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Abstract: Protein complexes are classified and have been charted in several large-scale 
screening studies in prokaryotes. These complexes are organized in a factory-like fashion 
to optimize protein production and metabolism. Central components are conserved 
between different prokaryotes; major complexes involve carbohydrate, amino acid, fatty 
acid and nucleotide metabolism. Metabolic adaptation changes protein complexes 
according to environmental conditions. Protein modification depends on specific 
modifying enzymes. Proteins such as trigger enzymes display condition-dependent 
adaptation to different functions by participating in several complexes. Several bacterial 
pathogens adapt rapidly to intracellular survival with concomitant changes in protein 
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complexes in central metabolism and optimize utilization of their favorite available 
nutrient source. Regulation optimizes protein costs. Master regulators lead to up- and 
downregulation in specific subnetworks and all involved complexes. Long protein half-life 
and low level expression detaches protein levels from gene expression levels. However, 
under optimal growth conditions, metabolite fluxes through central carbohydrate pathways 
correlate well with gene expression. In a system-wide view, major metabolic changes lead 
to rapid adaptation of complexes and feedback or feedforward regulation. Finally, 
prokaryotic enzyme complexes are involved in crowding and substrate channeling. This 
depends on detailed structural interactions and is verified for specific effects by 
experiments and simulations. 

Keywords: metabolites; protein complexes; prokaryotes; crowding; channeling;  
S. aureus; E. coli  

 

1. Introduction 

In cells, proteins often occur together with other proteins in protein complexes. The proteins in 
these complexes often interact to fulfill their function. In this review, the aim is to explore how 
complexes interact from the aspect of systems biology, how they adapt to changes in the environment 
and how this is connected to metabolism and its regulation, including crowding and channeling effects.  

In general, for a comprehensive view on protein complexes, a large amount of data, integrated 
models and comparative biology on various species is required [1–7]. This is now possible as, for the 
first time, there is sufficient data for a comprehensive systems-level view on how metabolic adaptation 
is accomplished [1]. In this review, we illustrate how protein complexes help to establish order and 
improve adaptation in the prokaryotic cell, particularly in regards to metabolism. 

Large-scale data are critical for a comprehensive view on protein complexes and metabolic 
adaptation, hence we first provide a view on different large-scale screening studies on protein 
complexes in prokaryotes [3–7]. Each of these studies brought up new complexes and there are 
certainly more surprises in stock. These studies classified protein complexes and are also a useful 
pointer to detailed catalogs of prokaryotic proteins, interactions and protein complexes and 
connections to metabolism. An interesting insight are super-complexes connecting complexes. They 
organize the cell in a factory-like fashion to optimize protein production and metabolism [4]. Here, 
central components are conserved between different prokaryotes [8]. 

We then look at the connections between metabolic adaptation and protein complexes. Proteins 
such as trigger enzymes display in a condition-dependent fashion two (or more) different functions by 
participating in several complexes [9]. Intracellular pathogens utilize different metabolites in their 
respective niche with rapid adaptation of metabolism and involved protein complexes [1]. Prokaryotic 
regulatory strategies ensure optimal mRNA and protein half-life as well as optimal growth under 
different environmental and niche conditions [10]. 

A system-wide, global view on prokaryotic protein complexes shows rapid adaptation supported by 
system shifts promoted by protein switches (e.g., central transcription regulators) and feedforward and 



M
 
f
m

f
b
e

h

2

2

h
p
b
s
F
o
c

Metabolites 

feedback loo
more data to

Protein c
framework i
been studied
effects medi

Rapid gr
help to organ

2. Results a

2.1. Protein 

To under
has to look f
proteins wh
between per
specific inte
Furthermore
outside. The
components

Well-c
connec
interac

2012, 2  

ops [7]. Tho
o really und
complexes a
in the proka
d for a long
iated by pro
rowth and s
nize metabo

and Discuss

Complexes

rstand how p
first at suita

hich are we
rmanently 
eractions a
e, for all pr
e accessory 
 in various 

onnected (bl
cted all the t
tions, but on

 

ough some 
erstand syst
are also ver
aryotic cell, 
g time, we a
otein comple
swift adapta
olism and a

sion 

s in Central 

protein com
able large-sc
ll connecte
well-conne

are reserved
rotein comp
component
complexes,

F

lack lines) p
time (interac
nly few or on

         

examples m
tem-wide re
ry effective 
e.g., for me

also provide
exes. 
ation are ha
daptation to

Metabolism

mplexes are 
cale studies
d in protein
cted “party
d for small
plexes, there
ts may eithe
, or are only

Figure 1. P

proteins (grey
ctions repres
ne at a time (d

may be char
egulation of

on a molec
etabolism [2
e recent dat

allmarks of
o efficiently

m 

organized a
s on protein
n complexe

y” hubs an
l time slot
e are centra
er be adapto
y accessory 

Proteins and

y circles) are
ented by sol
dashed lines)

 

rted, it is cl
f prokaryoti
cular struct
2]. As crow
ta from exp

f the prokar
y achieve bo

and how me
 complexes
es are calle
d proteins 
ts, known 
al core com
or proteins f
component

d complexes

e called hubs
lid lines); “d
). 

lear that we
ic protein co
ture level in

wding and su
periments an

ryotic lifest
oth goals [6]

etabolism is
s to have su
ed “hubs” a

that have 
as “date” 

mplexes and
for interactio
ts for one sp

s. 

 

s. “Party” hu
date” hubs (

  

e need more
omplexes. 
n providing
ubstrate cha
nd simulatio

tyle; protein
]. 

 connected 
fficient data
and one can
many conn
hubs (Figu

d accessory 
ons, occurri

pecific comp

ubs (blue) st
(orange) hav

        94

e studies an

 a molecula
anneling hav
ons for thes

n complexe

to these, on
a. In genera
n distinguis
nections, bu
ure 1, [11]

componen
ing as share
plex [10]. 

tay well 
ve many 

42

nd 

ar 
ve 
se 

es 

ne 
al, 
sh 
ut 
]). 
ts 

ed 



Metabolites 2012, 2                            
 

943

Structural considerations for the network topology include consideration of network centrality. 
Thus, general metabolic pathways are connected by short pathways and currency metabolites are well 
buffered to achieve optimal balancing of the network. Whether such networks are truly “small 
world”—like [12] or not [13] is still a matter of debate. Small world-like behavior often reflects 
agglomeration, and evolutionary forces drive such processes (e.g., pathway duplication, pathway 
recruitment etc., [14]), thereby enhancing exactly this growth type, including metabolic enzyme 
complexes. There is also the concept of a large central component with several smaller bystander 
networks and a comparatively high number of singletons [15]. This is again a typical finding from 
interactomics [16], but partly reflects true effects of evolutionary forces at work. However, partly also 
natural limitations of knowledge (most data instances can be connected, so we get a large central 
component, and similar reasoning for other subnetworks) becomes a problem.  

Selection optimizes metabolic networks in bacteria further. For instance, metabolic pathways in 
bacteria are organized to be optimally switched by central transcription factors and, in this respect, 
there is certainly a selection for optimal control. Controllability in different types of networks is 
currently a hot topic of research [17].  

Regarding large-scale studies on prokaryotic complexes, focusing on one of the smallest bacteria 
known and profiting from its compact genome, Kühner et al. [4] used tandem affinity purification-mass 
spectrometry (TAP-MS) on the small Gram-positive bacterium M. pneumoniae. This revealed 62 
homomultimeric and 116 heteromultimeric soluble protein complexes which are partly conserved 
across bacteria, including many novel ones. Interestingly, a third of the complexes are involved in 
higher levels of proteome organization. These larger multi-protein complex entities link successive 
steps in biological processes like a conveyor belt involving shared multifunctional components. This 
interesting finding of a factory-like arrangement of bacterial protein complexes churning out a 
maximum of proteins and processed metabolites was supported by structural analysis on 484 proteins 
(single particle electron microscopy, cellular electron tomograms and bioinformatical models). Thus, 
Kühner et al. [4] show details of the factory and interlinked protein complexes, including detailed 
structure prediction. Regarding time-dependent nuclear complexes, they found multiple regulators and 
regulatory interactions per prokaryotic gene, such as new noncoding transcripts. For instance, there are 
89 of them in antisense configuration to known genes in M. pneumoniae [3]. With similar techniques, 
Butland et al. [18] analyzed E. coli complexes using affinity tagged proteins of 1,000 open reading 
frames (nearly a quarter of the genome). 648 were homogeneously purified and analyzed by mass 
spectrometry. The direct experimental approach revealed new interactions, as well as interactions 
predicted previously based on bioinformatic approaches from genome sequence or genetic data. 
Furthermore, looking in detail at both data sets ([3,18]) shows that many important interactions are 
conserved in both bacteria. 

The question of conservation of prokaryotic protein complexes and their interactions was also 
analyzed by Parrish et al. [8] in the food-borne pathogen Campylobacter jejuni (NCTC11168). Yeast 
two-hybrid screens identified 11,687 interactions with 80% of all bioinformatically predicted proteins 
participating. Furthermore, this study places a large number of poorly characterized proteins into 
networks with hints about their functions. Interestingly, a number of their subnetworks are not only 
conserved compared to E. coli, but also to S. cerevisiae. Furthermore, biochemical pathways can be 
mapped on protein interaction networks. This has been shown in this study for the chemotaxis pathway 
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of C. jejuni. As an application aspect, a large subnetwork of putative essential genes suggests new 
antimicrobial drug targets for C. jejuni and related organisms. In summary, this landmark study [8] 
nearly doubled the binary interactions described for prokaryotes at that time, and showed that many of 
the identified complexes are conserved in their central components between various prokaryotic organisms.  

Figure 2 shows a number of complexes available from these studies and found either in E. coli or 
Staphylococcus aureus or both as well as their connection to metabolism. 

Figure 2. Protein complexes and their connection with metabolism. A number of central 
complexes are shown, giving the situation in E. coli, as well as implied and connected 
central metabolic pathways. In S. aureus, details of several complexes differ (E. coli-specific 
complexes not present in S. aureus are labeled with E (in green), S. aureus-specific 
complexes not present in E. coli are labeled with S in yellow, see text). For details see text. 
Abbreviations: Ac-Coa, acetyl-CoA; Fru-1,6, fructose-1,6-bisphosphate, Fru-6P, fructose 
6-phosphate; Glu, glucose; Glu-6P, glucose 6-phosphate; Gnt-6P, 6-phospho gluconate; 
PEP, phosphoenolpyruvate; PPP, pentose phosphate pathway; PTS, phosphotransferase 
system; Pyr, pyruvate; TCA, tricarboxylic acid; TriP, triose phosphate. 

 

The annotation and validation of all the implied prokaryotic interaction data and protein complexes 
is nontrivial. One important way to achieve this is to make them accessible by a Wiki, for instance, the 
“SubtiWiki” or the “WikiPathways”. These Wikis provide a knowledgebase for the Gram-positive 
model bacterium Bacillus subtilis [19], or pathways in general [20]. The SubtiWiki includes the 
companion databases SubtiPathways [21] and SubtInteract with graphical presentations of metabolism, 
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its regulation, as well as protein–protein interactions and complexes, and is highly recommended as an 
exemplary resource to study systems biology of protein complexes in bacteria. 

Moreover, protein modifications have to be charted. They influence protein complex formation, and 
removing or adding a protein modification allows corresponding protein complexes to change with 
time. An important mechanism is phosphorylation. Interacting proteins may specifically bind to these 
protein modifications or only bind if these modifications are absent. Thus, Van Noort et al. [22] 
compared this mechanism with other posttranscriptional regulatory mechanisms in M. pneumoniae. 
This organism is particularly suited for such studies because it encodes only two protein kinases and 
one protein phosphatase. This fact allows an elegant identification of the protein-specific effects on the 
phosphorylation network using specific deletion mutants. Van Noort and co-workers also considered 
changes in protein abundance and lysine acetylation [22]. Introduction of the mutations did not alter 
the transcriptional response, but deletion of the two putative N-acetyltransferases affected protein 
phosphorylation, which demonstrates the cross-talk between the two posttranslational modification 
systems. Phosphoproteome studies were also reported for B. subtilis. Jers et al. [23] identified nine 
previously unknown tyrosine-phosphorylated proteins in B. subtilis, and the majority of these were at 
least in vitro PtkA substrates. 

2.2. Metabolic Adaptation and Protein Complexes  

For growth, intracellular model pathogens rely on different metabolic resources and exploit suitable 
protein complexes for their utilization and thus regulate metabolism accordingly. Therefore, 
comparing the wild-type S. aureus strain 8325 and the isogenic deletion mutants (either lacking the 
eukaryotic-like protein serine/threonine kinase PknB or the phosphatase Stp, [24]) remarkable 
differences were found. Those differences were in nucleotide metabolism and cell wall precursor 
metabolites, such as peptidoglycan and cell wall teichoic acid biosynthesis in S. aureus. This 
phosphatase and the kinase are also antagonistic players in central metabolism, affecting enolase, 
triose phosphate isomerase, fructose biphosphate aldolase, pyruvate dehydrogenase, phosphate acetyl 
transferase, and others. 

Similarly, S. aureus pathogenicity potential depends on the iron status of the host [25]. Combining 
difference in-gel electrophoresis and mass spectrometry with multivariate statistical analyses,  
Friedman et al. [25] revealed clusters of cellular proteins responding to distinct iron-exposure 
conditions (iron chelation, hemin treatment), as well as genetic changes (∆fur). 120 proteins representing 
several coordinated biochemical pathways and regulons were affected by changes in iron-exposure status, 
for instance the heme-regulated transport system (hrtAB), a novel transport system. During iron 
starvation, pH decreased and acidic end-products accumulated so that iron was released from the host 
iron-carrier protein transferrin.  

Complexes may thus rapidly assemble and disassemble according to the metabolic situation. To 
achieve this efficiently, “moonlighting” enzymes have a hidden second function only apparent in the 
“moonlight”, i.e., an alternative metabolic condition revealing its nonstandard function. Aconitase is a 
good example; with sufficient iron content, its iron-sulfur cluster is present and the enzyme catalyzes 
isomerization of citrate to isocitrate. However, under low iron, a hidden second activity is apparent: 
without an iron-sulfur cluster the enzyme binds iron-responsive elements in RNA to block translation. 
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Such enzymes are thus found in two different complexes (e.g., metabolic complex or RNA-binding 
complex) and change their life from metabolism to control of gene expression in response to the 
availability of their substrates (“trigger enzymes”; [9]). Other enzymes have acquired a DNA-binding 
domain. They act as direct transcription repressors by binding DNA in the absence of substrate. 
Furthermore, sugar permeases of the phosphotransferase system control transcription activity by 
phosphorylating regulators in the absence of a specific substrate [26]. Finally, regulatory enzymes may 
control transcription factors by inhibitory protein–protein interactions. Duplication and subsequent 
functional specialization, a general motor of enzyme evolution, is also a major evolutionary pattern 
found here. 

2.2.1. Metabolic Adaptation in Intracellular Model Pathogens 

In Lysteria monocytogenes the transcriptional regulator PrfA controls levels of pathogenicity 
factors and influences protein complexes and metabolic pathways, but also allows adaptation to the 
nutrient-poor, low-glucose environment of the cytoplasm of the host [27]. The metabolism of host and 
pathogen is intertwined and L. monocytogenes is well adapted to this nutrient-poor environment, not 
disturbing the balance of the host too much. Overexpressed PrfA strongly influences the synthesis of 
some amino acids, such as branched amino acids (Val, Ile and Leu). Degradation of glucose occurs via 
the pentose phosphate pathway. The citrate cycle is incomplete (lack of 2-oxoglutarate dehydrogenase). 
Oxaloacetate is formed by carboxylation of pyruvate. Furthermore, growth of L. monocytogenes on 
brain–heart infusion medium resulted in a substantial upregulation of all genes and protein complexes 
involved in facilitated glycerol uptake (glpF) and catabolism of glycerol, such as glycerol kinase 
(glpK), glycerol-3-phosphate (glycerol-3P)-dehydrogenase (glpD), and dihydroxyacetone kinase 
subunit K (dhaK). In contrast, genes encoding the permeases of the PEP-dependent phosphotransferase 
system (PTS) are not upregulated. In fact, there is downregulation of glycolysis genes and upregulation 
of gluconeogenesis. Glycerol may be a major carbon source for carbon metabolism in intracellular 
bacteria. Glucose-6P may serve as an additional carbon source whereas glucose is probably not a 
major substrate for intracellular Listeria. Important for intracellular survival and virulence is the  
ATP-dependent pyruvate carboxylase (PycA). Furthermore, only some amino acids are synthesized de 
novo (Ala > Asp > Glu > Ser > Thr > Val > Gly) [28]. Cofactors such as riboflavin, thiamine, biotin 
and lipoate are directly imported from the host cell. 

For comparison, in Shigella flexneri, glucose uptake is downregulated and glycerol utilized in 
cytosolic growth within macrophages. Gluconeogenesis (fbp and pps) is upregulated. Under these 
conditions, Shigellae synthesize aromatic amino acids, GMP and thymidine, and the corresponding 
enzyme complexes. 

In contrast, pathogenic E. coli strains (EIEC) utilize glucose for survival inside the host cell [1]. 
However, similar to the Shigaellae, EIEC are also more anabolically active in their intracytoplasmatic 
lifestyle than Listeria, as EIEC synthesize their own amino acids.  

Intracellular Salmonella enterica subsp. enterica serovar Typhimurium use glucose, glucose-6P and 
gluconate (glycolysis and Entner-Doudoroff pathway are upregulated, TCA is downregulated). In the 
Salmonella containing vacuole, glucose is preferred over glucose-6P as carbon substrate. In 
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systemically infected mice, bacterial growth depends on a complete TCA cycle [29] and the glyoxylate 
shunt is less important. Ser, Gly, Ala, Val, Asp and Glu are de novo synthesized efficiently. 

Finally, M. tuberculosis grown in resting and activated bone-marrow-derived macrophages show 
substantial upregulation of the type II citrate synthase gene (gltA), the isocitrate lyase gene (aceA1), 
the PEP carboxykinase gene (pckA) and the malate dehydrogenase gene (mez) implying corresponding 
protein partner complexes. There is good evidence that fatty acids, and possibly glycerol or glycerol-3P, 
are the preferred carbon sources (β-oxidation is important for virulence), as there is not much amino 
acid synthesis, and glucose utilization may be confined to early states of infection [1]. 

2.2.2. Regulatory Strategies and Prokaryotic Protein Complexes 

Environmental perturbations, nutrient change or shortage, stress responses and density of 
individuals all have impact on metabolism. Furthermore, several levels of regulation (transcription, 
translation, protein stability, enzyme regulation) ensure that the response is optimal. Regarding 
regulation of RNA and protein complex half-life, experimentally determined mRNA and protein  
half-lives were measured by Maier et al. [30] under different environmental conditions for M. pneumoniae. 
Gene expression was not well correlated with protein dynamics. The translation efficiency was more 
important for protein abundance than protein turnover. Combining stochastic simulations and in vivo 
data the authors showed that low translation efficiency and long protein half-lives “effectively reduce 
biological noise in gene expression” [30]. Protein abundances were found to be regulated in functional 
units and according to cellular state. This included protein complexes and pathways. 

Considering regulatory input is far more challenging. A first observation is from Jozefczuk et al. [6], 
studying E. coli metabolism and regulatory response after different types of challenges comparing 
metabolome and transcriptome. The responses to different stimuli vary. However, there is a general 
strategy of energy conservation. Central carbon metabolism intermediates go down fast if cell growth 
stops. Summing up the various scenarios, Jozefczuk et al. [6] found a condition-dependent association 
between metabolites and transcripts. Thus, also in E. coli, a direct correlation between gene expression 
and metabolites is only possible for the central carbohydrate pathways glycolysis, pentose phosphate 
cycle and citric acid cycle [31], otherwise the condition-specific regulation has to be  
considered (Figure 2).  

Using a combination of computational tools including elementary mode analysis, as well as a new 
technique involving metabolic flux patterns [32], methods from network inference and dynamic 
optimization, Wessely et al. [33] showed for E. coli that transcriptional regulation of pathways reflects 
the protein investment into these pathways. As an evolutionary optimal strategy, protein-expensive 
pathways are tightly controlled by many interactions, whereas metabolic cheap ones are not. 

Furthermore, niche and species-specific regulatory strategies allow model pathogens for 
intracellular infections to be optimally adapted to their own niche in the host. Each pathogen uses few 
specific transcription factors to adapt, which then bind to the promoters together with polymerase and 
sigma factors leading to transcriptional protein complexes for all the genes they control during the 
adaptation process [1]: PrfA in Listeria is used only for adaptation to nutrient-poor conditions on 
specific media or in the host. Transcriptional regulators VirF, VirB and MxiE are used in Shigella. In 
contrast pathogenic Salmonellae have a more elaborate regulation of their intracellular adaptation 



Metabolites 2012, 2                            
 

948

exploiting pathogenicity islands and as regulatory components the transcription activator HilA and the 
SsrAB two-component system. Specific virulence genes are not so clear in M. tuberculosis. However, 
each of the four mce operons, which are essential for virulence, is repressed by a specific 
transcriptional repressor under various nutrient rich cultivation conditions. This repression is 
presumably relieved when nutrient conditions are sufficiently poor (host cell, macrophage, persistence).  

For comparison, S. aureus adaptation to glucose limitation and other environmental challenges 
involves regulatory switches, again both on the transcriptional level, as well as regarding metabolism 
(e.g., pyruvate dehydrogenase complex; Figure 2). During the aerobic/anaerobic shift, Rex- (redox 
sensing) regulators are involved both in redox sensing and in regulation of anaerobic gene expression [34] 
using a highly conserved binding sequence to repress genes downstream. This improves anaerobic 
reduction of NAD+ to NADH (lactate, format and ethanol formation), nitrate respiration and  
ATP synthesis.  

A tight connection of metabolism, regulation and coordinated shifts in protein complexes and 
system states is also observed in other fast growing organisms, such as yeast [35]. 

2.2.3. A System-Wide, Global View on Prokaryotic Protein Complexes 

Given the fact that adaptation of metabolic networks happens in concert involving many pathways 
and that regulators are rather highly interconnected, an alternative to model bacterial adaptation are 
more global views. Thus, it is interesting to compare how metabolic changes are coupled to a response. 
Whereas eukaryotes in general rely more on sensing (external and internal) the environment [36], for 
bacteria, there is a tighter connection to metabolism [7,33] in order to always achieve optimal the 
growth rate, including just-in-time ribosome synthesis [37]. Whether this can already be called 
“adaptive prediction of environmental changes” [38] is a matter of preference. However, these overall 
strategies clearly differ between prokaryotes and even growth-oriented eukaryotic organisms such as 
yeast. As a general rule, there is a much higher investment in control and sensing in eukaryotes, 
whereas metabolic adaptation of bacteria exploits direct regulation and coupling to metabolism. This is 
supported by data from Kotte et al. [7] and Jocefzuk et al. [6], as well as a number of specific building 
blocks included in adaptive structures and complexes such as riboswitches [39,40] and the 
aforementioned trigger enzymes with their double role to switch from metabolic function (often as 
members of an enzyme complex) to a direct regulatory function (binary complex, often involving 
nucleic acids) when substrate levels are low [9].  

There are a number of coordinated adaptation scenarios for S. aureus with detailed, coordinated 
changes in metabolic enzymes, regulation and dynamics of protein complexes.  

Integration of different data sets facilitates a detailed comparison of how mRNA, protein and 
metabolite flux correlate. Examples of aerobic glucose limitation of S. aureus [41], but also for data 
from Listeria [41], show that central carbohydrate pathways (glycolysis, TCA, pentose phosphate 
cycle) are strongly turned on during this transition and that gene expression, protein levels and 
metabolite flux correlate well in general. However, exceptions far away from the correlation line point 
to selected up- or downregulated enzymes, imply changes in enzyme complexes, too. In contrast, for 
amino acid metabolism, a linear relation at least between gene expression and metabolite flux provides 
only a lower bound. In such cases, the enzymes are not operating with maximal activity and thus 
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higher mRNA expression than the theoretically calculated minimal level is observed [41]. A number of 
broader investigations on correlations tend to support such conclusions [31]. In E. coli, enzymes of 
central metabolism are strongly active and thus the corresponding mRNA level is a good indicator of 
their activity and correlates well with the strengths of the actual metabolic flux through the enzyme.  

The building blocks of system-switching states are different protein complexes in bacteria, and, on 
the next, the pathway level; a number of pathways change (exactly those concerned with the adaptation 
as evolution made sure). This is often achieved by development of highly selective transcriptional 
activation by transcriptional regulators or polymerase subunits if a broader response is necessary, e.g., 
prokaryotic stress response and specific sigma factors. However, the system perspective is interesting: 
If such a system change comes about, system stability and self-stabilizing feedback loops have to be 
taken over. Instead, the new system state has to enhance itself (by positive feedback loops) and once it 
took over (a tipping point has been reached, the system is committed to change), stable regulation 
involves further negative feedback loops (a simple example is that the biological oscillations are 
controlled accordingly; the basic type is the Van der Pol oscillator; [42]). The switch from aerobic to 
anaerobic growth in S. aureus seems in fact to follow that regime under glucose limitation. One can 
clearly make out central involved protein complexes (Figure 2) which change, concerted pathway 
adaptations (e.g., all TCA enzymes and respiration is switched off under anaerobic condition) and 
initial positive feed-back loops (e.g., when the glycolytic enzymes are activated by glucose and low 
ATP concentrations) with later supporting negative feedback loops (which stop fast metabolization and 
lead to the stationary phase, including triggering stress response, suitable sigma factor changes in the 
transcription complexes and binding to a number of different promotor sequences to coordinate stress 
responses and connected protein complexes to prevent starvation).  

There are more biochemical details to such adaptations, see e.g., Liang [41] for S. aureus glucose 
limitation experiments under aerobic conditions. Thus, when glucose levels are low in E.coli, a 
phosphorylated form of EIIA (phosphotranferase system enzyme) accumulates. This then activates the 
enzyme adenylyl cyclase. If levels of cAMP increase, the cAMP will bind catabolite activator protein 
and both together bind to a promotor sequence on the lac operon. Each of these steps leads to 
concomitant changes in protein complexes, starting from the phosphotransfer system to carbohydrate 
metabolizing enzyme complexes. However, as these two examples already show, the sequence of 
changes depends on the succession of concentration changes, the last example would refer well to a 
situation where there are high concentrations of glucose and, in the end, there is some lactose available 
to profit from the switch. The prokaryotic response to changing metabolic conditions is thus condition 
dependent (see e.g., Jozefcuk [6] for data on E. coli). However, our overall current understanding of 
the involved, fine-tuned regulation and feedback, as well as feedforward, loops is limited. More studies 
to elucidate the details of such physiological changes in protein complexes and bacterial responses to 
metabolic changes are clearly needed. 

In fact, system switching states occur often fast in bacteria. Whole cascades or even larger networks 
are rapidly reorganized as the whole network is controlled often by one master regulator. A good 
example is the pathogenicity switch by the PrfA protein of Listeria which simultaneously 
accomplishes (i) adaptation of a number of virulence pathways, and (ii) reorganization of nutrient 
utilization, thus facilitating adaptation of L. monocytogenes from a more saprophytic to an intracellular 
lifestyle. Also in Staphylococci (and many other bacterial species), such major system changes in 
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metabolism (stress response or growth behavior) are mediated with tight control just by the activation 
of transcription factors (including repressors such as the Rex family). Other switching states include 
diauxic shift, glucose limitation under aerobic or anaerobic conditions, differentiation (e.g., biofilm 
formation) or amino acid limitation.  

In a full “on” state for pathways and networks (e.g., growth on full medium and central 
carbohydrate metabolism) correlation between gene expression and metabolite flux is high. For  
not-so-central pathways, gene expression data may provide a lower limit as the metabolite flux can still 
become higher when enzymes are regulated to be more active. However, for such a system-switching 
state the correlation in activity for the pathways changed simultaneously is high, as seen both for 
S. aureus [41], as well as in other organisms (e.g., Jozefcuk [6] for E. coli). Besides the high 
correlation between the concerned pathways, there are structural changes in complexes such as 
pyruvate dehydrogenase complex, central for carbohydrate metabolism to accompany such system 
changes (see examples above).  

However, the involvement for transcription and regulatory factors, changes in the respective protein 
complexes, correlated pathway changes and correlation between different data sets also apply to other 
major system changes such as bacterial differentiation (sporulation, apoptosis) and adaptation in 
general. All these different system states are clearly emergent behavior, which only can come about in 
the complete bacterium and as a consequence of the full network of interactions, complexes and  
super-complexes. Further studies of the exact conditions under which bacterial system states change 
will not only provide insight into complex systems and emergence in general, but is also at the very 
root of a better understanding of microbial life. Better insights into the links between metabolism and 
virulence may also help to treat bacterial infections with new vigor. 

2.3. Crowding and Substrate Channeling for Metabolic Complexes 

On a biophysical level, dynamics of metabolic protein complexes involve also molecular 
channeling of metabolites, as well as molecular crowding effects (Figure 3). 

Substrate channeling directly transfers a product to an adjacent cascade enzyme without mixing 
with the bulk phase, which is again most easily achieved in a static or transient multienzyme complex 
(Figure 3a). Besides enhanced reaction rates, unstable substrates are protected and metabolic fluxes 
regulated. Furthermore, this avoids unfavorable equilibria, toxic metabolite inhibition, substrate 
competition or kinetics [43]. Substrate channeling has also biotechnological potential for metabolic 
engineering, and cell-free synthetic pathway biotransformation. 

Substrate channeling is an old field, started by the Cori’s in the 1950s [44]. Paul Srere coined the 
concept of “metabolon” to describe improved channeling of substrates in the citric acid cycle [45], 
encapsulating the concept of what is described here. To study channeling became quite popular in the 
‘80s’ (see Tombes and Shapiro [46] on phosphorylcreatinine shuttling; Yang et al. [47] on  
β-oxidation) and ‘90s’ (see Kholodenko et al. [48]; Miziorko et al. [49] for cholesterol synthesis; 
Welch and Easterby [50] review a number of different metabolic examples). There is also previous 
modeling work that shows dynamic channeling is capable of decreasing the metabolite pool sizes (but 
also able to increase them) [51,52]. 
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Figure 3. (a) Substrate channeling. Originally a conveyor belt concept was invoked (left): 
Substrate (arrows) is passed from one enzyme to the next (squares in different grey 
shades). A more modern view (right) considers complexes central for channeling and 
places the protein complex in the middle, substrates change and are passed around 
(arrows), furthermore, super-complexes (grey ellipsoid in the background) unite different 
complexes for even more efficient channeling; (b) Molecular crowding. A large molecule 
(long shape, left) cannot freely move if some obstacles are present (proteins shown as 
spheres). The effect becomes more pronounced (right) with diverse and more protein 
species present (different spheres and shades). 

(a) 

  
(b) 

Hence, channeling speeds up prokaryote metabolism and involved enzymes. It has already been 
probed and even changes have been indirectly monitored for carbohydrate metabolism combining a 
variety of methods: Bauler et al. [53] modeled in this way a two-step reaction, using a simple spherical 
approximation for the enzymes and substrate particles. These authors applied Brownian dynamics to 
show that spatial proximity and channeling is helpful. Closely aligned active sites are the most 
effective reaction pathway in their results, but they must not be too close so that the ability of the 
substrate to react with the first enzyme is not hindered. Protein interaction data comparing E. coli, 
yeast and humans support [54] that indirect protein interactions between related enzymes achieve 
metabolic channeling. Interestingly, protein complexes include nonenzymatic mediator proteins, 
sometimes related to signal transduction, to form channeling modules. In E. coli reactions, possessing 
such interactions show higher flux. Channeling could lead to more cross-talk. However,  
Pérez-Bercoff et al. [54] find that scaffolding proteins limit this, keeping protein complexes in separate 
places. Furthermore, there are interesting differences in the channeling of glucose towards gluconate 
and other catabolic end-products like pyruvate and acetate, with respect to phosphate status for 
different Pseudomonas strains (Pseudomonas aeruginosa versus P.  fluorescens) [55]. Enzyme 



Metabolites 2012, 2                            
 

952

activities including glucose dehydrogenase, glucose-6-phosphate dehydrogenase and pyruvate 
carboxylase change in a coordinated fashion in response to changes in growth, glucose utilization or 
gluconic acid secretion. This includes a shift of glucose towards a direct oxidative pathway under 
phosphate deficiency which may perhaps also be implied in the different abilities of the two strains to 
produce gluconic acid. Comparison of enzyme–enzyme interactions in metabolic networks of E. coli 
and S. cerevisiae shows evidence for direct metabolic channeling [56]. Enzyme–enzyme interactions 
occur more often for pathway neighbors with at least one shared metabolite. Non-neighbouring 
interactions are often regulatory. 

Molecular crowding: Crowding effects do change prokaryotic enzymes, metabolism and promote 
protein complexes in prokaryotes. Where metabolic channeling is a specific effect between metabolic 
proteins (enzymes and protein mediators) in a complex, molecular crowding is instead a more general, 
unspecific effect by the combined variety of biomolecules (Figure 3b), including nucleic acids, 
proteins, polysaccharides, as well as other soluble and insoluble components and metabolites (total 
concentration 400 g/L). The reason for the crowding effect is thus that together these biomolecules 
occupy a significant proportion (20–40%) of the total cellular volume in cytoplasm and nucleus, 
respectively [57]. Biophysical effects from crowding differ thus in different compartments of cells. 
Many nuclear processes such as gene transcription, hnRNA splicing and DNA replication, assemble 
large protein–nucleic acid complexes. Macromolecular crowding provides a cooperative momentum 
for these [58], boosting functionally important nuclear activities. In cell membranes, membrane 
proteins occupy approximately 30% of the total surface area leading to crowding effects on the surface 
as well as unique effects for the even more movement restricted integral membrane [58]. Thus  
Wang et al. [59] directly monitored the effect of strong crowding on pressure-induced reduction of 
unfolding of a protein (staphylococcal nuclease) by tryptophan fluorescence.  

Besides such unspecific crowding effects, there are also complex-promoting activities from proteins 
from the milieu. Thus, in NMR studies, it was observed that high molecular weight glycoproteins are 
efficient molecular seeds for protein aggregation [60]. Such additional effects were also invoked by 
McGuffee and Elcock [61], using a simulation model which successfully describes the relative 
thermodynamic stabilities of proteins measured in E. coli, modeling 50 highly abundant 
macromolecule types at experimentally measured concentrations. Morelli et al. [62] show a simple 
way to model the effects of macromolecular crowding on biochemical networks. To succeed, they had 
to scale bimolecular association and dissociation rates correctly. They used kinetic Monte Carlo 
simulations and looked at crowding effects, comparing a constitutively expressed gene, a repressed 
gene, and a model for the bacteriophage λ genetic switch. Each molecular assembly was modeled both 
with and without nonspecific binding of transcription factors to genomic DNA. Furthermore, crowding 
effects shifted association–dissociation equilibria rather than slowing down protein diffusion, which 
sometimes had unexpected effects on biochemical network performance. Norris and Malys [63] show 
even changes of Michaelis-Menten kinetic constant Km, and rate constant kcat for the enzyme  
glucose-6-phosphate dehydrogenase under crowding. kcat increased at very low concentrations of 
crowding agent or at high crowded concentrations during heating (45 °C), adding PEG. Simulations 
applying the Arrhenius equation agree with these observations.  

More subtle effects of how enzymes are influenced by crowding are apparent in simulations and 
only partly supported by experimental data: Adenylate kinase was coarse grain modeled by Echeverria 



Metabolites 2012, 2                            
 

953

and Kapral [64], showing large-scale hinge motions during enzymatic cycles. Multiparticle collision 
dynamics included effects due to hydrodynamic interactions. A stationary random array of hard 
spherical objects provided crowding in the simulation. Adenylate kinase prefers a closed conformation 
for high volume fractions (smaller obstacle radius and tighter packing). Average enzymatic cycle time 
and characteristic times of internal conformational motions of the protein change, as do the transport 
properties. Under crowding, diffusive motion becomes up to ten times slower with longer orientational 
relaxation time. In general, and according to simulations on seven different proteins, those 
experiencing the strongest crowding effects have larger conformational changes between open and closed 
states [65]. In Brownian dynamic simulations, Ando and Skolnick [66] modeled a simplified E. coli 
cytoplasm with 15 different macromolecule types at physiological concentrations and sphere 
representations using a soft repulsive potential. These authors compare their data with the experiment; 
at cellular concentrations, the calculated diffusion constant of GFP was shape independent and much 
larger than in the experiments. However, including hydrodynamic interactions using the equivalent 
sphere system reproduced the in vivo experimental GFP diffusion constant without further parameter 
adjustment. Nonspecific attractive interactions reduced strongly diffusivity of the largest 
macromolecules [66]. The authors observed attractive clusters around these, but not if hydrodynamic 
interactions dominated. The latter led also to size-independent intermolecular dynamic correlations. 
Both models are interesting, and the noted differences between both models should now be directly 
compared to further experimental data. Even the change in the binding free energy due to crowding 
could be quantitatively described by the scaled particle theory model without any fitting parameters [67]. 
Crowders of different sizes were predicted by the same model with an additive setup. Crowding 
increased the fraction of specific complexes and nonspecific transient encounter complexes were 
reduced in a crowded environment as the nonspecific complexes had greater excluded volume [67]. 
However, more experimental data are needed to confirm these detailed predictions. 

3. Conclusions  

Metabolic adaptation in prokaryotes is efficient and involves a number of different protein 
complexes, many of them changing rapidly as metabolic conditions change. Our description of protein 
complexes and metabolism combines large-scale studies with bioinformatics approaches and 
individual experiments. Conditions in the prokaryotic cell correspond to a tightly packed  
hyper-complex and it has become clear that a biophysics dominated by metabolite channeling and 
crowding is important to understand prokaryotic metabolism and efficiency of involved protein 
complexes and enzyme ensembles. Overall knowledge on protein complexes is good for several model 
organisms. However, regarding specific complexes and their changes, many details are still to be 
discovered. This includes more insights on trigger enzymes, super-complexes, as well as links between 
regulation, adaptor proteins and enzyme chains. A systems biology perspective helps to integrate these 
different aspects on protein complexes into the context of metabolic adaptation in prokaryotes. 
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