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Abstract

In the last decade, an extensive effort has been made to characterize the human

intestinal microbiota by means of SSU rRNA gene sequence and metagenomic

analysis. Relatively few studies have followed intestinal bacterial communities

over time to assess their stability in the absence of perturbation. In this study,

we have monitored the faecal bacteria of three healthy subjects during 15

consecutive days. The global community structure was analysed through SSU

rRNA gene sequencing. In agreement with previous studies, we found that the

between-subject variation in community structure was larger than within. The

composition was fairly stable throughout, although daily fluctuations were

detected for all genera and phylotypes at 97% of sequence identity. While the

core shared between subjects was very small, each subject harboured a stable

high-abundance core composed of a small number of bacterial groups (9% of

the phylotypes accounted for between 74% and 93% of the sequences). This

may suggest that studies aimed at linking the microbiota composition with

disease risk should be limited to the numerically most dominant phylotypes,

as the rest appears transient. Networks of potential interactions between

co-occurring genera were also subject-specific, even for the same bacterial genus,

which might be reflecting host-specific selective pressures and historic events.

Introduction

The human large intestine is colonized by complex

microbial communities with several hundreds of species

and the highest cell densities of all human-associated

microbiota. Functions of the gut microbiota include assis-

tance in nutrient digestion, colonization resistance to

pathogens and regulation of host metabolism and

immune system (Guarner & Malagelada, 2003; Turnb-

augh et al., 2006; Kelly et al., 2007; Neish, 2009; Qin

et al., 2010). The gut has been traditionally considered

sterile at birth and rapidly colonized by bacteria of mater-

nal origin, but recent studies have shown that meconium,

the earliest stools of a newborn, composed of materials

ingested during the stay in the uterus, is nonsterile (Jimé-

nez et al., 2008). Over the first years of life, an ecological

succession takes place that culminates in the complex

adult pattern (Favier et al., 2002; Palmer et al., 2007).

Then, it is generally accepted that, in the absence of per-

turbation, the adult human gut microbiota is composed

of stable climax communities inhabiting the different

niches found along and across the intestine.

Many factors are known to influence the structure of

the microbiota of adult humans, such as host genotype

(Ley et al., 2005; Khachatryan et al., 2008; Benson et al.,

2010), disease (Turnbaugh et al., 2006; Qin et al., 2010),

diet (Harmsen et al., 2000; De Filippo et al., 2010) and

stochastic events such as colonization history (Mulder

et al., 2009) and external disturbances (De La Cochetiere

et al., 2005; Dethlefsen & Relman, 2010; van Vliet et al.,

2009). Modifications of the gut microbiota have also been

reported in older people related to physiological changes

associated with ageing (Woodmansey, 2007; Claesson

et al., 2010). However, little is known about the short- and
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long-term effects that these factors may have in the com-

position of the microbiota. To assess the response of the

gut microbiota to external perturbations or its role in

pathologic states, it is important to know first the ‘nor-

mal’ temporal dynamics of this ecosystem.

Human faecal communities have been considered stable

because the temporal variation found within individuals

is smaller than between individuals. The stability has typi-

cally been examined with several samples collected at

intervals of weeks or months, finding that the microbiota

of healthy individuals remains fairly constant over these

long time intervals (Franks et al., 1998; Zoetendal et al.,

1998; Vanhoutte et al., 2004). However, some variation

has been found in the abundance of certain taxa, while

others remain more constant (Vanhoutte et al., 2004).

Recently, studies of the temporal variation using shorter

time periods confirmed the stability of the community

composition at a lower phylogenetic level but also

revealed a high degree of dynamics, with relatively large

fluctuations around the average level (Dethlefsen et al.,

2008; Dethlefsen & Relman, 2010; Caporaso et al., 2011).

Ecological interactions between the members of gut

communities, like nutritional associations, niche adapta-

tion, growth stimulation, resource competition, and inter-

ference mechanisms, also contribute to the shape and

stability of these ecosystems. Despite its importance, little

is known about the relationships between gut bacteria. A

first step for the study of these interactions is searching

for patterns of co-occurring bacteria. This can be carried

out with cross-sectional studies (see e.g. Arumugam et al.,

2011) or with longitudinal ones as well (this study). The

latter are helpful to control for the high level of interper-

sonal variation in the community assembly as the same

ecosystem is followed over time.

We are interested in the short-term intrinsic temporal

dynamics of human intestinal microbiota, as well as in

the potential interactions between the community mem-

bers. The objectives of the present study were to analyse

the daily variation in the community structure of faecal

bacteria from three healthy subjects over 2 weeks and to

assess correlations between shifts in the relative abun-

dance of specific bacteria to reconstruct potential interac-

tion networks.

Materials and methods

Subjects’ characteristics

Three White male volunteers (hereinafter referred to as

individuals A, B and C) provided faecal samples daily

over a period of fifteen consecutive days. All participants

gave prior informed written consent to the study proto-

col, which was approved by the Ethics Committee of

Hospital Universitario La Fe (Valencia, Spain). A, B and

C were 40, 39 and 29 years old, respectively. A was nor-

mal weight, B and C were obese class I according to the

body mass index (BMI; 30 � BMI < 35). None had a

history of gastrointestinal disease or systemic comorbidi-

ties, recent (in the last 3 months) treatment with antibi-

otics, immunomodulating therapy, antidiarrhoeal

medication or laxatives. They followed a Mediterranean

diet that remained unchanged throughout the follow-up.

Sample collection and DNA extraction

Faecal samples were self-collected by the volunteers in the

morning in tubes containing phosphate-buffered saline

(PBS) and stored in their home freezers until its release.

Afterwards, samples were stored at �80 ºC until further

processing. Before DNA extraction, samples were resus-

pended in PBS and centrifuged at low speed to remove

faecal debris as far as possible. Then, DNA was extracted

from supernatants using the QIAamp DNA Stool Mini

Kit (QIAGEN) and its protocol for isolation of DNA for

pathogen detection.

PCR amplification and sequencing of bacterial

16S rRNA genes

The 16S rRNA genes were amplified using the broad

range bacterial primers B8F (5′-AGAGTTTGATCM-

TGGCTCAG-3′) and B357R (5′-TGCTGCCTCCCGTAG-
GAGT-3′) modified with the 454 Life Sciences adaptors A

and B, respectively, and with barcodes to tag each PCR

product. The PCR conditions were 5 min of initial

denaturation at 95 °C followed by 20 cycles of denatur-

ation (30 s at 95 °C), annealing (30 s at 52 °C) and elon-

gation (30 s at 72 °C). PCR products were purified by

filtration, and equal amounts of the PCR products from

different samples were pooled. The mixtures were sent for

pyrosequencing with primer A on a 454 sequencer using

the GS FLX chemistry for samples of subject A and the

GS FLX Titanium chemistry for samples of subjects B

and C (Roche). This was due to the change in the

sequencing chemistry while the study was ongoing.

Sequence analysis

Sequences with low-quality scores (< 20) and short read

lengths (< 200 nt for samples of subject A and < 250 nt

for samples of subjects B and C) were removed. The

remaining sequences were checked for potential chimeras

using the chimera.slayer tool incorporated into the

MOTHUR software (Schloss et al., 2009). The taxonomic

affiliation of the sequences was determined using the clas-

sifier tool of the Ribosomal Database Project-II (RDP)
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with a bootstrap cut-off of 70% (Cole et al., 2007, 2009).

Sequences were clustered at 97% of sequence identity

using the cluster tool of the USEARCH 5.0 package (Edgar,

2010). Input sequences to cluster were previously sorted

by decreasing abundance as recommended for 16S

sequences. The resulting phylotypes were used to study

sample composition at the ‘species’ level.

Statistical analyses

Exploratory statistical analyses

We assessed the differences between and within subjects

according to the bacterial composition using correspon-

dence analysis (CA) and analysis of similarities (ANOSIM)

at genus and phylotype levels (Quinn & Keough, 2002;

pp. 459 and 484, respectively) as implemented in the

VEGAN package (Oksanen et al., 2010) for the statistical

environment R (R Development Core Team, 2010). We

also computed the Chao1 index of richness and the Shan-

non’s index of biodiversity for each of the 45 samples at

both genus and phylotype levels. This was performed with

the QIIME pipeline (Caporaso et al., 2010), resampling

1000 times from each daily sample using the smallest

sample size of all samples.

Multivariate time series modelling

From a statistical point of view, the data on daily taxa

abundances can be regarded as a multivariate time series.

The potential interactions between taxa are expected to

be reflected in the correlations between taxa, but also

some temporal correlation is expected to be present in

the data. In other words, if Yit represents the matrix with

the number of sequences of taxon i = 1,…, n found in

the sample collected on day t = 1,…, T for a given indi-

vidual, both rows and columns present correlation struc-

tures of different nature. Abundances in a given row are

likely to be affected by temporal correlation, whereas

values in a specific column may be subject to the correla-

tions generated by the underlying interactions between

taxa. To model both correlation structures simulta-

neously, we applied a Bayesian hierarchical model to the

follow-up data for each individual.

Our model specification is as follows. Let Yt = (Y1t,…,

Ynt)′ be the taxonomic distribution of sequences on day t.

Our model first assumes that Yt follows a multinomial

distribution

Yt �Multinomial ðpt ;NtÞ

where Nt is the total number of sequences on day t and

pt = (p1t,…, pnt)′, pit being the unknown proportion in

which taxon i is present in the community on day t. The

proportions pit are in turn decomposed, on the log-odds

scale, into

logðpit=ð1� pitÞÞ ¼ ai þ mit þ eit

where ai is a taxon-specific intercept that picks up the

average relative abundance of taxon i over the

T = 15 days, and mit and eit are random effects intended

to pickup time structured and unstructured variation,

respectively. To this end, we chose a normal prior distri-

bution for eit and a multivariate random walk of order

one for mt, t = 1,…, T

mt jmt�1 �MVNðmt�1;RÞ

where Σ is the n 9 n variance-covariance matrix between

taxa abundances. For convenience, we take m0 = 0n91.

This conditional specification is a particular case of the

intrinsic multivariate conditional autoregressive (MCAR)

models (Kim et al., 2001; Gelfand & Vounatsou, 2003),

for which the full conditional distribution is

mt j m1; . . .; mt�1; mtþ1; . . .; mT

�
MVNðmtþ1;RÞ t ¼ 1

MVN mt�1þmtþ1

2 ; R2
� �

t ¼ 2; . . .;T � 1

MVNðmt�1;RÞ t ¼ T

8>><
>>:

that is, mt follows a multivariate normal distribution cen-

tred in the average of its temporal neighbours and vari-

ance-covariance matrix inversely proportional to the

number of neighbours. The joint distribution of m = (m11,
…,mn1,m12,…,mn2,…,m1T,…,mnT)′ is a zero-mean multivari-

ate normal distribution with precision matrix Ω =
(D � W) ⊗ Σ �1, where W is a T 9 T matrix with
Wtt′ = 1 if time points t and t′ are adjacent and Wtt′ = 0
otherwise, D is a T 9 T diagonal matrix with Dtt equal to
the number of neighbours of time point t (i.e. D11 =
DTT = 1 and Dtt = 2 ∀ t = 2,…,T � 1) and ⊗ represents
the Kronecker product for matrices. The matrix D � W is
singular, which makes this distribution improper. However,
with our choice of W and D, Ω satisfies the
so-called symmetry condition that ensures propriety of the
posterior. In practice, this impropriety is overcome using
the proper full conditionals for mt and imposing n sum-to-
zero constraints. See for example Banerjee et al. (2004,
pp. 247–251) for further details.

We fitted our model using Markov chain Monte Carlo

(MCMC) simulation techniques as implemented in the

WINBUGS software (Lunn et al., 2000) and the R2WIN-

BUGS package (Sturtz et al., 2005) for the R statistical
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software (R Development Core Team, 2010). We ran two

chains with 50 000 iterations, discarded the first 10 000

as burn-in and kept every 40th to reduce autocorrelation

in the chains. Therefore, inference for each parameter is

based on a thinned sample of size 2000 from its posterior

distribution.

Exploring putative interactions between taxa
with Graphical Gaussian Networks (GGN)

GGNs (Schäfer & Strimmer, 2005a,b) have been used to

recover gene regulation network structures using gene

expression data as input. They aim at predicting interac-

tion networks between genes. Here, however, we apply

for the first time GGNs to explore patterns of association

between taxa using the partial correlations between their

abundance profiles. A strong partial correlation between

two species is indicative of some form of association. The

estimation of that matrix is tricky because typically it is

sparse and has large dimensionality. GGNs however allow

to estimate efficiently the partial correlation matrix from

the variance-covariance matrix. We therefore applied

GGNs to the covariance matrix Σ (which measures

covariances between taxa abundances on the log-odds

scale) obtained with the above Bayesian model to infer a

network of potential associations between taxa. This was

performed using R package CORPCOR (Schäfer et al.,

2010). The statistical significance of the estimated partial

correlations was performed using the algorithms pro-

posed by Opgen-Rhein & Strimmer (2007). The idea is

to model the partial correlations with a mixture of two

components. The first component tries to capture the

null partial correlations, whereas the second component

intends to pickup the sizeable ones. Opgen-Rhein &

Strimmer (2007) suggest a method to estimate the mix-

ture components and also a ‘local false discovery rate’

(LFDR) procedure to assess the statistical significance of

each partial correlation. They show that their methods

perform very well both in simulations as well as in appli-

cation to large-scale real expression data in the context of

gene association networks. We applied these methods as

implemented in the R package GENENET (Schaefer et al.,

2009). These analyses were carried out for each individual

separately.

The output is a graph, with nodes corresponding to

taxa and edges representing statistically significant partial

correlations between taxa (taking as such that the proba-

bility, 1-LFDR, for the partial correlation to be different

from zero is above 0.95). Graphics were generated with

the R package RGRAPHVIZ (Gentry et al., 2008).

The nonredundant sequences from this study have

been deposited in the GenBank database under the acces-

sion numbers JN547818–JN555583.

Results

After sequencing all 45 samples, we obtained an average

of 1500 sequences per sample for A, 4165 for B and 6510

for C. The average read length was approximately 250 nt

in A and approximately 350 nt in B and C. The differ-

ence in the read length is the result of the slightly differ-

ent sequencing technologies employed for subject A and

subjects B and C, but in both cases, the variable regions

V1 and V2 of the 16S rRNA gene were covered. The

comparison between subjects could be affected by the

potential bias introduced during the PCR by the different

sequencing adaptors or the impact of the read length in

the taxonomic assignment. However, we think that the

impact on the estimate of the variation between subjects

would be small, and none on the analysis within each

subject, which is our main objective.

The Chao1 index of richness indicated a good coverage

for most samples at genus level (Table S1). The coverage

values decreased at phylotype level, with larger differences

between observed and expected number of OTUs

(Table S2).

Between-subject variation

Most members of the sampled communities belonged to

a small number of genera within the Bacteroidetes phy-

lum (61% of the sequences on average in samples from

A, approximately 86% in B and C) and the Firmicutes

phylum (26% in A, approximately 10% in B and C). The

composition of the faecal microbiota of B and C was

quite similar from phylum to genus levels. At the genus

level, samples from A were dominated by Alistipes (23%),

Bacteroides (22%), several genera of Porphyromonadaceae

such as Barnesiella (8%) and Parabacteroides (2%), and

several genera of Ruminococcaceae such as Faecalibacteri-

um (4%) and Oscillibacter (2%; Fig. 1a). Samples from B

and C were dominated by Prevotella (76% in B and 72%

in C), Bacteroides (5% in B and 12% in C) and beta-

proteobacteria of the genus Sutterella (approximately 3%;

Fig. 1b and c).

At a finer taxonomic scale (phylotypes defined at 97%

of sequence identity), the faecal microbiota was highly

specific to each individual. About half of the phylotypes

detected in each subject were exclusive to him, whereas

20% were shared with the other two subjects. The greater

similarity between B and C was also seen at this level, as

they had more phylotypes in common than each of them

with A. Most of the sequences were concentrated in a

small fraction of the phylotypes. Thus, 11% of the phylo-

types in A and 4% of the phylotypes in B and C had a

relative abundance of at least 5&, and all together

accounted for 86%, 80% and 89% of their respective
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number of sequences. The most prevalent genera in A,

Alistipes, Bacteroides and Barnesiella, had 9%, 10% and

3% of the total number of phylotypes, whereas only

16% of the phylotypes in B, and 10% in C, belonged to

Prevotella.

Between-subject differences in the community structure

were larger than dissimilarities between samples from the

same subject. Therefore, CA plots clearly discriminated

the samples of the three subjects at genus and phylotype

levels (Fig. 2). The first CA axis separated A from B and

C, and the second separated B from C. The ANOSIM

found significant differences between subjects (genus

level: R = 0.686, P = 0.001; phylotype level: R = 1, P =
0.001). At genus level, the between-subject median rank

of distances between samples was 1.5 times that of within

A and 4 times that of within B and C. At phylotype level,

between-subject variation was 2.6, 4.5 and 8.6 times that

of within A, B and C, respectively, thus reflecting even

larger differences in microbiota composition between

individuals at this finer taxonomic resolution.

(a) (b)

(c) (d)

Fig. 1. Daily fluctuations in the relative abundance of the main bacterial genera (average abundance� 5&) in subjects A (a), B (b) and C (c).

Daily variation in the bacterial diversity (Shannon index) at genus and phylotype levels (d).
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Within-subject variation

The communities experienced daily fluctuations in the

bacterial diversity according to the Shannon index

(Fig. 1d and Tables S1 and S2), although these values

varied around a constant level. This is consistent with the

fact that the structure of the sampled faecal communities

remained quite stable over time. Relative abundances

showed daily fluctuations for all genera but no temporal

trends were observed (Fig. 1a–c). All genera with an

abundance of at least 5& were permanent members of

the communities, whereas genera with prevalence below

that threshold were sometimes lost and recovered,

although some were constantly present too. The taxa with

the highest prevalence showed the lowest relative fluctua-

tions in time. In A, Alistipes, Bacteroides and Barnesiella

experienced an average daily relative change of 2.9%,

3.8% and 6.4% in their abundances, respectively, whereas

in B and C, the average daily relative variation in Prevo-

tella was of approximately 1.8%.

At a subgeneric level, a reduced number of phylotypes

were constantly detected throughout within each subject

(Fig. 3a, which shows the number of phylotypes detected

on just 1 day, on 2 days, etc.). The individual-specific

core (phylotypes detected all the days during the study

period) comprised 38 phylotypes in A, 56 in B and 44 in

C, which corresponded to approximately 9% of the total

number of phylotypes within each subject. Conversely,

most of the phylotypes detected within each subject were

found in a few days only (Fig. 3a). The core phylotypes

(a)

(b)

Fig. 2. Correspondence analysis at genus (a) and phylotype (b) levels.

Percentages correspond to the fraction of inertia explained by each

axis.

(a)

(b)

Fig. 3. Community structure at phylotype level in subjects A, B and C.

Occurrence of phylotypes during the 15-day study period, that is,

number of phylotypes detected on just 1 day, on 2 days, etc. (a).

Combined average relative abundance of phylotypes detected on just

1 day, on 2 days, etc., computed over all samples where they occur (b).
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belonged to the most prevalent genera and accounted for

most of the sequences in the samples (74% of the total

number of sequences in A, 90% in B and 93% in C;

Fig. 3b, which shows the cumulative percentage of

sequences belonging to phylotypes detected on just 1 day,

on 2 days, etc.). Again, phylotypes showed fluctuations in

their abundance over time, but the trend was constant.

Only 0.2% of the phylotypes were detected in all subjects

all days during the follow-up, while 2.6% of the phylo-

types were simultaneously detected throughout in the

more similar subjects B and C. With a less restrictive def-

inition of the bacterial core, we found that 0.5% of the

phylotypes was detected in all three subjects in at least 13

out of 15 days.

Correlations between co-occurring genera

Using GGN, we built interaction networks from the statis-

tically significant partial correlations between genera esti-

mated with the Bayesian model. These networks are

represented in a graph, where nodes correspond to genera

and edges represent interactions (Fig. 4 shows the

(a)

(c)

(b)

Fig. 4. Gaussian graphical networks representing the interactions between genera within subjects A (a), B (b) and C (c). Red and blue edges

represent positive and negative partial correlations, respectively. Yellow nodes are those of genera with an average relative abundance � 5&.

Genera for which no significant partial correlations were found are not shown in the networks.
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subgraphs of the networks including the statistically

significant correlations). Most genera showed correlations

with a small number of other genera, while a small number

of genera were correlated with many. The main compo-

nents of the faecal communities scarcely correlated with

other genera. For instance, Alistipes correlated (positively)

only with Barnesiella in A. Prevotella was negatively corre-

lated with Alistipes in B, and with no genus in C. Bactero-

ides, the second genus in abundance, was correlated with

five, three and two genera in A, B and C, respectively. The

most connected genera were Paraprevotella in A, Faecali-

bacterium, Alistipes and Odoribacter in B, and Coprococcus,

Escherichia/Shigella and Blautia in C. No significant corre-

lations were found for many of the genera in the samples.

The sign of the correlation did not depend on the

degree of phylogenetic relatedness. Both positive and

negative correlations were found between closely and dis-

tantly related genera. For example, in subject A, Parapre-

votella (Bacteroidetes-Bacteroidia-Bacteroidales-Prevotellaceae)

had a positive correlation with Odoribacter and a nega-

tive correlation with Barnesiella, two genera within

Bacteroidetes-Bacteroidia-Bacteroidales-Porphyromonadaceae.

In subject C, Butyricimonas (Bacteroidetes-Bacteroidia-Bac-

teroidales-Porphyromonadaceae) had a positive correlation

with Blautia and a negative correlation with Coprococcus,

two genera within Firmicutes-Clostridia-Clostridiales-

Lachnospiraceae.

The patterns of correlations were highly subject-

specific, even for B and C, in which the community

structure was quite similar. Typically, the same genus cor-

related with different genera in different individuals. For

example, in subject B, Bacteroides co-occurred with

Odoribacter, while in subject C, it co-occurred with Para-

bacteroides and Alistipes. Only five pairwise correlations

were found in more than one individual: Bacteroides-Odo-

ribacter (A and B), Bacteroides-Parabacteroides (A and C),

Odoribacter-unclassified Proteobacteria (A and B), Copro-

coccus-Ruminococcus (A and C) and Blautia-unclassified

Lachnospiraceae (A and C). Furthermore, nine pairwise cor-

relations were positive in one subject but negative in

another: Blautia-Coprococcus, Blautia-Dorea, Blautia-Rumino-

coccus, Eubacterium-Ruminococcus, Coprococcus-Ruminococcus,

Coprococcus-unclassified Porphyromonadaceae, Bacteroides-

Subdoligranulum, unclassified Bacteroidales-unclassified Por-

phyromonadaceae and Odoribacter-unclassified Veillonellaceae.

We did not find a relationship between the diversity of

the community and the complexity of the associated inter-

action network. Even though the bacterial community of

A was the most diverse at genus level (Shannon index

2.3), and the ones of B and C harboured a similar diver-

sity (Shannon index 1.1), the highest number of genera in

the network and the largest average number of links per

genus were observed in B and the lowest ones in C.

Discussion

In this study, we have monitored the faecal bacterial

communities of three subjects during fifteen consecutive

days. We analysed the daily variation in the composition

of the microbiota and the degree of stability of specific

members of the community. The analysis of the time ser-

ies also revealed the patterns of correlations between the

abundance profiles of specific bacterial groups, thus indi-

cating potential cooperative and competitive interactions

between them.

In accordance with current knowledge of the human

gut microbiota, we found that the faecal microbiota is

host-specific and fairly stable in the absence of perturba-

tion, the within-subject variability being much smaller

than between subjects (Franks et al., 1998; Zoetendal

et al., 1998; Vanhoutte et al., 2004; Dethlefsen & Relman,

2010; Caporaso et al., 2011). The level of prevalence of

the predominant members of the faecal communities of

our three study subjects was sustained over time, with

abundances fluctuating around constant average values.

This also held true for less abundant members, although

some of them were not persistently found in our sam-

pling. Additionally, a considerable number of bacterial

groups were detected at very low abundance in one or

few samples across the time series, probably representing

transient members of the communities. Similar observa-

tions were made at genus and phylotype (97% of iden-

tity) levels.

Two previous studies have examined the daily variation

of the faecal microbiota using high-throughput sequenc-

ing technologies to study the temporal dynamics at

subgeneric levels. Dethlefsen & Relman (2010) monitored

the response of faecal microbiota to antibiotic perturbation

in three subjects and took daily samples in the periods

surrounding each antibiotic course. They found that just

a few OTUs maintained uniform abundance, even in the

antibiotic-free intervals. Caporaso et al. (2011) sampled

daily three body sites, including faeces, in two healthy

subjects for 15 and 6 months, respectively. They reported

that only a small fraction of the OTUs within a single

body site was present across all or nearly all time points,

and from this, the authors conclude that a minimal tem-

poral core exists. In a shorter temporal window, Booijink

et al. (2010) detected morning–afternoon variation in

human ileal microbiota that exceeded the fluctuations

between samples collected at the same time point of the

day. We found that only a small fraction of the 97%

OTUs in our samples was systematically present through-

out the follow-up (9% of the total number of OTUs

within each subject). However, as their combined

abundance is high (74%, 90% and 93% in subjects A, B,

and C, respectively), we consider that a high-abundance

ª 2012 Federation of European Microbiological Societies FEMS Microbiol Ecol 81 (2012) 427–437
Published by Blackwell Publishing Ltd. All rights reserved

434 A. Durbán et al.



core faecal microbiota exists also at the subgeneric level.

In our view, these evidences are indicative of a dynamic

ecosystem with a stable core. These findings may also

suggest that studies aimed at linking the prevalence of

specific phylotypes with environmental exposures and/or

disease risk should be limited to the numerically most

dominant phylotypes, as the rest appears transient.

The bacterial communities sampled in this study dif-

fered not only on the basis of their composition, but also

in the correlation patterns found between their members.

Barely, a few of the correlations were shared between

subjects. The vast majority of genera usually correlated

with others that varied between subjects, even when the

community composition was quite similar (subjects B

and C). Furthermore, correlations of opposite sign were

detected for some pairs of genera in different subjects.

This disparity of community assemblies could imply that

each individual may be offering somewhat different

niches to gut bacteria (regarding pH, temperature, secre-

tions, retention time, etc.) in which the same species can

establish different microbial interactions, even though the

gut environment is overall similar in all subjects. At the

same time, the identity of the interacting bacteria could

be affected by host selection of commensal/mutualistic

microorganisms, as well as by the order in which they

arrive in colonization processes and selection by already

established microorganisms (Van den Abbeele et al.,

2011). Because of the functional redundancy, several

microorganisms can potentially occupy a specific niche

within the intestinal habitats. The first ones to arrive can

be established and then select for cooperating or nonover-

lapping microorganisms, as well as exclude competitors.

Related to this, Mulder et al. (2009) found a long impact

of early life colonization on the intestinal community

composition in pigs. Functional studies would be needed

to disentangle the biological meaning of the correlations

detected between abundance profiles.

We used a Bayesian model to estimate the covariance

matrix between relative abundances of taxa (on the log-

odds scale), while accounting for the temporal autocorre-

lation in those. The posterior mean of the covariance

matrix Σ (estimated using all the samples of a given indi-

vidual) was used to estimate the partial correlation matrix,

which was in turn the input for the GGN-based methods

to detect associations between taxa. Although these meth-

ods cope well with sparse matrices of relatively large

dimension, some of the statistically significant associations

we found involve taxa with low relative abundances,

which makes difficult any biological interpretation.

The persistent diversity and individuality of human gut

communities can be explained by a combination of

factors that vary between individuals, such as host geno-

type and diet, but also less predictable events, such as the

colonization history during the community assembly and

external perturbations with long-term effect on gut

microbiota (Dethlefsen et al., 2006), an example of which

is antibiotic treatment. Several studies evaluating its effect

on gut microbiota have found an important loss of diver-

sity followed by a rapid return to the pretreatment com-

munity composition. The ability of these communities to

recover their original structure suggests the existence of

selective forces shaping them (De La Cochetiere et al.,

2005; Dethlefsen & Relman, 2010). Also, the microbiota

itself is thought to account for some of its diversity

through the modification of intestinal niches and the

interactions established between their members (Dethlef-

sen et al., 2006; Van den Abbeele et al., 2011). Our data

suggest that specific microbial interactions are set within

each individual, which may be an important factor

contributing to the interindividual variability and the

temporal stability of the gut microbiota.

Recently, Arumugam et al. (2011) identified three main

types of microbial assemblies (called enterotypes) in

human gut after clustering faecal samples obtained in dif-

ferent studies based on their species composition or gene

pools. Incidentally, we noticed that subjects B and C in

our study, the obese ones, can be included in the entero-

type enriched in Prevotella. Looking further into Arumu-

gam’s analysis of the pyrosequencing-based 16S rRNA

gene samples from Turnbaugh et al. (2009), we noticed

that 17 of the 20 individuals of the Prevotella-enriched

enterotype were obese, whereas 87 of the 134 individuals

classified in the other enterotypes were so. This gives

(using the EPITOOLS R package, Aragon, 2010) a statisti-

cally nonsignificant odds ratio OR = 3.04 (P = 0.1221) of

association between this enterotype and obesity. Adding

our three subjects to the corresponding cells (19 obese

out of 22 in the Prevotella enterotype and 87 of 135 in

the other ones), we obtained an OR = 3.47 (P = 0.0498),

which begins to be more supportive of a potential link

between the Prevotella enterotype and some type of obes-

ity. Further studies are needed to confirm this marginal

finding and to assess whether the link is owing to the

Prevotella themselves or there are other genera involved.

Recently, De Filippo et al. (2010) compared the microbiota

composition in African and European children and found

that the former showed communities rich in Prevotella.

They argue that perhaps this genus is more efficient in

extracting energy from polysaccharide-rich food. In a

low-calorie diet, this may be useful to survive, but other-

wise, it may lead to obesity.

Recent studies showed that despite the variation in

community structure between subjects (Turnbaugh et al.,

2009) and the compositional normal fluctuations detected

over time and the shifts owing to disturbances (Dethlef-

sen & Relman, 2010), the overall community function
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seems to be maintained, which is indicative of functional

redundancy among individual members and consortia

within the gut microbiota. Like in the compositional case,

fluctuations are likely to be observed when analysing the

functionality of the members of the gut microbiota,

despite the stability mentioned above. This is because

metabolic functions are probably more susceptible to

changes because of the dynamic factors such as resource

availability, external perturbations, stressors or host physi-

ology at the moment of sampling. Longitudinal studies of

expression patterns within a subject under different condi-

tions may help to better understand the contribution of

gut microbiota to human nutrition and well-being.
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