogenization of the gene ppc

(ps_SGL1383), encoding the enzyme phosphoenolpyruvate car-

boxylase (PEP carboxylase), had particularly lethal effects on the

overall metabolic system. This key enzymatic activity catalyzes the

anaplerotic reaction of carboxylation of the glycolytic intermediate

phosphoenolphyruvate to the TCA cycle intermediate oxalacetate

[40]. This event was analyzed by comparing the reaction fluxes of

E. coli K12 iJR904 and S. glossinidius metabolic networks on

reactions of the central metabolism and L-arginine metabolism

(see Figure 1). With glucose as sole external carbon source, in both

the E. coli K12 iJR904 and S. glossinidius ancestral networks,

reaction fluxes were distributed throughout the glycolysis and

TCA cycle. Meanwhile, oxalacetate was replenished though PEP

carboxylase, and putrescine synthesized by decarboxylation of the

L-arginine intermediate L-ornithine. Removing the PEP carbox-

ylase reaction from the E. coli K12 iJR904 metabolic network

activated the glyoxylate bypass, a second anaplerotic pathway,

coinciding with experimental results obtained measuring reaction

fluxes of E. coli K12 ppc mutants [41,42]. However, in the S.

glossinidius genome, there was no sign of genes or pseudogenes

encoding enzymes of the glyoxylate bypass, and, consequently,

Table 1. Comparison of the genome characteristics and in silico metabolic networks of S. glossinidius, B. aphidicola APS and E. coli
K12.

S. glossinidius ancestor S. glossinidius E. coli K12 B. aphidicola Bap

Genome characteristics

Genome length (bp) 4,171,146 4,171,146 4,639,675 640,681

GC content (%) 54 54 50 26

CDSs 2,431 (genes) +
1,501 (pseudogenes)

2,431 (genes) +
1,501 (pseudogenes)

4,144 564

In silico metabolic network characteristics

Number of reactions 741 560 931 210

Reactions with CDSs (%) 92.2 90 94 96

Number of CDSs 668 (479 genes+148 pseudogenes+41 deleted genes) 458 904 196

% genome 16 18.8 21.8 34.2

Metabolites 547 481 625 240

doi:10.1371/journal.pone.0030652.t001

Metabolic Networks of Sodalis glossinidius
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removal of the PEP carboxylase reaction alone from the S.

glossinidius ancestral network drastically reduced biomass produc-

tion of the whole metabolic system to 1.50776e214 gr DW (mmol

Glucose)21. Under these conditions, the supply of exogenous L-

arginine was essential for the S. glossinidius functional metabolic

system. This was due not only to its role as biomass constituent

and precursor of additional biomass constituents, such as

putrescine and spermidine, but also because putrescine must be

broken down to TCA cycle intermediate succinate to overcome

the absence of PEP carboxylase (see Figure 1).

Figure 1. Phosphoenolpyruvate carboxylase (PPC reaction) inactivation effect in E. coli K12 iJR904 and S. glossinidius metabolic
networks. Reactions of glycolysis, TCA cycle, and transport and metabolization of external L-arginine are represented together with their
corresponding reaction fluxes in FBA simulations. Red metabolites are included in the biomass equation. Black values correspond to reaction fluxes in
the E. coli K12 iJR904 network with glucose as sole external carbon source. Red values correspond to reaction fluxes in the E. coli K12 iJR904 network
under the same conditions but removing the PPC reaction. Green values correspond to reaction fluxes in the S. glossinidius ancestral network, with
glucose as sole external carbon source. Purple values correspond to reaction fluxes in the S. glossinidius extant network with glucose and L-arginine
as external metabolites. Reaction fluxes are represented in mmol gr DryWeight21 hr21.
doi:10.1371/journal.pone.0030652.g001

Metabolic Networks of Sodalis glossinidius
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Robustness analysis in S. glossinidius and E. coli K12
iJR904 metabolic networks

The genetic robustness of E. coli K12 iJR904 and S. glossinidius

metabolic networks to gene deletion events was also analyzed. The

results of this analysis revealed that under aerobic conditions with

glucose and L-arginine as external metabolites, the S. glossinidius

ancestral network behaved similarly to that of E. coli K12 iJR904

in the fraction of essential genes, or genes whose deletion renders a

lethal phenotype in terms of biomass production. Single knockout

simulations revealed 160 and 166 genes in the E. coli K12 iJR904

and S. glossinidius ancestral networks, respectively, whose deletion

rendered a biomass production rate of 0 gr DW (mmol Glucose)21

in FBA simulations. This number increased to 204 essential genes

in the S. glossinidius extant network, reflecting a decrease in network

robustness to gene deletion events that can be put down to the

gene inactivation process. Comparison of robustness to double

gene deletion events over the three metabolic systems to identify

synthetic lethal pairs, whose simultaneous deletion prohibits

growth, gave similar results [43]. To avoid the masking effect of

essential genes, this analysis was restricted to gene pairs for which

individual gene deletions render non lethal phenotypes in terms of

biomass production. Results revealed an increase in the number of

synthetic lethal pairs from E. coli K12 iJR904 (60 synthetic lethal

pairs) to the S. glossinidius ancestral network (113 synthetic lethal

pairs) and to the S. glossinidius extant network (211 synthetic lethal

pairs). To determine whether this decrease in network robustness

extended to bacterial endosymbionts at more advanced stages of

the genome reduction process, the same single and double

knockout simulations were carried out on the metabolic networks

of two B. aphidicola strains: BAp (from the pea aphid A. pisum) [31]

and BCc (from the aphid Cinara cedri). BCc was reconstructed from

B. aphidicola BAp by removing genes and reactions absent in the

more reduced genome of B. aphidicola BCc and adjusting the

biomass equation composition. Figure 2 shows the results of single

knockout simulations. If we consider an essential gene to be one

whose deletion decreases original biomass production by over

99%, the fraction of essential genes increased progressively from a

free-living bacteria, like E. coli K12 (17.6% of network genes), to a

Figure 2. Robustness analysis on E. coli K12, S. glossinidius and B. aphidicola BAp and B. aphidicola BCc metabolic networks. The fraction
of essential and non-essential genes in single knockout simulations on different genome-scale metabolic networks is represented. Essential genes are
defined as those genes whose deletion results in a decrease of more than 99% of the original biomass production.
doi:10.1371/journal.pone.0030652.g002
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bacterial endosymbiont in the initial stages of transition to a host-

dependent lifestyle, like S. glossinidius extant network (44.5% of

network genes). This fraction increases to 73% and 71.8% of

network genes in the metabolic networks of an ancient bacterial

endosymbiont with a highly streamlined genome like B. aphidicola

BAps and BCc, respectively. Double gene deletion simulations

with B. aphidicola metabolic networks rendered 57 lethal double

knockouts in BAps and one lethal double knockout in BCc, which

contrasts with the results obtained for S. glossinidius and E. coli K12

iJR904 metabolic networks. However, this can be explained by the

reduced number of non-essential genes included in the analysis of

BAps (57 genes) and BCc (29 genes) compared with E. coli K12

iJR904 (747 genes), S. glossinidius ancestral (462 genes) and S.

glossidius extant networks (254 genes). Also accountable, are the

differences in external conditions and biomass composition

between B. aphidicola metabolic networks and E. coli K12-S.

glossinidius metabolic networks. Overall, these results revealed a

common trend in the reductive evolutionary process with a

progressive decrease in the robustness of metabolic systems to gene

deletion events associated with the transition to a host-dependent

lifestyle.

Reductive evolution simulations on the functional
metabolic network of S. glossinidius

To analyze the possible evolutionary outcomes of genome

reduction in the S. glossinidius functional metabolic network,

reductive evolution simulations were carried out, as described in

Material and Methods. Results are shown in Table 2. Under

nutrient-limited conditions, an average network size of 280.11

internal reactions and 291.75 genes was obtained for the 1500

resulting minimal networks. In addition, 84.6% of the reactions

and 87.4% of the genes were shared by all minimal networks. In

comparison, minimal networks under nutrient-rich conditions

showed an average network size of 231.9 internal reactions and

237.25 genes in the total set of 1500 minimal networks obtained, of

which 60.9% of the reactions and 58.7% of the genes were

common to all minimal networks. These results pointed to a

higher degree of plasticity, in terms of both gene and reaction

content, in minimal networks evolved under a nutrient-rich

environment compared with those evolved under a minimal

aerobic medium with only glucose and L-arginine as external

metabolites. In the latter scenario, in terms of gene and reaction

content, the range of potential outcomes of reductive evolution

simulations were further restricted by the genome reduction

process (see Figure 3).

The gene and reaction content of minimal networks obtained

under both external conditions were also compared. This analysis

showed that 138 out of 139 essential genes under nutrient-rich

conditions were also essential under nutrient-limited conditions,

whereas all 141 essential reactions under nutrient-rich conditions

were also essential under nutrient-limited conditions. These results

coincided with theoretical expectations, in that a reaction or a

gene essential for system viability under a nutrient-rich environ-

ment was also expected to be essential in a more restricted

minimal environment with glucose and L-arginine as sole external

metabolites. The only gene always present in all minimal networks

under nutrient-rich conditions, but not under nutrient-limited

conditions, was SG0465, coding for an aromatic amino acid

permease (AroP), responsible for transporting the biomass

constituents histidine, phenylalanine, tyrosine and tryptophan in

both E. coli K12 iJR904 and S. glossinidius networks. The removal

of any reactions involved in these amino acids’ biosynthesis makes

AroP an essential gene in a nutrient-rich environment. Table S3

lists the whole set of essential genes and reactions, under all

conditions. These include the complete biosynthetic pathways of

Table 2. Results of reductive evolution simulations under nutrient-limited and nutrient-rich conditions.

10% original
biomass

5% original
biomass

1% original
biomass

Total 1500
minimal networks

Reductive evolution simulations
nutrient-limited conditions

Mean gene number(*1) 291.47 (60.17) 292.15 (60.16) 291.64 (60.14) 291.75 (60.09)

Mean reaction number(*1) 280.03 (60.12) 280.51 (60.13) 279.78 (60.12) 280.11 (60.07)

Common genes 500
minimal networks

258 257 261 255

Absent genes 500
minimal networks

129 128 127 127

Common reactions 500
minimal networks

240 239 242 237

Absent reactions 500
minimal networks

208 205 203 200

Reductive evolution simulations
nutrient-rich conditions

Mean gene number(*1) 237.99 (60.45) 236.91 (60.46) 236.84 (60.45) 237.25 (60.26)

Mean reaction number(*1) 232.03 (60.30) 231.91 (60.32) 231.74 (60.32) 231.9 (60.18)

Common genes 500
minimal networks

139 139 139 139

Absent genes 500
minimal networks

114 111 112 111

Common reactions 500
minimal networks

141 141 141 141

Absent reactions 500
minimal networks

191 185 186 185

*1The mean gene and reaction number of minimal networks is shown with the corresponding standard error (in brackets).
doi:10.1371/journal.pone.0030652.t002
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biomass constituents that cannot be assimilated from external

sources in a nutrient-rich environment, like the complete pathways

for putrescine and spermidine biosynthesis from exogenous L-

arginine. Also included are the L-arginine ABC transport system,

the complete biosynthetic pathways for membrane phospholipids

(phosphatidylglycerol, phosphatidylethanolamine and cardiolipin),

peptidoglycan and the bacterial lipopolysaccharide, as well as the

complete pathways for the biosynthesis of different cofactors, like

methylenetetrahydrofolate, coenzyme A, FAD or NAD. There

were 117 genes and 96 reactions that seemed essential in a

nutrient-limited environment but not in a nutrient-rich environ-

ment (conditionally essential). Therefore, these could be lost in the

future reductive evolution of S. glossinidius in the context of its

ecological association with the tsetse host (see Table S4). In fact,

many of these genes and reactions were involved in amino acid

biosynthesis, which is the most streamlined functional class in the

W. glossinidia genome, the primary endosymbiont of tsetse flies in

more advanced stages of the genome reduction process [23].

These included the complete biosynthetic pathways for aspara-

gine, aspartate, alanine, cysteine, serine, glycine, histidine,

threonine, methionine, lysine, tyrosine, tryptophan, phenylalanine,

valine, leucine, and isoleucine. For all these amino acids, a

functional transport system was retained in the S. glossinidius extant

network, allowing their exogenous assimilation in a nutrient-rich

environment. In the case of lysine biosynthesis, only the gene lysA

(SG1988), encoding a diaminopimelate decarboxylase responsible

for the final decarboxylation of meso-diaminopimelate to lysine,

was included as a conditionally essential gene. The remaining

genes and reactions for meso-diaminopimelate biosynthesis from

L-aspartate were essential under all conditions. This can be

explained by the key role of meso-diaminopimelate as precursor of

peptidoglycan, which is a biomass constituent, coinciding with the

experimental assessments of gene essentiality in E. coli K12 by

transposon mutagenesis [44]. Finally, 109 genes and 172 reactions

proved non-essential or absent in all minimal networks under both

original and nutrient-rich conditions (see Table S5). These

included the remaining steps of metabolic pathways in which

some components have been pseudogenized or deleted in the

ancestral network, like the remaining steps of L-arginine and

thiamine biosynthetic pathways, both pseudogenized in S.

glossinidius [26,27]. If fact, many of these genes could be selectively

neutral genes in the sense of intact genes that are non-functional in

the new host-associated environment but that has not yet

accumulated mutations that allows them to identified as

pseudogenes, as has been postulated for secondary symbiont of

aphids Serratia symbiotica [45]. Also there were complete biosyn-

thetic pathways for metabolites not included in the biomass

equation, such as the genes involved in ubiquinone, biotin,

pyridoxine 5-phosphate and heme group biosyntheses.

Discussion

The present work analyzes the genome reduction process from a

systems biology perspective. To do so, we have reconstructed and

functionally analyzed genome-scale metabolic networks of the

secondary endosymbiont of tsetse flies S. glossinidius at different

evolutionary stages. The functionality of ancestral and functional

metabolic systems has been evaluated by FBA, using biomass

production as objective function. The biomass equation represents

a weighted ratio of the components forming the dry weight of a

cell, together with the energy demands for cellular growth and

maintenance by ATP hydrolysis. Also, specific determination of a

particular organism requires specific measurements of metabolites

over pure cell cultures [46,47,48]. In the absence of this kind of

information for S. glossinidius, we adopted the biomass equation

defined for E. coli K12 as objective function for FBA simulations

on the metabolic networks [38]. This equation has been employed

for different metabolic networks, and is considered valid when the

real biomass composition of the organism under study is unknown

[49,50,51]. In addition, use of the same biomass equation means

the results of FBA simulations on E. coli K12 iJR904 and S.

glossinidius metabolic networks can be compared, thus indicating

the relative degree of metabolic independency of S. glossinidius with

respect to a free-living bacterium, like E. coli K12.

The results of FBA simulations in a minimal aerobic

environment, with glucose as sole external carbon source, confirm

S. glossinidius’ very recent transition to a host-dependent lifestyle.

This is discerned by the complete functionality of its ancestral

metabolic network under these minimal conditions at a biomass

production rate equivalent to that of a free-living bacterium, like

E. coli K12. This finding represents novel evidence of its recent

transition to a host-dependent lifestyle, together with the lack of

co-evolution between S. glossinidius and its corresponding Glossina

host species [52], its ability to be cultured in vitro [53], and its

genome size, similar to that of free-living bacteria [26]. By

Figure 3. Gene and reaction number distribution in reductive
evolution simulations. Distribution of the number of genes and
reactions in 1500 minimal networks under nutrient-rich and nutrient-
limited conditions.
doi:10.1371/journal.pone.0030652.g003
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contrast, FBA simulations on the S. glossinidius extant network

reveal that a few gene inactivation events, like those in glycogen

biosynthesis and, especially, arginine biosynthesis and ppc genes,

produce drastic metabolic changes in the bacteria, associated with

the evolutionary transition to a host-dependent lifestyle (see

Figure 1). The inactivation of the ppc gene is particularly relevant

because it makes the external supply of L-arginine an essential

requirement for functionality of the system. Experimental

measurements of Ppc activity in E. coli K12, based on 13C-

labelling experiments and isotopomer distribution measurement

by gas chromatography-mass spectrometry reveal that 50.7% of

carbon flux in wild-type strains is channelled through this enzyme.

Results also show its inactivation triggers the glyoxylate bypass of

the TCA cycle, a second anaplerotic pathway that replenishes

oxalacetate in response to the Ppc blockage [41,42]. These results

were reproduced in our FBA simulations (see Figure 1). It is also

worth highlighting that ppc gene is absent in ancient bacterial

endosymbionts, as in all B. aphidicola strains, in W. glossinidia or in

B. floridanus and B. pensylvannicus [12,13,14,15,16,17,23].

S. glossinidius metabolic network robustness to gene deletion

events has also been analyzed. Studies into the topology and

structure of metabolic systems have concluded that the power-law

distribution governing the connectivity of natural networks makes

these systems robust to the random removal of nodes, with this

being a common organizational property of large-scale network

systems, including metabolic networks [54,55,56,57]. Most of

these studies focus on topological properties of metabolic networks,

analyzing how the random removal of network nodes affects

topological parameters like connectivity, or clustering coefficient.

However, similar results are obtained when collections of single

knockouts are generated for a particular organism, with most

single knockouts rendering positive growth on cell cultures [58]. In

contrast, the results of single knockout simulations on different

metabolic networks presented in this study revealed a progressive

decrease of network robustness, with the fraction of lethal

knockouts in FBA simulations increasing from 23.6% in a free-

living bacterium, like E. coli K12, to 55% in S. glossinidius extant

network (See Figure 2). In fact, this fraction increases to 73% of

network genes in the metabolic network of B. aphidicola from the

pea aphid A. pisum [31] and to 71.8% in the metabolic network of

B. aphidicola from the cedar aphid C. cedri. This reflects a common

evolutionary trend in bacterial endosymbionts under reductive

evolution in terms of a progressive reduction of network robustness

associated with different stages of the reductive evolutionary

process. The decrease in network robustness is also observed in

double gene deletion simulations when considering non-essential

genes, increasing the number of synthetic lethal pairs from E. coli

K12 iJR904 to S. glossinidius ancestral and extant networks. This is

accompanied by a decrease in the number of reactions catalyzed

by isozymes from E. coli K12 iJR904 (161 reactions) to S. glossinidius

ancestral (92 reactions) and extant (39 reactions) networks, with

BAps and BCc networks having two and zero reactions catalyzed

by isozymes, respectively. A recent study reports that many of

these synthetic lethal pairs in E. coli are due to isozymes catalyzing

essential reactions, and increasing deletion size reveals increased

numbers of complex k-connected clusters, thereby indentifying key

branching points of the central metabolism [43]. In the present

study, the increased number of synthetic lethal pairs combined

with the decreased number of isozyme-catalyzed reactions from E.

coli K12 to the S. glossinidius extant network may be because many

of the additional synthetic lethal pairs in S. glossinidius probably

correspond to higher-order synthetic lethals in E. coli (e.g., revealed

with triple-gene deletion simulations). This indicates that under the

same external conditions and with the same biomass equation as

objective function, genome reduction decreases the robustness of

biological systems to higher-order single gene deletions.

A similar trend was observed by Gabaldon and collaborators on

studying the robustness of a hypothetical minimal metabolic

system [59], where most mutations had a limited effect on the

overall topology of the network but the majority (76%) prevented

the biosynthesis of at least one metabolite, equivalent to a biomass

constituent on FBA simulations. The fragility of this hypothetical

minimal metabolic network, based on a minimal gene repertoire

deduced from comparative genomics [60], was highlighted by a

stoichiometric analysis. In this case, 49 out of 50 reactions (98%)

proved functionally essential. Regarding the ecological association

with their insect hosts, the reduction of system robustness to gene

deletion events can be associated with the progressive transition to

a more stable environment, like that found within host tissues,

where environmental fluctuations are less pronounced than in a

free-living environment [5,61]. This would indicate a reduction in

the adaptability of the endosymbiotic systems, consequence of the

gene inactivation process. This effect would probably be enhanced

in advanced stages of the symbiotic association due to the loss of

many genes involved in DNA repair pathways [62,63]. This may

even be associated with the tight association of ancient

endosymbionts inside bacteriocyte cells with a more stable

environment, compared with the wider tissue tropism of bacterial

endosymbionts in the initial stages of association, like S. glossinidius.

Reductive evolution simulations on the extant metabolic

network of S. glossinidius render a set of minimal networks able to

produce a functional phenotype in terms of biomass production

under different external conditions in FBA simulations. The

concept of minimal genomes and minimal gene sets is a common

issue in evolutionary genomics, arising as soon as the first complete

genomes were available for comparison [64,65,66]. These

computational approaches, based on gene content comparison

across different genomes, have been complemented with different

experimental studies of gene essentiality in several species

[67,44,68]. In this context, stoichiometric analysis of metabolic

networks by FBA can evaluate to what point a particular

metabolic system can be reduced while maintaining a viable

phenotype in terms of biomass production. Similar reductive

evolution simulations on the E. coli K12 iJR904 network, under

external conditions simulating the B. aphidicola and W. glossinidia

environment within their corresponding insect hosts, produce

minimal gene sets that accurately reproduce their respective gene

content [34]. Recently, the role of environment in the emergence

and loss of network robustness has been addressed by Soyer and

Pfeiffer in a theoretical minimal metabolic system [69], revealing

that the fluctuating nature of external conditions is what ultimately

defines the emergence of robustness in biological systems. This can

be put down to system evolution under fluctuating environments,

which increases the number of multifunctional enzymes and

redundant pathways. In our simulations, gene and reaction

content of minimal networks is strongly dependent on the external

conditions under which the system is evolving, in that a nutrient-

rich environment is able to generate greater variability in terms of

minimal network composition than a nutrient-limited environ-

ment. Under minimal aerobic conditions, with glucose and L-

arginine as external metabolites, all minimal networks obtained

were highly similar, sharing 84.6% of their reactions and 87.4% of

their genes. Meanwhile, greater variability was observed under

nutrient-rich conditions, with 41 external metabolites available for

uptake, with only 60.9% of the reactions and 58.7% of the genes

being shared between minimal networks. This suggests that

environmental conditions, and the fact that the environment was

more or less rich and fluctuant, ultimately define the complexity of
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the resulting metabolic networks, playing a decisive role in the

potential reductive evolution patterns of S. glossinidius. Thus,

minimal gene sets or minimal genomes must be defined in the

context of the environment associated with the organism under

study [60].

Open questions for future research are a more accurate

profiling of the ancestral network reconstruction and timing of

gene loss events once the genomes of closer relatives of S.

glossinidius are available. The use of E. coli K12 as pivotal organism

for network reconstruction has the pitfall of the long divergence

time between both strains, which can have negative influence in

the reconstruction of ancestral metabolic system. This is especially

relevant in the identification of gene deletion events, as our

parsimony-based approach forcing gene order conservation has

the drawback of the rapid loss of gene order in divergent species,

enhanced by the high number of rearrangements in bacterial

species in initial stages of transition to host-dependent lifestyle

[70,71,72]. We choose this parsimony-based approach in order to

avoid the inclusion of ancestral genes originated from horizontal

gene transfer events, but the requirement of gene order

conservation make that many ancestral genes in rearranged

genome regions lost during S. glossinidius evolution are probably

missed. In addition, with the current data is not possible to

estimate precisely the timing of gene loss and gene inactivation

along the evolutionary lineage of S. glossinidius, as has been possible

in other bacterial lineages where similar parsimony-based

approaches has been applied to reconstruct ancestral gene content

and timing gene loss events [9,73,74,36]. In this sense, the

availability of more closely related genomes to S. glossinidius (i.e.

different S. glossinidius genomes from different Glossina species)

would allow to identify more precisely the gene loss and

pseudogenization events that has took place strictly after the

transition to host-dependent lifestyle. Finally, experimental data

on S. glossinidius cell cultures would also allow to confirm

predictions based on the metabolic models and to improve its

predictive capability, as has been done with other biological

systems [75,76].

Conclusions
The reconstruction and functional analysis of the S. glossinidius

metabolic network at different stages of the genome reduction

process reveal how this evolutionary process affects the overall

functionality of this bacterium in the context of its association with

the tsetse host. The functionality of the ancestral metabolic

network under minimal conditions confirms the recent transition

of S. glossinidius to a host-dependent lifestyle, which can be

explained by the drastic changes in the whole metabolic system.

These occur due to the inactivation of a few key enzymatic

activities, especially the inactivation of the key anaplerotic enzyme

phosphoenolpyruvate carboxylase. The comparison with other

metabolic networks corresponding to free-living bacteria (E. coli

K12) and ancient bacterial endosymbionts (B. aphidicola) reveals

there has been a gradual decrease in network robustness to gene

deletion events and to changes in particular enzymatic activities in

these bacterial endosymbionts since their initial evolutionary

transition to a host-dependent lifestyle. In this scenario, S.

glossinidius represents the initial stages of this association while B.

aphidicola represents the more advanced stages, with a deeper

integration in the host lifecycle. In addition, reductive evolution

simulations on the S. glossinidius extant network reveal that the gene

and reaction content of minimal networks are strongly dependent

on the external conditions under which the system is evolving.

Moreover, under nutrient-rich conditions, simulating the tsetse

environment, the metabolic system may evolve towards outcomes

rather similar to a real minimal genome, like that of W. glossinidia.

This reflects the potential of network analysis to predict gene

content evolution.

Methods

Network reconstruction and computational inference of
metabolic phenotypes by Flux Balance Analysis (FBA)

The network reconstruction process can be broadly divided

into three main steps. First, the identification of orthologous

clusters between E. coli K12 and S. glossinidius, which include

genes of E. coli K12 iJR904 metabolic network, in order to obtain

an initial backbone of S. glossinidius metabolic networks. Second,

a manual curation step to add S. glossinidius genes and

pseudogenes related with metabolic functions and well defined

reaction stoichiometry based on the functional re-annotation of

the genome [27], which are not included in the initial mapping

with E. coli K12. Third, the identification of gene deletion events

among the E. coli K12 iJR904 network genes in the S. glossinidius

lineage by comparative genomics. A schematic representation of

this process is depicted in Figure 4. For a detailed explanation of

the network reconstruction protocol see Methods S1. S.

glossinidius ancestral and extant metabolic networks in SBML

format are provided as Additional Files iEB668.sbml and

iEB458.sbml.

Flux Balance Analyses on S. glossinidius ancestral and extant

metabolic networks were carried out with the COBRA toolbox

[77] within the Matlab environment (http://www.mathworks.

com/) using the linear optimization algorithm provided by the

LP_solve toolkit (http://sourceforge.net/projects/lpsolve/). The

biomass equation defined for E. coli K12 in their iJR904

reconstruction [38] was used as the objective function to maximize

in FBA simulations, in both ancestral and extant metabolic

networks of S. glossinidius. Maximum oxygen uptake rate was fixed

to 20 mmol grDryWeight21 hr21 whereas unconstrained uptake

for ammonia, water, phosphate, sulphate, potassium, sodium, iron

(II), carbon dioxide and protons was set in concordance with the E.

coli K12 iJR904 metabolic network. All other external metabolites,

except the carbon source, were only allowed to leave the system by

fixing the lower bound of their corresponding exchange reactions

to zero.

Robustness analysis
Network robustness of E. coli K12 iJR904 and S. glossinidius

ancestral and extant metabolic networks was evaluated in two

different ways. First, the effect of gene deletions over biomass

production rates was compared in the metabolic networks of S.

glossinidius and E. coli K12 with the function singleGeneDeletion of the

COBRA toolbox, limiting the flux over the reactions catalyzed by

the deleted gene to zero and calculating biomass production rates

in the resulting knockout network. Second, double gene deletion

simulations were carried out on non-essential gene pairs, defined

in the single knockout simulations with the function doubleGeneDele-

tion of the COBRA toolbox in order to identify synthetic lethal

pairs. Non-essential genes are defined as genes with less than 1%

of biomass production of the maximum theoretical biomass yield.

For comparative purposes, similar single knockout simulations

were carried out with two genome-scale metabolic networks of B.

aphidicola; BAps, corresponding to B. aphidicola from the pea aphid

A. pisum (BAps) [31] and BCc, corresponding to B. aphidicola from

the cedar aphid Cinara cedri, obtained from BAps by removing

reactions catalyzed by absent genes in BCc and adjusting the

composition of the corresponding biomass equation.
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Reductive evolution simulations
To study the possible future evolution of S. glossinidius in the

context of the reductive evolutionary process, simulations of

reductive evolution were carried out on the S. glossinidius extant

network to define minimal reactions and gene sets able to support

cellular growth in terms of biomass production under different

external conditions. The simulations were carried out as follows.

Starting with the extant metabolic network of S. glossinidius, a

randomly chosen reaction was removed from the network by

setting the flux through this reaction to zero, and its impact on the

metabolic system was evaluated by FBA. If biomass production in

the deleted network was above a given cutoff, the reaction was

considered as non-essential and was removed permanently,

together with its corresponding genes. In contrast, if the biomass

production rate over the deleted network was below a given cutoff,

the reaction and its corresponding genes were considered essential

and were retained in the reduced network. This procedure was

repeated progressively until all network reactions were evaluated.

Three different cutoffs were considered in terms of the biomass

production rate for defining a reaction as essential or non-essential

(0.1, 0.01, and 0.05 of the original biomass production rate), and

for each cutoff, 500 simulations were carried out. In order to have

independent minimal networks in each simulation, the vector of

network reactions was randomly permuted in each reductive

evolution simulation.

Simulations were performed under two different external

conditions in terms of the metabolites available for uptake in

FBA simulations. First, nutrient-limited conditions with only

glucose and L-arginine as external metabolites, and second,

nutrient-rich conditions with 41 external metabolites available

for uptake for which the S. glossinidius extant network has a

functional transport system (See Table S6). These external

metabolites were adapted from a previous study by Pal and

collaborators [34] where the gene content of W. glossinidia was

simulated with high accuracy from the E. coli K12 iJR904

metabolic network, with external metabolites mimicking the

environment of tsetse host tissues. The lower bounds of the

corresponding exchange reactions were fixed to 26 mmol gr

DryWeight21 hr21 to allow their presence in the extracellular

compartment in FBA simulations.

Figure 4. Network reconstruction protocol. Schematic representation of the reconstruction of ancestral and extant genome-scale metabolic
networks of S. glossinidius. For a detailed explanation of the protocol, see Methods S1.
doi:10.1371/journal.pone.0030652.g004
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At the end of the simulations, 1500 minimal networks were

obtained in each condition, and their corresponding gene content

was compared, in order to characterize two different gene sets: i)

genes present in all minimal networks in each condition, which can

be considered as essential genes for the functionality of the

metabolic system; and ii) genes absent in all minimal networks,

which can be considered as non-essential or disposable genes that

can be always removed without affecting system functionality.
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