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Our microbiome should be understood as one of the most complex components of the human body. The
use of b-lactam antibiotics is one of the microbiome covariates that influence its composition. The extent
to which our microbiota changes after an antibiotic intervention depends not only on the chemical nature
of the antibiotic or cocktail of antibiotics used to treat specific infections, but also on the type of admin-
istration, duration and dose, as well as the level of resistance that each microbiota develops. We have
begun to appreciate that not all bacteria within our microbiota are vulnerable or reactive to different
antibiotic interventions, and that their influence on both microbial composition and metabolism may dif-
fer. Antibiotics are being used worldwide on a huge scale and the prescription of antibiotics is continuing
to rise; however, their effects on our microbiota have been reported for only a limited number of them.
This article presents a critical review of the antibiotics or antibiotic cocktails whose use in humans has
been linked to changes in the composition of our microbial communities, with a particular focus on
the gut, oral, respiratory, skin and vaginal microbiota, and on their molecular agents (genes, proteins
and metabolites). We review the state of the art as of June 2016, and cover a total of circa 68 different
antibiotics. The data herein are the first to compile information about the bacteria, fungi, archaea and
viruses most influenced by the main antibiotic treatments prescribed nowadays.

� 2016 Elsevier Inc. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2. Antibiotic usage as a factor influencing human total microbiota composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.1. Antibiotics associated with alterations in the total microbiota composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.2. Bacterial groups most affected by antibiotics at the level of total microbiota . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.3. Other components of the total microbiota affected by antibiotics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3. The fraction of the microbiota actively responding to antibiotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4. Consequences of antibiotics on microbiome function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.1. Effects of antibiotics on microbial activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.2. Effects of antibiotics on microbial gene expression and protein synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3. Alterations in microbial metabolite content during antibiotic treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.4. Bacterial translocation during antibiotic treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
otion of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcp.2016.09.007&domain=pdf
http://dx.doi.org/10.1016/j.bcp.2016.09.007
mailto:mferrer@icp.csic.es
mailto:andres.Moya@uv.es
http://dx.doi.org/10.1016/j.bcp.2016.09.007
http://www.sciencedirect.com/science/journal/00062952
http://www.elsevier.com/locate/biochempharm


M. Ferrer et al. / Biochemical Pharmacology 134 (2017) 114–126 115
5. Conclusions and future directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Conflicts of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
1. Introduction

The end of the twentieth century has witnessed a revolution in
the life sciences and, specifically, in human health. In this respect,
how we regard our relationship with our microbiota is currently
under profound transformation due to the –omics paradigm, with
the subsequent appearance of genomics (1986), proteomics
(1995) and, most recently, metabol[n]omics (1999/2001) [1,2]. In
the words of Martin J. Blaser, we are in the microbiome revolution
[3]. Our skin, gastrointestinal tract, respiratory system, oral cavity,
and vaginal/urinary cavity, with surface areas of up to approx.
1.8 m2, 300–400 m2, 160 m2, 215 cm2, and 90 cm2 (for adults),
respectively, harbor at least 5000 bacterial phylotypes in the adult
body [4–7]. Inter-variability is a characteristic of the human body,
as each body site houses from 2 to 7 community types with differ-
ent relative abundances of at least 63 bacterial genera [7]. In the
near future we should have a real estimation of the total biodiver-
sity with the sampling of at least 41,000 individuals [8]. However,
accumulated knowledge provides evidence for about 55 bacterial
divisions in our body, including mainly Bacteroidetes (48%) and
Firmicutes (51%), with the remaining 1% of phylotypes comprising
Proteobacteria, Verrucomicrobia, Fusobacteria, Cyanobacteria,
Actinobacteria and Spirochaetes, and then various species of
archaea, fungi, protozoa, virus and other microorganisms [9].

According to R. Goodacre, this extremely complex pool of
microbes and viruses can be regarded as a superorganism [10] that
exists in a more intimate symbiotic relationship with its host than
other microbial populations. Thus, its health status can be an indi-
cator of human health [7,11]. We should not forget, however, that
the human microbiota is continuously being exposed to factors
that influence it dynamically [12,13]. The degree of changes in
our microbiota depends not only on the nature, strength and dura-
tion of the perturbing factor itself, but also on the stability of each
microbiota, assuming that each individual’s microbiota is unique
[11,14]. On some occasions, the nature of the disturbance or envi-
ronmental stress in our body sites, particularly the gut environ-
ment, is so strong that the microbiota undergoes changes,
acquiring a dysbiotic state [15]. The term dysbiosis is used in a
broad sense to refer to an imbalance in the taxonomic composition
of the microbiota.

Antibiotics influence bacterial growth curves and this is why
they are used to kill pathogens. Bactericidal antibiotics directly kill
the bacteria, while bacteriostatic antibiotics inhibit their growth.
According their production mode and origin, antibiotics may be
classified into natural, semisynthetic and synthetic. Natural antibi-
otics are a product of secondary metabolism of organisms, so they
actually serve to enhance their survival in the nature. According to
Berdy [16], there are about 17,000 bioactive natural products with
antibiotic properties found in Bacteria, 8700 natural antibiotics in
Actinomycetales and 4900 in Fungi. Most modern antibacterials
are semisynthetic modifications of various natural compounds
[17]. For example, penicillins produced by fungi of the genus Peni-
cillium are the base for the current beta-lactam antibiotics.

In antibiotic treatment, the dose of the antibiotic must be con-
sidered. In microbiology, a frequently measured parameter is the
minimal inhibitory concentration (MIC), defined as the lowest con-
centration of a drug that will inhibit the visible growth of an organ-
ism after overnight incubation (this period is extended for
organisms such as anaerobes, which require prolonged incubation
for growth). The range of antibiotic concentrations used for deter-
mining MICs is generally set by doubling dilution steps up and
down from 1 mg/l [18]. However, at such concentrations, antibi-
otics are not specific for the pathogen they are prescribed to elim-
inate but also produce co-lateral effects in our microbiota. It is of
great interest to identify the degree of such changes and the speci-
fic microbial and viral groups affected by each antibiotic used to
date as we know that early gut [19], skin [20], respiratory [21],
vaginal [22] and urinary [23] microbiota composition determines
bacterial succession patterns and gut, skin, respiratory, vaginal
and urinary health in children and adults [24].

Following on from the above considerations, this review gathers
information on our current knowledge of the effect that multiple
antibiotics, tested and commonly used in humans, have on our
microbiota (gut, oral, respiratory, skin and vaginal microbiota).
We review the state of the art as it stands in June 2016, with the
scope encompassing only research related to the analysis of human
microbiota.

2. Antibiotic usage as a factor influencing human total
microbiota composition

In a recent study analyzing in-depth sequencing of the gut
microbiomes of 1135 participants, the use of antibiotics was found
to be significantly associated with alterations in microbiome com-
position [25]. Indeed, the only drugs significantly associated with
the differential abundance of specific genera in phenotype-
matched case-control analyses were b-lactam antibiotics [8]. Both
studies reported that the abundance of two species from the genus
Bifidobacterium (Actinobacteria phylum), out of a total of 1649 tax-
onomic clades detected, were strongly associated with the use of b-
lactam antibiotics.

However, many antibiotics other than b-lactam antibiotics have
been shown to influence the composition of our microbiota.
Obtaining a clear picture of the influences of distinct antibiotic
therapies is of special interest as broad-spectrum antibiotic ther-
apy decimates the microbiome and thus impacts health negatively.
This information may be essential to design pathogen-selective
antibiotics in order to minimize disturbance to the microbiome,
as short-term antibiotic treatments are able to shift the microbiota
to long-term alternative dysbiotic states, which may promote the
development and aggravation of diseases [26]. Furthermore,
understanding the effect of different antibiotics is of practical
importance because, for example, microbiota modulation by
antibiotics (i.e., rifaximin) is a therapeutic option in patients with
irritable bowel syndrome [27] and, in general, to potentially mod-
ulate intestinal homeostasis [28]. Accordingly, below we summa-
rize bacterial genera and other components of our total
microbiota influenced by all main antibiotic treatments reviewed
to date.

2.1. Antibiotics associated with alterations in the total microbiota
composition

Antibiotics are being used worldwide on a huge scale and are
one of the pillars of medicine [29]. Indeed, the prescription of
antibiotics is continuing to rise and the levels of antibiotic resis-
tance are also escalating [29–33]. However, the number of new
antibiotics appearing on the market continues to drop [34].



Fig. 1. Representative chemical structure of antibiotics (glycopeptides, cyclic lipopeptides, polymyxins, polyenes, rifamycins and macrolides) being used worldwide and
whose use has been linked to changes in the composition of the human microbiota, particularly, in the microbiota inhabiting the gastrointestinal tract.
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Among all human-prescribed antibiotics, the effect of approx.
68 (alone or in the form of cocktails or combinations) has been
described to date in terms of the collateral changes produced in
our microbial community composition. Figs. 1–3 summarize their
representative chemical structures. Culturomics and next genera-
tion sequencing have demonstrated that post-antibiotic dysbiosis
induces a reduction in the amount of bacteria and in microbiota
diversity, as well as a loss of functional diversity combined with
reduced colonization resistance against invading pathogens,
implying the danger of antimicrobial resistance [35–40]. Such
changes may exert future consequences on our health [41–43].

It is well documented, despite methodological differences, that
different antibiotic treatments have not only markedly diverse
effects on the composition of the total microbiota [36] but also
on particular microbial taxons. Such collateral effects of antibiotic
treatment on particular microbial clades may not be a direct con-
sequence of the antibiotic itself alone, but of multiple factors that
include the different type of administration and different pharma-
cokinetics of the original compounds [44,45] and the different
resistance and degradation mechanisms that each microbe devel-
ops against each antibiotic [46–48]. Indeed, drugs and phytochem-
icals are transformed into bioactive (sulfasalazine, lovastatin, and
ginsenoside Rb1), bioinactive (chloramphenicol, ranitidine, and
metronidazole), and toxic metabolites (nitrazepam), which can
also influence the microbial communities [45]. Additionally, meta
llo-b-lactamase-producing bacteroides can shield other members
of the microbiota from antibiotics [49].
Sixty-eight antibiotics, distributed among 22 groups, have been
tested and their effects on our microbiota evaluated, as summa-
rized in Figs. 1–3. Changes associated to all these antibiotics have
mainly been reported to occur in the gut microbiota, although they
have also been reported in the colorectal-associated tissue micro-
biota, nasal microbiota, oral microbiota (including salivary and
subgingival biofilm microbiota), respiratory microbiota (including
nasal microbiota), skin microbiota, and vaginal microbiota [50–
104]. Changes were identified by analyzing 16S ribosomal RNA
gene sequences and shotgun sequence datasets [105]. Fig. 4 sum-
marizes all bacterial genera and phyla (right panel) in our micro-
biota whose abundance is influenced by all these different
antibiotic treatments (external grey circle). It also depicts whether
different antibiotics have similar effects or different bacterial
groups (see links in inner circle).

Observation of Fig. 4 reveals that bacteria belonging to a
restricted set of phyla and genera are strongly and statistically
affected by antibiotics. Indeed, Fig. 4 (right panel) summarizes
the list of 42 major microbial genera whose abundance is altered
after treatment with any one of 68 antibiotics. This agrees with
the fact that antibiotics can exert important eubiotic effects
regardless of the original disease for which they were prescribed,
causing perturbations without changing overall composition and
diversity but rather affecting a specific set of bacteria [50]. For
example, the abundance of only one bacterial clade was found to
be significantly altered after treatment with mesalamine, tobramy-
cin, gentamicin, flavomycin, amphotericin B, colistin sulfate, col-



Fig. 2. Representative chemical structures of antibiotics (aminoglycosides, aminosalicylates, azoles, fluoroquinolones, lincosamides, nitrofurantoins, nitroimidazoles, non-b-
lactam inhibitor, quinolones, quinoxalines, sulfonamides, tetracyclines and phosphoglycolipids) being used worldwide and whose use has been linked to changes in the
composition of the human microbiota, particularly, in the microbiota inhabiting the gastrointestinal tract.
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istin, olaquindox or ticarcillin [33,57,66,80]. By contrast, interven-
tions with the fluoroquinolone enrofloxacin were associated with
changes in 32 microbial groups [74,75]. Fluoroquinolones are
among the most widely prescribed antibiotics and there is a major
increase in resistance worldwide [106]. They constitute the
second-line agents for use when narrow-spectrum antibiotics have
failed [47], so it is anticipated that they may influence our micro-
biota to a greater extent. A second observation regarding Fig. 4
(see links in the inner circle) is that many bacterial genera become
vulnerable to antibiotics, which differ in nature and clinical conse-
quences. These will be discussed in detail later.

2.2. Bacterial groups most affected by antibiotics at the level of total
microbiota

As shown in Fig. 4, of the bacterial genera influenced by the
antibiotic treatments reviewed [50–104], the main phyla influ-
enced are Actinobacteria, Bacteroidetes, Firmicutes, and Proteobac-
teria. The main genera within each group correspond to
Bifidobacterium, Bacteroides, Faecalibacterium, and Escherichia,
respectively. Other affected phyla include Fusobacteria (genus
Fusobacterium), Planctomycetes (Gemmata), and Verrucomicrobia
(Akkermansia). We made the following observations of the bacte-
rial phyla influenced by the 22 groups (one being the group cover-
ing cocktails) of antibiotics considered:
(i) Of the 4 main affected phyla, cyclic lipopeptides (nr. 7 in
Fig. 4) [103], nitroimidazoles (nr. 8) [60,81,82,104] and rifa-
mycins (nr. 10) [50,100–102] have not been reported to sta-
tistically affect Proteobacteria.

(ii) Aminosalicylates (nr. 9) [80] and azolidines (nr. 18) [65]
have been reported to mostly influence only members of
Firmicutes.

(iii) Aminoglycosides (nr. 5) [33,57,99] and tetracyclines (nr. 11)
[33,56] have not been observed to affect Actinobacteria.

(iv) Phosphoglycolipids (nr. 14) [66] have not been reported to
affect Bacteroidetes.

(v) Polymyxins (nr. 13) [57,66], polyenes (nr. 15) [57], and sul-
fonamides (nr. 21) [60] seem to affect only Bacteroidetes and
Firmicutes.

(vi) Nitrofurantoins (nr. 12), azoles (nr. 17), and a novel class of
respiratory tract infection antibiotics (nr. 20), referred to as
J01CAxx, J01EBxx, J01XExx, J01CFxx, D06BXxx, J01AAxx,
and P01ABxx [60,82], have been reported to influence Acti-
nobacteria and Firmicutes.

(vii) Quinolones (nr. 19) [51] have been reported to affect only
Firmicutes and Proteobacteria.

(viii) Beta-lactams (amoxicillin) (nr. 1, AMO) [51–56], lin-
cosamides (clindamycin) (nr. 3, CLI) [56,64,68–71,73] and
phosphoglycolipids (flavomycin) (nr. 14, FLA) [66] are
reported to affect Fusobacteria (Fusobacterium).



Fig. 3. Representative chemical structures of b-lactam antibiotics used worldwide and whose use has been linked to changes in the composition of the human microbiota,
particularly, in the microbiota inhabiting the gastrointestinal tract.
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(ix) Beta-lactams (cefprozil, and cephalosporin) (nr. 1, CEFP;
CEP) affect Planctomycetes (Gemmata) [62,63].

(x) Beta-lactams (ceftriaxone and cephalosporin) (nr. 1, CEFP;
CEFT) [51,62] and lincosamides (nr. 3) [74,75] affect Verru-
comicrobia (Akkermansia).

The genera Prevotella (Bacteroidetes), Clostridium, Enterococcus,
Lactobacillus, Ruminococcus, Streptococcus, Eubacterium (Firmi-
cutes), and Enterobacter (Proteobacteria) figure among the most
influenced by the antibiotics considered. Specifically, according to
research, fluoroquinolones (nr. 2 in Fig. 4) do not affect Prevotella
[48,51,52,56,60,65–69,74,75,77,90], beta lactams (nr. 1) do not
influence Lactobacillus [33,36,44,51–63,77,83–85,87,88,134], and
lincosamides (nr. 3) seem to have no effect on Streptococcus
[56,68,70–73,90]. According to reports, a number of antibiotics
affect only a few genera, e.g., nitrofurantoins (nr. 12) and azoles
(nr. 17) [60] affect Bifidobacterium and Faecalibacterium; azolidines
(nr. 18) [65] affect Clostridium and Faecalibacterium; quinolones
(nr. 19) [51] affect Staphylococcus and Escherichia; respiratory tract
infection antibiotics (nr. 20) [82] affect Lactobacillus and Bifidobac-
terium; and sulfonamides (nr. 21) [60] affect Bacteroides and
Faecalibacterium.

As summarized in Fig. 4, antibiotic treatments comprising a
cocktail of gentamicin and ampicillin are associated to alterations
in a higher number of bacterial genera (nr. 22, F in Fig. 4) (32 gen-
era), enrofloxacin (nr. 2, ENR) (32), ciprofloxacin (nr. 2, CIPF) (27)
and clindamycin (nr. 3, CLI) (23), and to lower extent those with
cefprozil (nr. 1, CEFP) (16), a cocktail of azithromycin and clar-
ithromycin (nr. 22, H) (15), amoxicillin (nr. 1, AMO) (15), paro-
momycin (nr. 5, PAR) (12), cephalosporin (nr. 1, CEP) (12),
fluoroquinolones (nr. 2) (10), moxifloxacin (nr. 2, MOX) (9), clavu-
lanic acid (nr. 1, CLA) (9), ceftriaxone (nr. 1, CEFT) (9), ampicillin
(nr. 1, AMP) (8), GSK1322322 (nr. 6, GSK) (7), a cocktail of cipro-
floxacin and metronidazole (nr. 22, G) (7), surotomycin (nr. 7,
SUR) (6), a cocktail of ceftaroline and avibactam (nr. 22, C) (6), clar-
ithromycin (nr. 4, CLA) (6), tigecycline (nr. 11, TIG) (5), rifaximin
(nr. 10, RIF) (5), a cocktail of ampicillin, sulbactam and cefazolin
(nr. 22, M) (5), mesalamine (nr. 9, MES) (5), erythromycin (nr. 4,
ERY) (5), truoxinc (nr. 1, TRU) (4), tazocin (nr. 1, TAZ) (4), nitrofu-
rantoin (nr. 12, NIT) (4), cocktail of amoxicillin and clavulanic acid
(nr. 22, K) (4), flucloxacillin (nr. 1, FLU) (4), faropenem (nr. 1, FAR)
(4), colistinsulfate (nr. 13, COL) (4) and co-amoxicillin (nr. 1, CO-
AMO) (4). All other antibiotics influenced less than 3 genera in
our microbiota.

A comparison between the effects of treatments with a single
antibiotic (nr. 1–21 in Fig. 4) or cocktails of antibiotics (nr. 22, F
in Fig. 4) provides interesting results. For example, treatment
with gentamicin and ampicillin (nr. 22, F) [92–96] is associated
to effects on a greater number of genera (32 in total) compared
to ampicillin (nr. 1, AMP) (8) and gentamicin (nr. 5, GEN) (1)
alone [33,58,134]. Indeed, bacteria belonging to the Enterobacter
genus were the only ones (out of 36 non-redundant genera



Fig. 4. Summarized graphic visualization of bacterial genera influenced by all main reviewed antibiotic treatments shown to influence our microbes. Antibiotic treatments included 21 antibiotics that have been used individually
(numbers 1–21; legend, left panel) and 15 distinct cocktails of antibiotics (number 22; legend, left panel). Numbers in the outer light grey circle (1–22) represent the different antibiotic treatments reviewed. Next darker grey
circle represents subcategories within each antibiotic intervention, identifiable by a three letter code included in the legend. Inner circle shows links among bacterial genera influenced by the diverse antibiotics (see legend for
colors). This circle illustrates all possible connections among taxa affected by the different antibiotics, depicting the existence of a similar effect. For example, when a specific bacterial genus is influenced by two or more different
antibiotics, then, a link is drawn. Each color is associated to different bacterial phyla and genera. Thus, the main affected phyla (and the genera associated to them), by all reviewed antibiotics appear in different hues of the same
color: Actinobacteria are represented in hues of red; Bacteroidetes in green; Firmicutes in blue; Fusobacteria in light orange; Planctomycetes in purple; Proteobacteria in hues of yellow; and Verrucomicrobia in dark orange
(legend, right panel). To produce the figure the following steps were undertaken: i) we reviewed the state of the art, as it stands in June 2016, of antibiotics interventions whose use in humans has been linked to changes in the
composition of our microbial communities, as identified by monitoring the 16S rRNA amplicons generated from DNA; ii) information on the bacteria influenced by the different antibiotics was retrieved from the reviewed
material; iii) a graphical tool was used to show the links among bacterial genera and corresponding phyla influenced by the diverse antibiotics within the main classes (determined by chemical nature and mode of action).
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affected by any of the treatments) to be affected by all three
treatments. Bacteria from the genera Bacillus, Klebsiella, Sal-
monella and Streptococcus were only altered by treatment with
ampicillin (nr. 1, AMP) alone [58,134]. Similarly, treatment with
a cocktail of azithromycin and clarithromycin (nr. 22, H) altered
the abundance of 15 genera [83], whereas the treatment with
azithromycin (nr. 4, AZI) [56] and clarithromycin (nr. 4, CLA)
[60,61] alone altered 3 and 6 genera, respectively. Bacteria from
the Bacteroides and Bifidobacterium genera were the only ones
(out of 18 unique genera affected by any of the treatments) to
be affected by all three treatments. By contrast a cocktail of
ciprofloxacin and metronidazole (nr. 22, G) [91,97] was shown
to alter a much lower number of genera (7) than in individuals
treated with ciprofloxacin (nr. 2, CIPF) alone (27 in total)
[48,51,56,60,64–68]. Only 5 out of 35 non-redundant genera were
found to be affected by both treatments (Bacteroides, Bifidobac-
terium, Clostridium, Faecalibacterium and Roseburia). Also, treat-
ment with a cocktail of ampicillin, sulbactam and cefazolin (nr.
22, M) resulted in changes in 5 genera [87], which is lower than
those affected by interventions with ampicillin (nr. 1, AMP) (8
genera) [58,134]. Only the genus Bifidobacterium (out of 12
affected genera) was common to both treatments. Finally, treat-
ment with amoxicillin and clavulanic acid (nr. 22, K) [85] mostly
affects bacteria belonging to 4 genera, whereas amoxicillin (nr. 1,
AMO) alone affects bacteria from 15 genera [36,51,53–56,131].
Only the genus Bacteroides (out of 18 affected genera) was com-
mon to both treatments. Finally, the cocktail of antibiotics com-
prising azithromycin and clarithromycin (nr. 22, H) has been
found to affect Christensenella, which is reported to be the most
heritable gut bacterium [107]. This bacterial genus was not
affected when azithromycin and clarithromycin were prescribed
individually [56,60,61].

Taken together, this comparative analysis at the genus level
revealed that in some cases there is a synergetic negative effect
on our microbes during treatments based on combining different
antibiotics, which is not evident in other combined treatments.
This was also observed at the phylum level. Thus, interventions
with cocktails of gentamicin-ampicillin (nr. 22, F in Fig. 4) [92–
96] and ciprofloxacin-metronidazole (nr. 22, G) [91,97] affect bac-
teria distributed within four different phyla (Actinobacteria, Bac-
teroidetes, Firmicutes, and Proteobacteria). By contrast, a
combination of piperacillin and tazobactam (nr. 22, O in Fig. 4)
[51] has been found to influence only Bacteroidetes.

The accumulated comparative data summarized in Fig. 4 also
reveal that most sensitive bacteria are those associated to the fol-
lowing genera: Bifidobacterium (by 40 antibiotic treatments), Bac-
teroides (36) and Faecalibacterium (30), and to lower extend
Enterococcus (20), Clostridium (17), Prevotella (14), Blautia (13),
Escherichia (13), Lactobacillus (13), Ruminococcus (13), Streptococcus
(11), Eubacterium (10), Coprococcus (8), Parabacteroides (8), Dorea
(7), Enterobacter (7), Alistipes (6), Dialister (6), Roseburia (6), Staphy-
lococcus (5), Collinsella (4), Fusobacterium (4), Propionibacterium (4),
Subdoligranulum (4), Veillonella (3), Akkermansia (3), Anaerostipes
(3), Sutterella (3), and Allisonella, Atopobium, Bacillus, Butyricicoccus,
Corynebacterium, Eggerthella, Finegoldia, Flavonifractor, Gemmata,
Halomonas, Klebsiella, Lactococcus, Marvinbryantia, Megamonas, Sal-
monella, Shigella, Streptomyces and Xanthomonas (2 each). Finally,
bacteria belonging to the genera Abiotrophia, Acetivibrio, Anaerococ-
cus, Butyrivibrio, Christensenella, Coprobacillus, Gemella, Holdemania,
Lachnospira, Oscillospira, Peptoniphilus, Peptostreptococcus, Solobac-
terium (all from Firmicutes phylum), Actinomyces, Adlercreutzia,
Gardnerella, Leucobacter, Olsenella, Rothia (from Actinobacteria),
Aggregatibacter, Aquabacterium, Asticcacaulis, Bilophila, Gemmiger,
Haemophilus, Marinicella, Parasutterella, Phenylobacterium, Pseu-
domonas, Pseudoxanthomonas, Ralstonia, Serratia, Stenotrophomonas
(from Proteobacteria), Leptotrichia (Fusobacteria) and Parapre-
votella (Bacteroidetes), were less susceptible to alterations, as their
abundance was found to be altered by only one of the tested
antibiotics.

Certain antibiotics have been shown to reduce the abundance of
bacteria known to be beneficial for human health, such as bacteria
of the genus Faecalibacterium (by 30 antibiotic treatments), Bifi-
dobacterium (by 40 antibiotic treatments), and Blautia (by 13
antibiotic treatments), to cite some (Fig. 4). Noticeably, of the 68
antibiotic treatments reviewed, only two, namely fluoroquinolone
enrofloxacin (nr 2, ENR in Fig. 4) [74] and a combination of three b-
lactams (ampicillin, sulbactam and cefazolin) (nr. 22, M) [52,87,88]
had a negative effect on all these three genera, which are known to
be strongly involved in short chain fatty acid production and ame-
lioration of inflammation. Thus, Faecalibacterium is a bacterium
which is depleted during inflammatory conditions [108], and Fae-
calibacterium plays an important role in inducing regulatory T-
cells [109] and decreasing intestinal permeability [110]. Bacteria
of the genus Bifidobacterium are powerful bacteria that can protect
the gut, boost the immune system and control inflammatory
responses [111]. The abundance of Blautia increases following fecal
microbiota transplantation from healthy donors to individuals
with recurrent Clostridium difficile infections; the latter represent
a subgroup of individuals with extremely impaired gut bacterial
composition [112].

These studies highlight the fact that there is a call for preventive
measures to define antibiotic-based treatment strategies that do
not harm or unbalance our resident microbiota, especially those
bacteria with an active role in health. One option is to use selective
antibiotics that inhibit pathogens but have a neutral impact on
beneficial bacteria, such as some of those previously mentioned.
This is of special significance as when antibiotics are prescribed
to treat infections in different organs they not only affect the sus-
ceptible pathogen but also untargeted beneficial bacteria. Also, the
counts of susceptible bacteria decrease, so resistant bacteria may
proliferate. These resistant bacteria may be opportunistic patho-
gens, such as C. difficile, causing C. difficile-associated diarrhea
[113]. Accordingly, the selective inhibitory effect of 8-
hydroxyquinoline on pathogenic (C. difficile) and beneficial (Bifi-
dobacterium longum) strains has recently been studied using flow
cytometry [114]. Briefly, both species were co-cultured and their
growth in media with the natural antibiotic compound 8-
hydroxyquinoline (8HQ) was monitored by flow cytometry,
hybridizing cells with fluorescent probes. This study has shown
that 8HQ exerts selective inhibitory activity against C. difficile,
while it does not affect the growth of B. longum.

2.3. Other components of the total microbiota affected by antibiotics

Antibiotic treatment may also influence the interactions
between phage and bacterial species, leading to a highly connected
phage-bacteria network for horizontal gene transfer [115]. Antibi-
otic treatments, such as those with cocktails of i) b-lactams and
sulfonamides (cefazolin, trimethoprim and sulfamethoxazole), ii)
glycopeptides, cyclic lipopeptides and b-lactams (vancomycin,
daptomycin and ceftazidime), iii) lycopeptides and rifamycins
(vancomycin and rifampin), and iv) glycopeptides and b-lactams
(vancomycin and meropenem) have been also been shown to influ-
ence the composition of virus, particularly siphoviruses (Cau-
dovirus, Myoviridae, Podoviridae, Siphoviridae), herpes viruses,
phycodnaviruses, poxviruses, mimiviruses, baculoviruses, and
papillomaviruses both in the gut and oral microbiota [89]. Since
different antibiotic cocktails affect similar types of viruses, and
all cocktails contain vancomycin as a common component, it is
plausible that this glycopeptide is most likely responsible for the
observed effect. Notwithstanding, experimental evidence is
required to support this hypothesis. Within fungi, the treatment
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with a cocktail of ceftaroline and avibactam is associated to
changes in the abundance of Candida [90]. Archaea are also a com-
ponent of our microbiota, particularly that in the gut [116]. Among
all the antibiotics tested, clindamycin was shown to influence the
archaeal community structure, particularly the presence of a speci-
fic intestinal population of Crenarchaeota [73,116]. Methanobacte-
ria were also affected by cefprozil and cephalosporin [62,63].
3. The fraction of the microbiota actively responding to
antibiotics

Antibiotics perturb the original microbiome composition [8],
particularly affecting at least 42 microbial genera, as shown by
examining the effect of 68 different antibiotics on our total
microbes (as reviewed here, see Fig. 4 and above). The altered bac-
terial community may be more vulnerable to the overgrowth of
opportunistic pathogens and infections [117]. However, conven-
tional studies based on the amounts of the 16S rRNA genes gener-
ated from DNA, commonly used to estimate such alterations,
cannot determine the taxonomic diversity of the bacteria that most
react, or not, to antibiotics (so-called active bacteria). This is
because such methods also take into account dormant, dead and
quiescent bacteria as they are also present in samples [118–121].
Bacteria which become highly transcriptionally active during treat-
ments with antibiotics may be those that develop degradation
mechanisms against antibiotics, or produce molecules promoting
or inhibiting growth of pathogens in the presence of the antibiotics
[122]. Information about the metabolically active species in indi-
viduals due to antibiotic therapy can be estimated by monitoring
the 16S rRNA amplicons generated from cDNA, which is different
to the total (inactive and active) species present in the microbiota
(indicated by the amounts of the 16S rRNA genes generated from
DNA). A recent example, in which authors examined individuals
receiving antibiotic therapy based on three different antibiotic
classes revealed differences between both approaches and the
potential of analyzing 16S rRNA amplicons from cDNA [77]. Bacte-
ria affiliated to Shewanella, Enhydrobacter, Halomonas, Ralstonia,
Staphylococcus (Proteobacteria), Streptococcus, Clostridium, Entero-
coccus (Firmicutes), Eggerthella, Propionibacterium, and Granuli-
catella (Actinobacteria) were found to become highly
transcriptionally active during treatment with b-lactam antibiotics
and fluoroquinolones, but not with cephalosporins [77]. Abun-
dances of those bacteria were not altered when changes in the total
bacterial composition were investigated, which demonstrates that
at least these bacterial groups are among those microbes that
actively react to antibiotics.

Although there are well-established methods to isolate cDNA
from our microbiota, its isolation is still challenging compared to
the isolation and sequencing of DNA. This is why limited informa-
tion is available in the literature regarding additional active micro-
bial groups reacting to antibiotics besides b-lactam antibiotics and
fluoroquinolones [77]. However, limited this information may be,
the previous example demonstrates the potential of cDNA analysis
to clearly study the effect of antibiotics, particularly if one wishes
to decipher which bacteria becomemetabolically active during and
after an antibiotic intervention.

Some techniques have recently been developed to help decipher
which bacteria react to different antibiotics, but avoid the problem
of producing cDNA. The first one involves flow cytometry (FC)
[123]. The cell membrane structures of bacteria from our micro-
biota can be stained with fluorescent dyes and analyzed by FC to
determine viable cells and thus distinguish between damaged
and integer cells during an antibiotic treatment. These can be iden-
tified by analyzing 16S rRNA amplicons generated from DNA [124].
The second one is based on sequencing 16S rRNA amplicons gener-
ated from the DNA of secretory immunoglobulin A (SIgA)-coated,
or uncoated, cells selected by fluorescence-activated cell sorting
(FACS) [125]. FACS physically separates the cells that are fluores-
cently labeled for specific selected features. Note that non-coated
SIgA cells are those with the ability to cover their cell surface by
molecules whose presence avoids SIgA-opsonization [126]. These
cells are expected to be antibiotic-resistant species that become
abundant and active during antibiotic treatment. Recently, by ana-
lyzing fecal samples from 12 patients with C. difficile infection (CDI)
under treatment with multiple antibiotics and 12 CDI� individuals
by FACS, researchers found that the proportion of active bacteria
differs greatly from the SIgA-coated bacteria between individuals
with and without antibiotic treatment, and is variable during the
different antibiotic treatments [127]. In general, during antibiotic
interventions the proportion of the bacteria opsonized by SIgA
was lower than the proportion of active bacteria, suggesting that
not all recently formed bacterial cells can be coated by SIgA imme-
diately and, thus, are not antibiotic resistant species.
4. Consequences of antibiotics on microbiome function

As described above, a great deal of attention has been paid to
the analysis of antibiotic-induced dysbiosis at the level of taxo-
nomic composition, as exemplified by the relative abundance of
total and active species. By contrast, there are fewer studies into
alterations in molecular agents such as genes, proteins and
metabolites [128], although they may be even more relevant to
understanding the effects of antibiotics on microbiome and host
function than the mere differential abundance of microbes. For
example, metabolites absorbed and/or produced by the action of
the microbiota, and released to our body organs, are the down-
stream products of gene and protein expression, whose quantifica-
tion is the most reliable snapshot of changes in microbial activity
[11]. For this reason, in recent years we have begun to appreciate
the importance of quantifying microbial activity, and the diversity,
expression and/or production level of genes, proteins and metabo-
lites of our microbes, regardless of the bacterial community com-
position [129]. There are very few studies reporting such datasets
in the context of investigating the influence of antibiotics on our
microbes, and all of them are restricted to the gut microbiota.
Below we summarize the major results.
4.1. Effects of antibiotics on microbial activity

The effect of the antibiotics may also be reflected in the damage
and/or destruction of bacterial cells and consequently their
decreased enzymatic activity. This can be observed as the loss of
membrane integrity, membrane polarity and a decrease in nucleic
acid content [130]. At the same time, during antibiotic interven-
tions, antibiotic-susceptible bacteria are replaced by resistant bac-
teria, which maintain the metabolic functions of the entire
microbiota [88,127,130]. This reflects so-called redundancy, mean-
ing that functions conferred by multiple bacteria can be shared
across related and unrelated bacterial species before and after an
antibiotic intervention [11]. Although the overall microbiota func-
tion is thought to be maintained during antibiotic treatment, alter-
ations in specific enzymatic activities have been observed, such as
the hydrolysis of dietary polysaccharides. Particularly, treatments
with a cocktail of cefazolin, ampicillin and sulbactam are associ-
ated to alterations in the activity level of so-called glycoside hydro-
lases, favoring the rapid and unbalanced assimilation of
carbohydrates, related to obesity and diabetes type 2 [131]. It is
plausible that after antibiotic treatment, a novel composition of
the bacterial community is established, whose metabolic functions
may be similar to those in the original microbiome [88,127,130].
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However, the resistant bacteria that replace the susceptible ones
may have similar classes of enzymes, but each with different enzy-
matic performance [131].
4.2. Effects of antibiotics on microbial gene expression and protein
synthesis

To avoid inferring function from taxonomic data while avoiding
functional redundancy of bacterial groups [11], investigations have
started to apply high-throughput DNA and cDNA sequencing and
protein expression analyses, mostly to reveal the extent of
antibiotic-mediated dysbiosis. This is done by identifying pre-
sumptive functionally altered profiles, reflected by the level of
gene content, gene expression and protein synthesis. The most
obvious reaction of the microbiota is, firstly, an increase in the
acquisition and expression of a small number of genes conferring
antibiotic resistance [132]. A number of authors have published
comprehensive and relevant reviews and studies on antibiotic
resistance genes [29], thus it is not reviewed here. The scope of
our review focuses rather on how antibiotics impact the expression
level of other metabolically important microbial genes and
proteins.

Recently, a multi-omic approach demonstrated that antibiotics
affect the community composition from the initial stages of treat-
ment, most likely after just 3 days of treatment with a cocktail of
cefazolin, ampicillin and sulbactam [88]. Such changes were
reversed when treatment finished. Thus, during antibiotic therapy,
gut microbiota biodiversity reached the minimum 11 days after
initiating therapy. However, when the therapy finished, the alpha
diversity index of the bacterial population returns to that before
initiating the intervention. However, some changes remain in the
relative abundance of a sub-set of bacterial groups such as
Ruminococcus, Barnesiella, and Clostridiale families. Thus, it is cru-
cial to clarify whether gut communities with similar alpha diver-
sity and small differences in beta diversity before and after the
treatment, have or do not have a similar metabolic status. This
was evaluated by analyzing the gene (meta-transcriptomics) and
protein (meta-proteomics) expression profiles [88]. It was found
that when antibiotic treatment was discontinued, the number
and abundance level of genes and proteins being expressed and
synthesized were significantly lower compared to those before ini-
tiating the treatment [88]. This implies important changes in the
fluxes of gene and proteins when treatment was abandoned. It also
suggests that the antibiotic-induced alterations of a few bacterial
groups can cause major changes in gene and protein fluxes, what-
ever similarities exist in alpha diversity index. In another recent
study, the number and expression of genes encoding dietary
polysaccharide-degrading enzymes changed significantly in
patients receiving b-lactam therapy of a cocktail of cefazolin, ampi-
cillin and sulbactam [52,88]. This suggests that the antibiotic inter-
ventions drastically changed the microbial community and the
species responsible for degrading dietary components, each having
a different metabolic performance as shown by enzymatic activity
tests [131]. Such alterations were also found as a consequence of
ampicillin (b-lactam) treatment [33].

The utilization of amoxicillin (b-lactam), ciprofloxacin (fluoro-
quinolone), vancomycin (glycopeptide), chloramphenicol, and ery-
thromycin have also been linked to the differential expression level
of genes involved in tRNA biosynthesis, translation, vitamin trans-
port, phosphate transport, stress response, and proton motive force
[33]. Studies analyzing the diversity and production level of pro-
teins in gut microbiota also reported that both clindamycin (lin-
cosamide) and streptomycin (aminoglycoside) increased the
synthesis of immunoglobulin proteins, transthyretin and
chymotrypsin-like elastase family proteins, proteins involved in
T-cell activation, chymotrypsinogen B, phospholipase A2, myosin-
1a and cytochrome C [33].

The fact that different antibiotics cause similar alterations in
microbial products (genes and proteins) suggests that it is possible
to identify a set of core functions associated to antibiotic treat-
ments, as we have done in this review on the bacterial genera that
are influenced. This information may become available in the
future, because at present there are limited data available for all
68 antibiotics reported to influence our microbes.

4.3. Alterations in microbial metabolite content during antibiotic
treatment

From the available data on large cohorts, we can conclude that
antibiotics are among the only drugs associated with significant
alterations in our microbiota [8], and also that only a restricted
set of bacterial genera are significantly affected by antibiotics
(see Fig. 4). Antibiotics also cause important changes in the fluxes
of gene and proteins and the activity they mediate. The next logical
question to answer is to what extent antibiotics also alter the
metabolite fluxes in the microbiota. This can be achieved by per-
forming so-called metabolite profiling. This technique offers the
opportunity to measure metabolites that are the final result of
the action of the microbiota independently of its community com-
position, gene expression and protein synthesis, growth character-
istics, gene mutations and protein structures [11]. Metabolite
profiling thus constitutes the next logical step beyond descriptive
studies of community composition, gene composition (meta-
genomics), gene expression (meta-transcriptomics) and protein
expression (meta-proteomics), as it may provide greater insights
into the metabolic changes in the active fraction of the microbiota
under any conditions.

As mentioned above, one of the questions raised by the multiple
observations of antibiotic-induced shifts in our microbiota compo-
sition is to what extent antibiotics also alter the metabolic fluxes in
the microbiota. This was first reported in a study showing that
treatment with the aminoglycoside streptomycin affected the
abundance level of over 87% of all fecal metabolites detected
[133]. However, treatment with clindamycin, piperacillin or
tazobactam caused changes in 30% of all fecal metabolites detected
[133]. Another recent study found that this percentage was signif-
icantly lower when examining the effect of combined intravenous
therapy of ampicillin, sulbactam and cefazolin. Indeed, only 4.4% of
all fecal metabolites detected were altered compared to controls
[88]. This suggests that each antibiotic impacts the metabolite
fluxes to a different extent, which may be linked to the extent of
alterations caused by each antibiotic in microbiota species compo-
sition and gene and protein fluxes.

A second question regards the nature of the metabolic alter-
ations caused by antibiotics. A comparative omic investigation of
microbial communities in fecal samples taken at multiple time
points from an individual (with a bacterial infection) subjected to
b-lactam therapy of ampicillin, sulbactam and cefazolin has
revealed antibiotic-associated imbalances in long linear and
branched, saturated and unsaturated fatty acids, branched chain
amino acids, cholesterol derivatives, vitamins, polyols, sugars,
short peptides and polyamines [88]. Studies examining the impact
of perinatal antibiotics on premature babies found that antibiotic
intervention mostly caused differential abundance of short-chain
fatty acids, particularly, acetate, propionate and butyrate [134].
Finally, an influence on acetate production was also associated to
the treatment of healthy individuals with the aminoglycoside gen-
tamicin and the b-lactam ampicillin [95]. Differential abundance of
bacteria belonging to the genera Bacteroides, Bifidobacterium, Fae-
calibacterium, Ruminococcus, Alistipes, Roseburia, Parabacteroides,
Shigella-Escherichia, and Allisonella, was unambiguously linked to
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the differential production of short chain fatty acids during the
antibiotics interventions [88,95,134].
4.4. Bacterial translocation during antibiotic treatment

Besides the alterations mentioned above, we should also high-
light that antibiotics, such as oral antibiotics, are reported to
induce the translocation of live native commensal bacteria across
the colonic epithelium, thereby promoting inflammatory
responses, and predisposing individuals to disease in response to
coincident injury [135] or to anxiety-like behavior [136].
5. Conclusions and future directions

The densest and most complex bacterial community in the
human body inhabits the large intestine and forms an ecosystem
with interdependence and mutualism among the species forming
it. This community is known as the gut microbiota and is essential
for homeostasis and host health. The gut microbiota performs
functions of nutrition, metabolism (the result of biochemical activ-
ity), and protection (preventing the invasion of infectious agents or
the overgrowth of resident species with pathogenic potential). It
also has trophic functions for the proliferation and differentiation
of the intestinal epithelium, and plays a role in the development
and modulation of the immune system. However, our skin, respira-
tory system, oral cavity, and vaginal/urinary cavity are also equally
populated by microbial communities that are as diverse and
important as that of the gastrointestinal tract. An alteration in
the microbiota balance (or dysbiosis) is extensively associated to
antibiotic use. Alterations have not only been found in the gut
microbiota, but also in oral, respiratory tract and vaginal micro-
biota. When faced with antibiotic treatment, the microbiota has
been found not to remain unaltered (resistant), but rather changes
in microbial composition and function during and after the inter-
vention. OMICS research has become attractive to fully define the
compositional changes and the metabolic status of the microbiota
when confronted with antibiotics. It is well documented that
antibiotics reduce the amount and diversity of our microbes and
cause losses in functional diversity and colonization resistance
against invading pathogens; however, the comparative effect of
antibiotics on the abundance of specific microbial clades in
humans has not been reported before. This review fills this gap,
discussing the effects of some 68 different antibiotics on human
microbiota composition and microbiome function. Data are pre-
sented revealing that antibiotics produce changes in a specific set
of bacteria, fungi, archaea and viruses. Microbes are identified that
are most vulnerable to antibiotics, which are similar or different in
nature and clinical consequences. The reported data also demon-
strate that the microbe metabolic activity is also drastically chan-
ged as a direct consequence of antibiotic treatments. Indeed, the
information provided in the review also points to specific meta-
bolic alterations during antibiotic interventions, the understanding
of which may provide future research lines in the post-antibiotic
era. This, together with new technologies, such as flow cytometry,
may help not only to understand which antibiotics produce major
health benefits and minor collateral effects in our microbiota, but
also to define nutritional supplements to improve the health of
antibiotic-treated patients in cases where important nutritional
or metabolic deficits may occur. Finally, the data reviewed here
show that the establishment of new drug-based therapeutic strate-
gies would require multi-variable analysis, in which a comprehen-
sive analysis should be made of the effect of the type of drug, type
of administration, pharmacokinetics of the original compound, and
resistance mechanisms of the microbiota, to cite some. This infor-
mation will help us to understand changes in the overall micro-
biome function.
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