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Abstract

Symbiosis is a widespread phenomenon in nature, in which insects show a great number of these associations. Buchnera
aphidicola, the obligate endosymbiont of aphids, coexists in some species with another intracellular bacterium, Serratia
symbiotica. Of particular interest is the case of the cedar aphid Cinara cedri, where B. aphidicola BCc and S. symbiotica SCc
need each other to fulfil their symbiotic role with the insect. Moreover, various features seem to indicate that S. symbiotica
SCc is closer to an obligate endosymbiont than to other facultative S. symbiotica, such as the one described for the aphid
Acirthosyphon pisum (S. symbiotica SAp). This work is based on the comparative genomics of five strains of Serratia, three
free-living and two endosymbiotic ones (one facultative and one obligate) which should allow us to dissect the genome
reduction taking place in the adaptive process to an intracellular life-style. Using a pan-genome approach, we have
identified shared and strain-specific genes from both endosymbiotic strains and gained insight into the different genetic
reduction both S. symbiotica have undergone. We have identified both retained and reduced functional categories in
S. symbiotica compared to the Free-Living Serratia (FLS) that seem to be related with its endosymbiotic role in their specific
host-symbiont systems. By means of a phylogenomic reconstruction we have solved the position of both endosymbionts
with confidence, established the probable insect-pathogen origin of the symbiotic clade as well as the high amino-acid
substitution rate in S. symbiotica SCc. Finally, we were able to quantify the minimal number of rearrangements suffered in
the endosymbiotic lineages and reconstruct a minimal rearrangement phylogeny. All these findings provide important
evidence for the existence of at least two distinctive S. symbiotica lineages that are characterized by different
rearrangements, gene content, genome size and branch lengths.
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Introduction

Symbiosis is a widespread phenomenon among all branches of

life. Especially, insects show a tight relationship with a variety of

these organisms [1] mostly having a metabolic foundation, as

bacteria provide the insects with the nutrients lacking in their diet.

This is the case for many aphids that maintain a close association

with the ancient obligate bacterium B. aphidicola. The association is

mutualistic as none of the partners can subsist without the other

one. The aphid gives B. aphidicola a stable environment and in

return this gives the aphid the nutrients lacking from its diet, the

plant’s phloem. At present the genomes of B. aphidicola from seven

aphid species have been sequenced [2,3,4,5,6,7,8,9], with the

smallest genome found in the aphid C. cedri (B. aphidicola BCc), with

a genome size of 416 Kb coding solely 357 protein-coding genes.

This contrasts with other less genomically reduced Buchnera, like

the one from the aphid A. pisum (B. aphidicola BAp). The symbiotic

role of B. aphidicola BCc has even been questioned since, contrary

to other Buchnera, it was found unable to fulfil some of its symbiotic

functions [5]. In addition to B. aphidicola, some aphids harbour

other endosymbiotic bacteria called secondary or facultative

endosymbionts, such as Hamiltonella defensa [10], Regiella insecticola

[11] and S. symbiotica [12,13], whose genomes have recently been

sequenced. Although primarily transmitted vertically, these

facultative bacteria undergo occasional horizontal transfer

[14,15,16,17]. These three bacteria have been shown to benefit

the host, providing defense against fungal pathogens, parasitoid

wasps or even increasing survival after environmental heat stress

(revised in [17]). However, as they are facultative, they do not

seem to be essential to the insect’s survival. An interesting genomic

feature from these young associations, contrary to more ancient

ones, is the massive presence of mobile genetic elements in their

genomes [18,19,20,21], which would cause their genomes to

undergo a number of rearrangements as compared to their free-

living relatives.

Species of the genus Serratia have been found in numerous places

such as water, soil, plants, humans and invertebrates like many

insects [22]. The presence of Serratia in insects digestive tract has

been speculated to be of plant origin, since the hemolymph cannot

prevent the multiplication of potential pathogens [23]. On the

other hand, S. symbiotica is one of the most common facultative

symbionts in many aphids. In A. pisum, it has been found to confer

defense against environmental heat stress [24,25,26,27]. In a study

into the evolution of S. symbiotica endosymbionts, both phylogenetic
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and morphological evidence was found of the possible existence of

at least two different S. symbiotica clades named A and B [28].

Clade A shows characteristics resembling a facultative symbiont,

whereas clade B resembles more to an obligate-like endosymbiont

[28,29]. The genome sequencing of S. symbiotica from A. pisum (S.

symbiotica SAp) [12] and C. cedri (S. symbiotica SCc) [13], belonging

to clade A and B respectively, has revealed very different genomic

features (see Table 1). S. symbiotica SAp possesses a genome size of

around half of that of FLS, over two thousand fewer protein

coding genes and an impressive extent of pseudogenes (550), giving

some indication of a relatively recent inactivation of many genes.

On the other hand, S. symbiotica SCc is immediately striking in that

it presents a genome size around 1 Mb smaller than that of S.

symbiotica SAp, a reduced set of protein coding genes, a very low

coding density and GC content and surprisingly depleted of

mobile genetic elements [13] identified in other recently derived

endosymbiotic relationships [10,11,19], including S. symbiotica SAp

[12].

The pan-genome approach for studying evolutionary relation-

ships at a certain taxonomical level has been proved a very

powerful tool to study diverse aspects of genomic, functional and

structural characteristics of groups of genomes [30,31,32,33,34].

The term ‘‘pan-genome’’ has been used to refer to the collection of

the core genome (genes shared by all strains and probably

encoding fundamental functions of the biology and phenotype of

the species) and an accessory genome (constituted from the genes

present in some but not all strains) [35], this latter one including

genes that are essential for a certain environmental adaptation

[33] and linked to capsular serotype, virulence, adaptation and

antibiotic resistance probably giving some indication to the

organisms lifestyle [36].

In the present study, due to the findings in both S. symbiotica

genomes sequenced so far, we wanted to study the diverse

processes that occurred once these organisms adapted to an

intracellular environment. These include their genetic reduction,

rearrangements, and also how the current functional state of their

respective B. aphidicola partner explains the current functionality of

each S. symbiotica. It is worth mentioning that we have a unique

opportunity with the genus Serratia provided by the availability of

complete genomic data from three different snapshots distributed

throughout the transition from free-living (Serratia proteamaculans

568, Serratia marcescens Db11 [37] and Serratia odorifera 4R613 [38])

passing through facultative endosymbiosis (S. symbiotica SAp) to

obligate endosymbiosis (S. symbiotica SCc).

In order to gain insight into the level of genome reduction

undergone by the two S. symbiotica strains, we first defined a pan-

genome for the genus Serratia using the annotated CDSs for the five

strains mentioned above. We then went on to explore specific

subspaces of the pan-genome, such as some of the genes retained

outside the core genome and strain-specific genes of each S.

symbiotica. We found a massive level of genomic reduction in S.

symbiotica SCc, even when compared to S. symbiotica SAp in which a

great number of accessory genes are still retained in its genome.

The differential genetic reduction suffered by these endosymbionts

also became evident, finding a number of CDSs shared with other

Serratia but not between them. We then went on to analyze and

compare the functional profiles for each Serratia strain used to

reconstruct the pan-genome along with the pan-genome itself and

the core-genome using the Cluster of Orthologous Groups (COG)

functional categories [39]. We were interested in observing the

functional clustering and shifting of both endosymbiotic strains

compared to the FLS. We also compared each of the S. symbiotica

functional profiles to that of the average of FLS in order to detect

profile modification of individual categories to be able better

understand the functional constraints under which each S.

symbiotica genome has evolved and the divergence of these

endosymbiotic strains. We observed that the functional profile of

S. symbiotica SCc clustered very close to that of the core-genome,

supporting a very advanced stage of genetic reduction. In addition,

we wanted to analyze the process of genome rearrangements and

genetic evolution that these endosymbionts have undergone. To

do so, we first defined a set of single-copy shared genes which were

taken as a base to study the different arrangements of these among

the different Serratia genomes and to perform a phylogenetic

reconstruction of the Serratia spp. In contrast to the perfect

conservation of the single-copy shared genes order and orientation

in the FLS, we found a great level of reordering even between the

two endosymbiotic Serratia strains. Also, we quantified the minimal

rearrangements needed to get to an ancestral gene order through a

minimal number of rearrangements tree. Finally, the phylogenetic

analysis confidently resolved the relationships among the different

Serratia strains used in this study, allowing us to propose a probable

origin for the endosymbiotic lineages.

Table 1. Species, accession numbers and genomic features comparison of Serratia spp. and selected B. aphidicola genomes.

Strain Accession Genome size (Mb) GC% CDS Host lifestyle

S. odorifera 4R613 ADBX00000000 (WGS) 5.36 56 4668 Brassica napus Free-living

S. proteamaculans 568 CP000826, CP000827 5.45 55 4891+51 Populus trichocarpa Free-living

S. marcescens Db11 http://www.sanger.ac.uk/
resources/downloads/bacteria/
serratia-marcescens.html

5.11 59 4763 Drosophila melanogaster Free-living

S. symbiotica SAp AENX00000000 (WGS) 2.79 52 2098 A. Pisum Falcultative
endosymbiont

S. symbiotica SCc CP000826 1.76 29 672 C. Cedri Obligate
endosymbiont

B. aphidicola BCc CP000263, AY438025, EU660486 0.42 20 357+5 C. cedri Obligate
endosymbiont

B. aphidicola BAp APS BA000003, AP001071, AP001070 0.64 26 564+10 A. pisum Obligate
endosymbiont

Genomic features for FLS and both S. symbiotica along with their B. aphidicola partners, evidencing each S. symbiotica genomoic reduction compared to their free-living
relatives.
doi:10.1371/journal.pone.0047274.t001
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Results and Discussion

Pan-genome’s General Features
To gain insight into the process of reductive evolution

undergone by the adaptation from a free-living state to an

endosymbiotic-lifestyle, we reconstructed a pan-genome for the

genus Serratia. It is worth mentioning that, at present and to our

knowledge, it is the only bacterial genus for which full genome

sequences for both endosymbiotic and free-living species are

available. General features for each strain, together with the ones

from the two Buchnera strains sharing their host with Serratia in the

same aphid (B. aphidicola BAp and BCc), are summarized in

Table 1. The CDSs of the two available endosymbiotic strains

(the facultative S. symbiotica SAp and the obligate S. symbiotica SCc)

and three free-living ones (S. marcescens, S. proteamaculans and S.

odorifera) were recovered from their respective sources. After a

clustering of the organisms’ protein sequences we ended up with 4,

469 orthologous clusters of proteins, leaving 2, 293 unclustered

proteins, corresponding to the strain-specific genes. To visualize

the clusters’ location within the pan-genome subspaces, an Euler

diagram was computed (Figure 1). The first remarkable feature is

finding very few clusters (607) from the pan-genome in the core

(8.98%). While, if we also take into account the genes shared by

the three FLS plus the core (3, 452), the percentage is greatly

increased (51.05%) due to the presence of the endosymbiotic

genomes, mainly the genome from S. symbiotica SCc, which

displays an extensive genomic reduction due to its adaptation to an

intra-cellular lifestyle [13]. Regarding the strain-specific genes,

almost half of them (47.45%) are hypothetical proteins and 7.07%

are putative ones. This is not surprising since it has been described

that most of the strain specific genes in a pan-genome are

hypothetical genes, genes which may be product of over-

annotation given their generally reduced sizes, or ORFan genes

[40].

It is worth mentioning that all the coding genes present in the

annotated CDSs of S. symbiotica SCc are present one gene per

cluster, showing no evidence of genetic redundancy and support-

ing its extreme reductive process compared to the other

S. symbiotica. This is important since taking into account that the

levels of duplication of the other Serratia are higher (S. marcescens

3.6% duplicated genes, S. odorifera 3.2%, S. proteamaculans 6.6% and

S. symbiotica SAp 3.7%). In addition, almost all of the coding genes

from S. symbiotica SCc (607 out of 672) clustered into the core. Not

surprising for obligate endosymbionts since the reductive process

tends to reduce both redundancy and genetic repertoire,

conserving the genes that allow the bacteria to sustain themselves

and fulfil their role in the symbiotic association.

S. symbiotica Strain-specific Genes
Amazingly, there is only one strain-specific gene for S.

symbiotica SCc. A 67 amino-acid hypothetical protein, which on

a BLAST search against nr was found to vaguely resemble (less

than 56% covered and 62% identity) another hypothetical

protein in S. marcescens (genbank locus tag HMPREF0758). This

displays the massive genetic decay that S. symbiotica SCc has

suffered, basically losing all its strain-specific genes, contrary to

S. symbiotica SAp, which still retains many of them (516 gene

clusters), reminding us of characteristics of free-living Serratia.

Mostly, the genes present in these clusters code for phage

proteins (26), transposases (29) or are annotated as hypothetical

proteins (304), while the rest are annotated mostly as putative

proteins (157, related to conjugative systems, pili, fimbria,

transporters and some others). Due to the accessory nature of

these groups, they might eventually be degraded in the genome

reduction process if this endosymbiont continues to accommo-

date itself in the system.

S. symbiotica Genes Outside the Core
Two genes are shared by both S. symbiotica, epsI and rfaI, coding

for a glycosyl transferase and a lipopolysaccharide 1,3-galactosyl-

transferase respectively. The two are involved in cell envelope

biogenesis (outer membrane), which could explain the reason why

these do not cluster with other members coming from FLS. These

type of proteins have been found to show weak signals of

incongruence, due to being genes involved in diversifying

selection, coding for antigenic proteins exposed at the cell surface

[41].

Interesting are the clusters shared by both endosymbiotic

bacteria (S. symbiotica SAp and SCc) and FLS regarding fimbrial

genes. With S. proteamaculans, they shared the genes fimA and pagO,

coding for the filament protein FimA involved in fimbrinbrial

formation and a putative membrane protein respectively, and with

S. odorifera and S. proteamaculans the gene etfD which codes for a

protein associated to fimbrin. In both S. symbiotica, these fimbrial

genes have been retained although at least in S. symbiotica SCc

there is a loss of the capacity to form fimbrins. This probably

means that this intersection is disappearing due to the deteriora-

tion of this pathway in the intracellular adaptation process,

although it is also possible that it plays a role in the pathogen-host

cross-talk or in infection. Other interesting genes are the two

shared with S. marcescens and S. proteamaculans (hha coding for a

haemolysin expression-modulating protein and feoB coding for a

part of the iron transport system which makes an important

contribution to its supply to the cell under anaerobic conditions),

and one (yidD) shared with both S. odorifera and S. proteamaculans,

which product clusters with a hemolysin from S. proteamaculans.

Some hemolysins have been shown to allow bacteria to evade the

immune system by escaping from phagosomes [42], and they are

reported to serve as a way of obtaining nutrients from host cells.

For example, in other organisms they have been involved in the

iron uptake by pathogenic bacteria from their eukaryotic hosts

[43].

Regarding the genes shared exclusively by S. symbiotica SCc

and other free-living relatives, we found 44 clusters shared with

S. odorifera and S. marcescens. These would be genes that reflect

the differential genetic degradation between both S. symbiotica. In

fact 24 (bioA, bioB, cysJ, cysU, fruA, fruB, fruK, gyrA, hemC, hemD,

mdtK, mrcA, nudF, pdxY, pnuC, queA, rseP, rsmB, thiK, thiP, yceB,

yceG, yeiH, yhdP) out of the 44 are present in S. symbiotica SAp as

pseudogenes, 17 are completely absent (ansP, apaG, cysC, cysD,

cysG1, cysN, glnH, glnP, glnQ, lpp1, mltE, pyrC, queD, sufE, ybjN,

ygdQ and a hypothetical protein), and three (apaH, uvrA, uvrC)

are annotated as genes with interrupting gaps; thus they were

excluded from the analysis. Most of these genes are involved in

the biosynthesis of cofactors like biotin, thiamine and haemo-

globin, in electron transport chain and sugar transport, in

agreement with [13]. The afore-cited study explains that genes

involved in the categories of, for example sugar transport,

electron transport chain and synthesis of some cofactors are

affected by the genomic reduction process.

Functional Relatedness and Divergence in S. symbiotica
To inquire into the functional roles of the selected Serratia

strains, we assigned COG categories to each organism’s CDSs.

Through a Kruskal-Wallis test on the absolute COG frequencies

per organism we found significant differences in the core/pan-

genome/Serratia COG profiles (x2 = 72.84, df = 6, p-value = 1.07e-

13). Through the same test using only the FLS, we found that they

Comparative Genomics of Serratia Species
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did not showed any significant difference (x2 = 0.11, df = 2, p-

value = 0.95). This indicates that the general functional composi-

tion of the FLS is highly conserved; being able to assume that any

significant deviation from this profile in the endosymbiotic Serratia

would be due to their adaptation to a new lifestyle. Then, to

identify retained and reduced functional categories against FLS, as

a way to asses functional divergence from FLS for each

endosymbiotic Serratia, we mapped the COG profile differences

from the FLS COG profile in a heatmap for the core, pan-genome

and the individual genomes of Serratia (Figure 2A). As shown, the

COG profile heatmap revealed a tight clustering of S. symbiotica

SCc with the core-genome, expected from the fact of its gene

content being too close to that of the core and giving support to its

distinction from its facultative relative, S. symbiotica SAp, which

remained as a separate group, probably exemplifying the

functional profile of a facultative-symbiont lineage of Serratia.

Since S. symbiotica SCc shows the most extreme COG profile

modification against FLS, we decided to take its functional

profile to compare against the FLS average and afterwards

check for the state of the same functional category in S.

symbiotica SAp (Table 2; Figure 2A). We divided the results in

the following categories (see Methods): (i) Extremely re-
tained. Category J, meaning a great part of its gene repertoire

is dedicated to basic functions for its cellular life maintenance as

previously shown [44]. Also, most the universally conserved

COGs fall into this category [45]. It is important to note that

there is also an increase in this category in S. symbiotica SAp

compared to FLS. (ii) Highly retained. Category O, as in

the previous case this is not surprising, since it is normal that

the genomic reductive process affects many of the genes

involved in DNA repair, by which some proteins involved in

post translational modification are common and which avoid

missfolding or accumulation of defective peptides. This group

includes the genes groES and groEL, that code for chaperone

GroEL, which might mitigate the damage of reduced protein

stability by maintaining a high cytoplasmic level of it in B.

aphidicola [46,47]. Category F, since S. symbiotica SCc, contrary

to B. aphidicola BCc, still preserves the capacity to synthesize

pyrimidines, and in the case of purines it could be recycling the

aphids nucleosides to produce nitrogenous bases, complementa-

ry to the case of S. symbiotica SAp [12,13]. Category H, showing

the specialization of S. symbiotica SCc as a cofactor supplier [13].

Category M, explained by the noted ability of S. symbiotica SCc

to still synthesize its own cell membrane, in contrast to the

obligate endosymbiont B. aphidicola BCc which has lost many of

the genes necessary for this function [5,48]. On the other hand,

S. symbiotica SAp still resembles the FLS in this category more

closely. Category L, where previously shown that in spite of

having a reduced number of genes compared to FLS, it still

maintains those necessary for its genome replication [13]. Also

the repair system (based on E. coli) by base excision is

conserved, while the repair by recombination system is almost

complete (recB, recC, recD, sbcB, priB) but missing the recA gene,

as happens with the obligate endosymbiont B. aphidicola [13].

On the other hand, S. symbiotica SAp reveals more genes in this

category compared to S. symbiotica SCc, as expected due to its

less degraded genome. (iii) Moderately retained. Category

U, mainly showing protein translocation and export related

Figure 1. Pan-genome of Serratia spp. Euler diagram displaying the number of clusters found on each subspace of the pan-genome. The pan-
genome defined here as the total collection of CDS clusters found in S. symbiotica SCc, S. symbiotica SAp, S. proteamaculans 568, S. odorifera 4R613
and S. marcescens Db11 (first two obligate and facultative endosymbiont respectively and the rest free-living).
doi:10.1371/journal.pone.0047274.g001
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genes. This comes as no surprise, since in both cases, they had

to adapt to import and export a variety of components due to

the gene loss undergone in the adaptation process to

intracellular life, which would require the conservation of many

genes in this category. Category D, consisting among other

things of the fts genes (ftsL, ftsW, ftsA, ftsZ, ftsK), cell-wall

topological and structural coding genes (mrdB, mreB) and other

cell cycle related proteins coding genes (gidA, minC,minE, minD,

ygbQ). Category I, since S. symbiotica SCc, being not as advanced

in genetic degradation as its partner B. aphidicola BCc, still

preserves higher number of genes in this category, as also

happens with S. symbiotica SAp which presents a greater

repertoire, despite the relatively lower number of genes in the

present category compared with FLS. (iv) Moderately
reduced (which interestingly do not vary much between

endosymbiotic Serratia). Category V, which in spite of showing

almost no relative change in comparison to the FLS, there is a

drastic decrease in absolute gene number against these. In S.

symbiotica SCc these genes comprise only two genes involved in

lipid transport (msbA and lolD), two multidrug efflux system

genes (mdtK and emrA) and two predicted transporter subunits

(yadH and yadG). Categories Q and C, comprising genes mainly

involved in cellular life maintenance. Category P, where many

transporters have been lost in S. symbiotica lineages, retaining

only a limited repertoire. (v) Highly reduced. Category T, in

which a massive loss of transcription regulators and sensor

proteins has occurred. Category N, in which we see a vast

reduction in absolute gene number from FLS. In this category

the losses are mainly from flagellar proteins, fimbrial, pili and

chemotaxis related proteins along with some outer membrane

proteins. The reduction in both T and N categories can be

explained by the stable environment in which the bacterial cell

now resides, making many of the sensory systems and the

motility mechanisms dispensable. Category R and S, displaying

the different state of the genetic degradation of mainly strain-

specific genes, since it has been noted that these are rich in

proteins of unknown function [33,40], which would explain why

S. symbiotica SAp shows a pattern that is more similar to that of

FLS. Category G, which in spite of the losses, is still able to

import sugars from the aphid host (fructose), while S. symbiotica

SAp can still use more (glucose, manose, etc.) [12]. Category E,

where we find a common reduction in both S. symbiotica from

FLS. This feature displays both endosymbionts reliance on

Buchnera to supply many essential amino-acids partially or

entirely [12,13]. (vi) Extremely reduced. Here we find

category K, where both S. symbiotica strains have lost a massive

Figure 2. Functional profiles of core, pan-genome and selected Serratia and corresponding Buchnera genomes. A. Heatmap showing
the two-way clustering of the COG profiles frequency differences from the FLS average. B. Heatmap showing the COG profiles from the selected
Serratia and Buchnera genomes. On the right side of each heatmap, COG assignments for each row are displayed. In the bottom left, color key for the
COG categories for the first heatmap in relation to the comparison S. symbiotica SCc vs FLS. In the bottom right, COG categories key.
BAp: B. aphidicola from A. pisum; BCc: B. aphidicola from C. cedri; Smar: S. marcescens Db11; Sodo: S. odorifera 4R613; Spro: S. proteamaculans 568;
SAp: S. symbiotica from A. pisum; SCc: S. symbiotica from C. cedri.
doi:10.1371/journal.pone.0047274.g002
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amount of transcriptional regulators. This also displays the loss

of transcriptional regulation and responsiveness of reduced

genomes of endosymbionts [49].

Functional Convergence of C. cedri Bacterial
Endosymbiotic Consortia and a Less Genomically
Reduced Buchnera

Besides observing the specific categories in which both S.

symbiotica find themselves altered compared to FLS, it is of

importance to determine the evolution and fate of the two

different associations each bacterium has established with

Buchnera. It has been proposed that in C. cedri the bacterial

consortium is involved in a co-obligate endosymbiosis, both

members being required for the survival of the three partners in

the system [13], while in A. pisum Buchnera alone is able to

sustain the nutritional requirements of the aphid, without the

need an extra member. Then, we decided to analyze whether

the bacterial consortium in C. cedri could, at least generally,

functionally resemble B.aphidicola BAp. To do so, we added the

functional profiles from the corresponding B. aphidicola to those

of its corresponding S. symbiotica partner (partner defined as the

bacteria that share the same host) and performed a two-way

clustering of the relative number of genes in each COG

category using a heatmap (Figure 2B). First, the sum of Serratia

and Buchnera in C. cedri clusters closer to the functional profile of

B. aphidicola BAp than to any other Serratia, and also brings the

functional profile of B. aphidicola BCc closer to other less

genomically reduced Buchnera (See Figure S1). This data

provides evidence that genetic decay in S. symbiotica SCc is

adapted to compensate for the losses in B. aphidicola BCc, and in

conjunction functionally resemble a less genomically reduced

Buchnera. And second, the sum of Serratia and Buchnera in A.

pisum still clusters apart from the rest of Serratia, proof of the

facultative state of S. symbiotica in the aphid A. pisum [12], failing

to show a marked functional complementation with Buchnera.

So, in the event of a facultative endosymbiont establishing a

consortium with an already present obligate endosymbiont, like

in the case of S. symbiotica SCc, the new consortium would be

compelled to maintain general functionality of the previously

present and well-established bacterium.

Single-copy Core Genome Phylogeny
It was of great importance to determine the phylogenetic

position of both S. symbiotica among the Serratia in a maximum

likelihood (ML) phylogenetic tree. In a past phylogenetic

reconstruction by Burke et al. [12], they were unable to resolve

with complete confidence the position of S. symbiotica SAp within

the Serratia using various c-proteobacteria. To approach this

problem we chose the 580 single-copy genes of the Serratia spp.

core genome that were shared with Y. pestis (used as an outgroup)

and reconstructed a concatenated protein sequence phylogeny

(Figure 3: left). A striking feature is the evident acceleration in

the branch leading to S. symbiotica SCc in contrast to what is seen in

the other Serratia, including S. symbiotica SAp. However, S. symbiotica

SAp clusters with S. symbiotica SCc forming a symbiotic clade. It is

worth mentioning that both S. symbiotica cluster with S. marcescens,

which is the only one isolated from an insect (D. melanogaster) [37]

from the strains used in this study, insinuating that the symbiotic

lineage may have come from an insect-pathogen rather than a

plant-pathogen Serratia.

Rearrangements Across Serratia
Another interesting feature in the genomic evolution of

endosymbionts is the invasion by mobile genetic elements. These

elements can cause a high degree of rearrangements in the

bacterial genomes undergoing adaptation to intracellular life

[12,19]. These elements are especially present in recent associa-

tions but lacking in ancient ones. For example, in the ancient and

obligate endosymbionts B. aphidicola and Blochmannia, an extreme

genome stasis has been described [3,50] having a parallel

evolution with its hosts. This contrasting what is seen in more

recent associations like in the case of SOPE (Sitophilus oryzae

primary endosymbiont) [19], facultative endosymbionts like

Sodallis glossinidius [20], Hamiltonella defensa [10] and Regiella

insecticola [11] or the recently sequenced genome of REIS (the

Rickettsia endosymbiont of Ixodes scapularis) [21].

To study the rearrangements undergone by both S. symbiotica we

decided to analyze the rearrangements of the single-copy core

genes (Figure 3: middle). We can clearly see that among FLS,

the synteny of the single-copy core is perfectly conserved among

the strains, with the 597 single-copy genes being in the same order

and orientation, except in the case of S. marcescens where the

replication origin seems to be misplaced as checked by originX

[51] (data not shown). This lets us assume these genes are present

in the same order among Serratia, and thus we can assume that any

reordering witnessed in S. symbiotica strains could be due to the

invasion and/or mobilization of mobile genetic elements that

occurred during the endosymbiotic genomic reduction [19]. In the

case of both S. symbiotica, the level at which they have undergone

genetic rearrangements becomes evident, even showing great

rearrangements between the two. This means that the divergence

of these two endosymbionts must have been prior to the loss of S.

symbiotica SCc’s capacity to rearrange its genome.

We then calculated a minimal rearrangement phylogeny for the

selected Serratia genomes (Figure 3: right). This method allows us

Table 2. S. symbiotica COG profile modification from FLS and
between them.

COG SCc/FLS SCc/Sap

Extremely retained J 4.14 1.95

Highly retained O 1.65 1.20

F 2.03 1.40

H 2.14 1.25

M 1.67 1.39

L 1.78 0.68

Moderately retained U 2.36 0.86

D 2.41 1.04

I 1.30 1.88

Moderately reduced V 0.72 0.73

Q 0.58 1.03

C 0.78 0.93

P 0.74 0.95

Highly reduced T 0.36 0.44

R 0.62 0.63

S 0.50 0.48

G 0.57 1.14

E 0.52 0.81

Extremely reduced K 0.27 0.58

Ratios of relative number of genes for comparison of COG functional profile
modifications present in the genomes of both S. symbiotica.
doi:10.1371/journal.pone.0047274.t002
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to calculate a tree with the minimal number of rearrangements

required to obtain an ancestral gene order. Strikingly, the minimal

rearrangement distance from S. symbiotica SAp to FLS (129) is

greater than that of S. symbiotica SCc to FLS (108), and the distance

between them to a common ancestor (155) is the greatest. The

rearrangements undergone in the recent endosymbiotic lineages

might have happened in a random fashion due to the high

numbers of mobile genetic elements and could also be facilitated

by the relaxation in pressure of gene order in certain genes because

of the degradation of the transcription regulation. This means that

in different events of infection by Serratia endosymbionts or in early

divergences, we might have very different gene orders.

Conclusions
The study of this type of endosymbiotic organisms is shedding

light on the differences between a free-living and obligate

endosymbiotic state. Knowledge is also provided on adaptations

to a nutrient-rich and stable environment, in which the bacteria

cells undergo drastic changes in their genomes.

In the present study, we have found multiple evidences

supporting the existence of two very distinct S. symbiotica lineages.

One of which has obligate endosymbiotic characteristics (S.

symbiotica SCc), such as accelerated evolution, with the COG

profile being similar to that of the core genome, with a lack of

mobile elements, no genetic redundancy and loss of almost all

strain-specific genes. And a second one (S. symbiotica SAp),

presenting all the traits of a facultative endosymbiont, with its

functional profile being ‘‘intermediate’’ between that of S.

symbiotica SCc and FLS, with the presence of mobile genetic

elements and preserving still a great amount of strain-specific

genes. In the case of the Serratia genus, commonly found in a

variety of insects, it would not be surprising to find more

endosymbiotic strains in different stages of lifestyle transition from

FLS to more ancient and well-established obligate endosymbionts,

as also proposed for Wolbachia [52] and Ricketsia [53,54]. We were

also able to determine the phylogenetic relationship among the

different Serratia and place the symbiotic lineage closer to an insect-

isolated strain indicating its probable insect-pathogen origin.

Even though we have gained insight into how the genetic

rearrangements are happening, in order to have a better

understanding of this process as well as the genetic decay and

the transition from a free-living bacteria to an endosymbiotic one,

more S. symbiotica must be analyzed to determine the basis and

reason for the associations these bacteria have with aphids and its

obligate endosymbiont B. aphidicola.

Materials and Methods

Construction of Serratia spp. Pan-genome
Serratia genomes were recovered from their respective databases

(See File S2: Table S1), gene annotation from prediction of S.

marcescens Db11 was done using BASys [55]. The protein

sequences were fed into OrthoMCL [56] with an inflation value

of 1.5, a 70% match cut-off, and e value cut-off of 1e-5. A total of

17, 086 coding genes were clustered into 4, 469 families of

orthologous genes, leaving 2, 293 as single family genes. Clustering

was checked for consistency using COG categories [45] to assess

the homogeneity of COG assignment for all the genes in a given

family, screening of clusters to check for inflation value cluster

fragmentation effect, and gene number per family to make sure

not many gene rich families arose. Visual display of the pan-

genome subspaces was done using the R custom modified

drawVennDiagram function of package gplots [57].

COG Profiles
COGs categories were assigned using a series of Perl scripts to

find non-overlapping hits against the COG database using Blastp
with an e-value cut-off of 1e-03 [58]. The COG profile displays

and clustering were made using the heatmap2 function from the R
package gplots. This heatmap would represent a two way

clustering having the most similar columns closer together and

the most similar rows in the same fashion, showing the

Figure 3. Phylogenetic and rearrangements history of the single-copy core genes of the Serratia spp. On the left side, rooted ML tree
with * indicating bootstrap support values of 100 (percent of total). On the middle, pairwise synteny plots of free-living S. marcescens, S. odorifera and
S. proteamaculans along with endosymbiotic relatives S. symbiotica SCc and S. symbiotica SAp. On the right side, unrooted minimal number of
rearrangements tree as calculated by MGR. On red, branches from the endosymbiotic lineages.
doi:10.1371/journal.pone.0047274.g003
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dissimilarity distances of columns with the top dendogram and the

dissimilarity distance from the COG categories in the left one.

Row reordering was chosen for the function for visual and

categorization purposes. For assessing S. symbiotica divergence from

FLS, absolute COG category frequencies were divided by the

strains total number of COG assigned CDSs (see File S1: Table
S2) and then subtracted the mean relative frequency from the FLS

in the same COG category. Kruskal-Wallis tests were carried out

on the absolute frequency tables of COG profiles using R. The

categorization of retained/reduced COG categories in comparison

to FLS (using the relative values table, as described above) was

done in the following way: Extremely retained, more than 5%

difference above zero; highly retained, more than 2 and less than

5% difference above zero; moderately retained, more than 0 and

less than 2% difference above zero; moderately reduced, less than

0 and more than 2% difference below zero; highly reduced, less

than 2 and more than 5% difference below zero; extremely

reduced, less than 5% difference below zero. Important is to

remark that even a lower than 1% difference is important since

FLSs differences range between 0.0006% and 0.4253% with a

mean of 0.1218% (visually displayed in Figure 2A by showing

cells of the FLS in close-to-white tones).

Phylogenetic Analysis
The 580 single-copy shared genes identified between Serratia

spp. and Yersinia pestis CO92 were extracted and translated to

amino-acid sequences using transeq from the EMBOSS suite

[59] and aligned using the L-INS-i algorithm from MAFFT
v6.717b [60] (See file S2). Gblocks [61] was used to refine the

alignment. ML tree was calculated with 1000 bootstrap replicates

using RAxML v7.2.6 [62]. Visual display of both trees was done

using FigTree v1.3.1 and edited in Inkscape.

Genome Rearrangements
In all, 597 single-copy genes (the ‘‘single-copy core’’) were

selected to study the rearrangement history of Serratia genus.

Scaffold or contig order for unfinished genomes was determined

with MUMers promer v3.22 [63] using as reference the genome

of S. proteamaculans 568. Custom Perl scripts were developed to

create input files for genome rearrangements plotting using

genoPlotR v0.7 [64]. Minimal number of rearrangements

phylogeny was calculated using MGR v2.03 [65] with the circular

genomes option and without using any heuristics.
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BCc: B. aphidicola from C. cedri; BSg: B. aphidicola from S. graminum;
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