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Abstract

Background: Antibiotic resistance is a major biomedical problem upon which public health systems demand
solutions to construe the dynamics and epidemiological risk of resistant bacteria in anthropogenically-altered
environments. The implementation of computable models with reciprocity within and between levels of biological
organization (i.e. essential nesting) is central for studying antibiotic resistances. Antibiotic resistance is not just the
result of antibiotic-driven selection but more properly the consequence of a complex hierarchy of processes
shaping the ecology and evolution of the distinct subcellular, cellular and supra-cellular vehicles involved in the
dissemination of resistance genes. Such a complex background motivated us to explore the P-system standards of
membrane computing an innovative natural computing formalism that abstracts the notion of movement across
membranes to simulate antibiotic resistance evolution processes across nested levels of micro- and macro-
environmental organization in a given ecosystem.

Results: In this article, we introduce ARES (Antibiotic Resistance Evolution Simulator) a software device that
simulates P-system model scenarios with five types of nested computing membranes oriented to emulate a
hierarchy of eco-biological compartments, i.e. a) peripheral ecosystem; b) local environment; c) reservoir of supplies;
d) animal host; and e) host’s associated bacterial organisms (microbiome). Computational objects emulating
molecular entities such as plasmids, antibiotic resistance genes, antimicrobials, and/or other substances can be
introduced into this framework and may interact and evolve together with the membranes, according to a set of
pre-established rules and specifications. ARES has been implemented as an online server and offers additional tools
for storage and model editing and downstream analysis.
(Continued on next page)
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Conclusions: The stochastic nature of the P-system model implemented in ARES explicitly links within and
between host dynamics into a simulation, with feedback reciprocity among the different units of selection
influenced by antibiotic exposure at various ecological levels. ARES offers the possibility of modeling predictive
multilevel scenarios of antibiotic resistance evolution that can be interrogated, edited and re-simulated if necessary,
with different parameters, until a correct model description of the process in the real world is convincingly
approached. ARES can be accessed at http://gydb.org/ares.

Reviewers: This article was reviewed by Eugene V. Koonin, and Eric Bapteste.

Keywords: Membrane computing, P-system, Antibiotic resistance, Essential nesting

Background
Antibiotic resistance (AR) is a serious biomedical problem
upon which public health systems urge for new R&D
strategies to prevent the emergence and dissemination of
resistant bacteria in human inhabited environments [1–6].
The discovery and clinical use of antimicrobials during
the past 20th century has changed the course of medicine
and the human lifestyle by reducing mortality from bac-
terial infections. However, the use or misuse of antibiotics,
medicines and drugs may lead bacteria to become tolerant
to the action of antimicrobials, eventually making stand-
ard treatments ineffective and thus challenging key med-
ical practices as intensive care medicine, transplantation,
or the therapy of immuno-compromised patients [2, 5, 7].
AR is also a subject of particular interest to food-chain
stakeholders who use antimicrobials as growth-promoting
additives until recently or for preventing cross-infection in
food production areas [7–12]. Under antibiotic exposure,
farms have become significant reservoirs for antibiotic re-
sistant microorganisms, which in turn can be transmitted
from food-producing animals and plants to humans [7–13].
The matter is to understand the risks and the unintended
consequences of the anthropogenic use and release of
antimicrobial agents into the biosphere, which without ap-
propriate measures might drive the world towards a post-
antibiotic era where mortality due to untreatable and fatal
infections may become customary, particularly in under-
developed areas of the world [3–5, 12, 14]. Understanding
AR evolution is however a complex issue, since it is not
just the result of antibiotic-driven selection of mutant re-
sistant bacterial clones as it is frequently considered, but
more properly the consequence of a variety of trans-
hierarchical interactions between all biological vehicles
involved in the dissemination of the genetic information
involving AR [15–18]. We are talking about the following
biological entities: genetic platforms, transposons and/or
plasmids (here called subcellular replicators), bacterial
cells, genetic exchange communities (GEC, communities
in which the interchange of genetic material occurs fre-
quently), microbiota, host individuals and host communi-
ties. In other words, not only AR genes can be carriers of
AR genetic information, but also all other biological units

in which AR genes can be successively located at different
subcellular, cellular and supra-cellular nested levels of the
ecosystem [19–21]. It is important to note the need of un-
derstanding the effect of the whole nested frames associ-
ated to AR to establish a comprehensive “parameter
space” able to describe the multidimensional evolution of
antibiotic resistance (Table 1, for more details see [22]).
All the aforesaid carriers are units of selection that can be
simultaneously and independently chosen at different en-
vironmental levels including “invironmental” or microbio-
tic ecosystems [23]. Therefore, we should expect a high
complexity in between-hosts demographical dynamics, as
the host colonized or infected by resistant bacteria usually

Table 1 Key-nested frames associated to AR: a complex
parameter space

a) Density of colonized and colonizable hosts with antibiotic resistant
bacteria

b) Population sizes of bacteria per host during colonization and infection

c) Susceptibility to colonization of hosts, including age, gender,
ethnicity, nutrition,illness-facilitated colonization

d) Frequency of between-hosts interactions i.e. ,human-to-human or
animal-human interactions

e) Host natural and acquired immune response to colonizing organisms

f) Ecological parameters of colonizable areas, including interaction with
local microbiota and frequency and type of antibiotic-resistant
commensals

g) Migration and dispersal

h) Antibiotic and biocide exposure and overall density of antibiotic use,
type of antibiotics and mode of action, dosage and duration of
therapy, adherence to therapy, selective antibiotic concentrations,
antibiotic combinations

i) Mode of transmission of resistant organisms from the environment to
hosts

j) Transmission rates between hosts (antibiotic treated and not-treated,
infected, and not-infected)

k) Time of contact between hosts

l) Hygiene, infection control, sanitation

m) Food, and drinking water contamination by resistant bacteria and
host exposure

n) Environmental contamination by resistant organisms, including soil,
sewage and water
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belongs to a population of interacting individuals that in
turn belong to a community of interacting bacterial spe-
cies. Note, for instance, that lice and keds of pets and farm
animals (Melophagus ovinus, Linognathus vituli, Hetero-
doxus spiniger) or pest-insects such as the house fly
(Musca domestica) and the German cockroach Blattella
germanica, which are known to play a significant role as
reservoirs and vectors of opportunistic bacterial pathogens
that are often resistant to antibiotics [24–26] as they
move, freely and indiscriminately, from filth and animal
waste to food, allowing resistant bacteria to explore new
habitats in hospitals, community settings and food facil-
ities [27–29]. This type of complex scenarios, where bac-
terial resistant populations and their genetic platforms
containing AR genes move because they are selected, and
evolve because of their promiscuous migration, establish
the precondition to visualize AR not only as a matter of
biological function, but also as information flow process-
ing. For these reasons, AR evolution is without doubt one
of the major biomedical challenges for researchers in epi-
demiology and systems biology.
Interestingly, from the epistemological interaction of

system biology, computer science and mathematics, a
variety of models have arisen in the last decades to con-
nect performances at different scales. These models are
known as nested or embedded models (for a review see
[30]) and have been used to acceptably address specific
questions involving within-host dynamics enclosed in a
model of between-host epidemiological scenarios. Nested
models are classified as “inessential” when the within-host
dynamic influences between-host processes but not vice
versa, or “essential” when there is a reciprocal feedback
between levels of organization. In particular, AR modeling
requires an essential nested model; any alteration of the
carriers in any specific resistance trait, or in their mecha-
nisms of variation and mobilization (mutation, recombin-
ation, transposition, horizontal gene transfer, migration)
may influence the dynamics of other units of higher and
lower hierarchy, having logical consequences on the fre-
quency and dissemination of AR genes and, therefore,
evolutionary and/or ecological consequences on bacterial
population [31, 32]. Until not too long ago, the difficulty
to model this type of scenarios with essential nesting was
an important limitation to feasibly study AR evolution
processes. However, exciting new opportunities have re-
cently arisen from a natural computing formalism inspired
on the structure and functioning of biological cells, called
membrane computing [33–35]. Membrane computing
conceives any biological system as a hierarchical construct
where the flow of materials can be interpreted as comput-
ing processes. In particular, membrane computing offers a
versatile framework known as P-system that consists of a
hierarchical membrane structure of nested compartments
where multisets of objects are located and can move

across membranes evolving according to a finite number
of given rules. Membrane computing have been proved to
be universal models of computation [34] and has been
successfully used to model oscillatory systems [36], pro-
cesses of signal transduction [37, 38], gene regulation con-
trol [39], quorum sensing [40], meta-populations [41] and
ecosystems [42, 43] thus suggesting that anything that can
be computed can be done so as a P-system. For more de-
tails on the different approaches reached under membrane
computing, see [44], or refer to the official websites of the
membrane computing community [45] and P–Lingua [46]
the programming language used for the development of
P-systems.
In this paper we introduce a new P-system model de-

signed for computing at three levels of organization
(subcellular, cellular, supra-cellular) through the software
implementation of a simulator we call Antibiotic Resist-
ance Evolution Simulator (ARES). The general aim of
ARES is to facilitate predictive computational models on
the potential trans-hierarchical response of AR to par-
ticular interventions in specific scenarios. The simula-
tor´s project is a work in progress, requiring constant
refinements derived from the experiences (“experi-
ments”) of costumers. The first version here introduced,
is a prototype that offers a predefined layout composed
of five types of nested-membranes that conceptually
emulate an ecosystem hierarchy of biological boundaries
based on population environmental areas, reservoirs,
host populations and bacterial lineages of opportunistic
pathogens. Granted to the implementation a friendly-to-
use front-end interface, the user is allowed to define a
starting configuration of elements (subcellular vehicles,
antimicrobials and other substances) inhabiting the
aforesaid membranes, specifications and rules according
to which both elements and membranes evolve through
a number of iterations. ARES is hosted at the GyDB
Project [47] a database for research of mobile genetic
elements (relevant carriers in the study of AR), and
has been launched as an online server accessible at
http://gydb.org/ares.

Methods
P-system model for simulating ecosystems with nested
ecological boundaries
AR is a process of multilevel selection of nested units
where the distinct resistance-carriers (gene vehicles) in-
fluence each other for selection and introgressive cross-
ing of resistance to antibiotics at different environmental
levels (subcellular, cellular and supracellular) [18, 20, 48].
This is an eco-biological model that can be formally gen-
eralized according to the following tuple:

Y
¼ V ; μ; w1; w2;…;wn; R1; ρ1ð Þ;… Rn; ρn

� �� �
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where V is a working alphabet of objects; μ is a membrane
structure consisting of n membranes labeled 1, 2, . . . , n
represents a rooted tree; and w1, . . . , wn are strings over
V that represent multisets of objects initially placed in the
structure of n membranes, which, from that point on will
be referred as ecological boundaries (EBs) through the rest
of this article.
In the V alphabet, our model takes into account the

following entities to be treated as objects:

� Bacterial resistance genes computed either as an
independent unit or constituting a combination
together with a particular subcellular replicator (for
instance a plamid). Here, we use the set of symbols
ARi to describe genes encoding AR, where i denotes
the object’s identity. Should an AR gene is designated
in its single form (AR-like) it will be considered as a
genomic gene (i.e. present as a locus within the
bacterial host genome) by the model, but if it is
attached to a particular subcellular replicator then it
will be considered to be part of the subcellular
replicator (i.e. carried by the subcellular replicator).

� Subcellular replicators inside bacterial cells such as
plasmids, integrative-conjugative elements (ICE),
transposons, or any other genetic element with self-
replication ability. For the sake of simplicity, in this
first version we only consider plasmid-like objects,
which our model computes with the set of symbols
PLi. As previously indicated above, the model
permits simulation of plasmids carrying AR genes by
introducing a regular expression that define complex
objects as follows: let us to consider k different
plasmids and j different AR genes, then a complex
object for the combination of plasmids with genes
belongs to the following expression (with λ being an
empty string in the absence of a name): (PLi +… +
PLk)(ARi+λ)… (ARj+λ). For example the strings
“PL1”, “PL1-AR1”, “PL1-AR2”, and “PL1-AR1-AR2”
respectively correspond to objects representing four
different forms of the same plasmid – “not carrying
AR genes”, “carrying gene AR1”, “carrying gene AR2”
and “carrying both AR genes”. For computational
sake, the current version of our P-system model
permits only simulation of plasmids carrying up to
two different AR genes.

� External chemicals and/or biomaterials released into
the environment, including any kind of molecule
inhibiting bacterial growth such as antibiotics and
biocides. We use the set of symbols Ai to describe
these objects.

� Management Clocks are objects labeled with Gi

symbols used to periodically add objects to specific
membranes according to ecosystem influences
expected to be cyclic.

In the membrane structure μ the model implements
five hierarchical EBs labeled as ECO, Pi, RSi, Hi and Bi

� ECO is the skin EB representing the peripheral
ecosystem or ultimate container for all populations
and environments.

� Pi is the second EB type in the membrane
framework level that designates simulation of
particular environmental areas of the ecosystem for
the spread of hosts and resistant bacteria and
eventually other bacterial pathogens (inhabitable
spaces, areas for food acquisition, and other eventual
infrastructures).

� Hi is a type of EB on the third level of nesting within
the membrane framework hierarchy. We use H-like
EBs to define host individuals carrying microbiota
(host-specific assemblies of bacterial
microorganisms, defined by its microbiota
composition).

� RSi is another type of EB, also on the third
framework level, that the model uses in order to
abstract (when suitable) the computation of three
different types of physical or conceptual reservoirs.
Two of these are called Food and Water supplies
and are used during the simulation as reservoir-EBs
of these resources. It is worth to note that for
computational sake food and water are not treated
as objects but as quantitative internal resources of
the P-system being necessary for hosts´ live that
must therefore be periodically generated by
management clocks and consumed by the simulated
hosts according to the rates stated by the users in
the configuration of rules. Once the host population
growth outpaces the availability of food and water
the model activates an internal malthusian rule that
randomly kills (eliminates from the simulation) a
number of hosts equivalent to the population
surplus. The third RS-like EB is called “Sewage” and
it refers to any body of water conveying all water-
carried waste (either natural or anthropogenic) being
removed from a community. Sewage can also be
used to simulate the stool remains (or fecal
droppings) periodically released by H-like individuals
to the environment. The three RS-like types of EBs
are represented only once within each (P-like)
environment and although they are providers of
water and food they may also contain substances
and microbial contamination released through the
droppings of animal hosts and the conversion of
dead animals into food. In other words, the use of
reservoirs allows the user to simulate supplies of
food and water but also recycling of microbiota
released into the ecosystem by animal hosts (H-like
membranes) during the final act of digestion or to
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turn into food any organism that dies or is predated
by other organisms.

� Bij
± is the last EB level of the hierarchy contemplated

in our model and it is used to simulate bacterial
cells. Each cell has several attributes here defined as
follows: the superscript “plus/minus” is used to
indicate if the cell is gram-negative or gram positive;
the subscript i is used to represent cell populations
as lineages term here used to highlight that the user
can design the simulation of a microbiome according
to a common historical offspring of cells at any
taxonomical level (a lineage can therefore refer to a
domain, phylum, class, order, family, genus, species
and clones, depending on the experiment); j is used to
assign two or more cells to a particular or unique
community of cells or GEC. For instance, within a
microbiome, the user can define a subset of cells to
belong to GEC1 and another subset to belong to
GEC2 using the subscript differentiation.

The dynamics, specificity and behavior of the distinct
membranes and objects during the P-system simulation
are administrated by a finite set of rules (R) fixed to
each membrane that can be ranked by order of prior-
ities (ρ). Particularly, our P-system model considers
rules for the processes of transition, interactions and so-
cial behavior, birth, death, inactivation, and evolution of
the distinct objects and membranes. The model also
considers rules called specifications for ecosystem re-
source limitations in space and time (as limits in space,
or life expectancy). Following are some examples of
rules described in the formal definition followed by the
membrane computing community, and where for the
sake of simplicity, we omit priorities and stochastic
parameters.
Example 1: transition rules with movement to hier-

archically adjacent regions:
“Substance Ai enters bacterial cells” or “Substance Ai

leaves bacterial cells”.

½ui½ �j�k→½ ui0½ �j�k insideð Þ

½ ui½ �j�k→½ui0 ½ �j�k outsideð Þ

Example 2: transition rule with movement to twin
adjacent regions:
“A bacterial cell transmits a plasmid to other members

of the same GEC”.

ui½ �j ½ �i→½ �j ui
0½ �i

Example 3: active membrane rules with movement to
twin adjacent regions:

“An individual host transmits bacteria to another
individual”.

½ ½ �k �j ½ �j→½ �j½ ½ �k �i
Here, region k is moved from region j to region i, that

is at the same level. Then, regions inside region k can be
moved according to their corresponding rules.
Example 4: active membrane rules for membrane

division:
“Growth of bacterial cells j in region i.”

½ ½ �j �i→½ ½ �j ½ �j �i
Here, the content of region j is copied together with

its rules and all the membranes it contains in a hierarch-
ical manner.
In summary, our P-system consists of a membrane

structure composed of five types of EBs and a working
alphabet V of objects whose interactive feedback is de-
termined by the set of rules assigned at every EB. This
framework can be graphically represented as a Venn dia-
gram (Fig. 1). As shown in the figure, the container dia-
gram (ECO) represents the skin EB. Within ECO, the
two next diagrams designated as – Pi and Pj – represent
two P-like environmental EBs (the user can however de-
sign as many P-like EBs as required). P-like EBs are
allowed to contain RS-like, H-like and B-like EBs (repre-
sented as diagrams of smaller size). RS-like EBs (desig-
nated as i, j, k) represent food, water and sewage
reservoirs and are allowed to contain B-like membranes
(but not H-like membranes). H-like EBs can be distin-
guished in subtypes (social classes, species, etc.) using
subscript assignations. For example, in the figure we
contemplate 3 populations (i, j, k) that may be respect-
ively composed of a number of individuals (for instance
100, 50 and 150, etc.). Each H-like EB is allowed to con-
tain a number of internal B-like EBs (but not RS-like
EBs) defining its intrinsic microbiota. B-like EBs can be
placed not only within RS-like and H-like EBs but also
in P-like EBs and can be differentiated in lineages to
which gram and GEC status can be assigned using sub-
and superscripts. The status of Gram positive or Gram-
negative organisms is assigned using a superscript with
two states (minus and plus). In the figure we observe
four subtypes (i_, j, k, l) according to the left subscript.
Those labeled with the left subscript j belong the GEC-j
and those labeled with the subscript k belong to GEC-k.
Those having the superscript plus are considered to be
gram-positive cells, and those assigned the superscript
minus are gram-negative. Logically, population size can
also be assigned to each lineage (for example 109 cells
per bacterial lineage). The working alphabet is composed
of four types of objects (also differentiated in subtypes)
summarized below the Venn diagram. In particular the
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figure shows two AR-like objects (i, j) defining two dif-
ferent AR genes; four A-like objects (i, j, k, l) defining
four distinct substances (for instance two antibiotics and
two insecticides with different properties); eight PL-like
objects representing two plasmids (i, j) each one with
four possible states (without AR genes, carrying an ARi

gene, an ARj gene or carrying both AR genes); and four
G-like objects (i, j, k, l) representing management clocks.
AR-like and PL-like objects are restricted to B-like EBs
but they can move from a B-like EB into another (to
emulate horizontal transfer events). Note, however, that
AR objects can be only transferred when carried by a

Fig. 1 P-system model for AR evolution in complex ecosystems. Venn diagram representation showing of the framework of membranes and
vocabulary of objects, on which our P-system model is based; membranes are illustrated as nested diagrams labeled at bottom according to the
model´s code of symbols we use for referring membranes; objects are also represented using symbols summarized below the figure; and rules
assigned to each membrane area are, for simplicity´s sake, indicated as text indications colored green
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plasmid object. A-like and G-like objects are allowed in all
EBs (excepting ECO which is the ultimate container) as
they either define substances expected to spread across all
environments or periodical actions (in the case of G-like
management clocks) stated by the user. Finally, every EB is
assigned a set of specific rules (R) designed and tuned with
the aim to govern the dynamic of interactions and evolu-
tionary events within each EB according to given priorities
(ρ), parameters and conditions indicated by the user.

Results and discussion
Introducing ARES: simulator device core and server
implementation
The P-system model previously defined in Methods was
implemented as a simulator software, which was pro-
grammed using the Java object-oriented computer pro-
gramming language [49] and P-lingua foundations [50].
In particular, the simulator reads an xml file that con-
tains the starting configuration of a P-system and run
simulation of the P-system case study configured during
a user-defined number of interactions contemplating
four steps per iteration; 1) step of evolution where all
rules for evolution and interaction are applied; 2) step of
movement where all rules for movement apply; 3) step of
growth where all membranes allowed to divide do so.
After each step, an updating pre-step prepares the model
for the next one. The rules applying to each region act
simultaneously, in a parallel way, to all the objects and
regions, and the stochastic behavior of the system is
achieved by applying the rules according to their sto-
chastic parameters in a naive probabilistic manner. Rules
apply if: a) the objects in need of the rule application are
in the region and b) there is no rule with higher priority
that uses common objects. The transition from one con-
figuration to the next is carried out by applying all the
rules at every region in a non-deterministic maximal
parallel mode; the system is always running from one
configuration to the next and only halts if no rule can be
applied. Hence, the halting configuration contains the
output of the system and the final configuration. In
addition, stochastic parameters to model the population
dynamics of the system are also introduced in the rules.
The simulator has been installed within an engine core

within a 4× 6 Core Server with Linux OS and 128 GB of
RAM, and has been coupled with the following sub-
systems; 1) a MySQL Management System for storage of
P -system configurations; 2) an engine for output conver-
sion to CSV format; 3) the output´s archive, which is an
repository of output folders; 4) a server section to upload
training tutorials; 5) a collection of scripts for statistical
analysis developed using the R programming language
[51]; 6) A front-end interface layout to manage all other
sub-systems, programmed in a PHP framework on
Laravel 4 following the Model–View–Controller pattern

an architectural model where server interfaces are inter-
changeable [52]. This Infrastructure is what we call ARES.

Managing ARES
Users can simulate dynamics of AR evolution using
ARES to design a P-system model scenario adapted to
the case study specified by the user and then run simula-
tion of this scenario as many times as necessary correct-
ing parameters until a realistic description of the AR
process is approximated or validated if real world obser-
vations are available. Use of ARES is free, but its acces-
sion is password protected in order to allow the users to
open and maintain a user account that will needed to
store and run model projects in private session (a simu-
lation may last hours or even days depending on the
complexity of a P-system scenario). ARES is managed
via an easy-to-use interface that implements a central-
ized menu (Fig. 2a) for accessing the system of forms the
user need to sequentially complete in order to introduce
the starting configuration of a P-system scenario, run a
simulation, and access the results. All menu-forms access-
ible with this menu can be navigated back and forth for
editing the P-system configuration, change or add EBs,
objects and rules where or when necessary. A scheme of
the whole ARES infrastructure and the workflow for
configuration and simulation of P-system scenarios is
depicted on Fig. 2b. The usual procedure can be synthe-
tized in the following steps. The form designated as
“ECO” must be first accessed (via menu) and completed to
create the P basal skin EB; then “ENVIRONMENTS” has
to be accessed to configure as many P-like (environmen-
tal) EBs as needed within ECO; next, “RESERVOIRS” and
“HOSTS” must be filled to configure RS-like (reservoirs)
and H-like (hosts) EBs within the previously created P
EBs; after this, “MICROBIOMES” must be used to config-
ure a series of B-like (bacterial) EBs that can be either
placed within the previously created P-, RS- and H-like
EBs; then “OBJECTS” must be used to create as many as
PL- (plasmids), AR- (AR genes), A-like (antibiotics and/
or other substances), and G-like (clocks) objects as re-
quired within the previously created EBs (except for
ECO, since it is the skin membrane); finally, the forms
“SPECIFICATIONS” and “RULES” must be completed to
state the rules assigned to each EB by selecting them
from a list of pre-designed rules provided in an under-
standable and generalized way allowing the user to
choose and tune rules with the values and the parameters
needed to approximate the frequencies, behaviors, condi-
tions and priorities that govern the dynamic of interac-
tions among the different membranes and objects of the
P-system model to be simulated.
Once the P-system starting configuration has been de-

fined, it is automatically written to an xml file (which is
the input into the simulator), which is stored in ARES.
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Fig. 2 ARES interface and server organization. a Screenshot of the ARES interface. The interface implements a menu that gives access to the
distinct server forms that apply for configuration, storage and simulation of P-system model scenarios. At the bottom of the interface the user
can access other support sections for managing ARES of for statistical interrogation of the output generated by the simulator device. b ARES sever
scheme and workflow for creation, edition and simulation of P-system model scenarios
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The form “RUN” is an interface that provides accession
to the simulator engine core accompanied by a list of all
xml files ready for simulation. The user only needs to se-
lect an xml file from such a list, then determine the
number of iterations the simulation will last (each iter-
ation is set to be correspond to one day) and run the
simulation. It is worth to note that xml files can be
exported or imported from the user’s PC as convenience,
using the “RUN” interface.
Once the simulation starts, ARES automatically creates

a folder (labeled with the name given to the P-system
during the configuration) in the outputs’ archive assigned
to this particular simulation and then generates the xml
input file that is placed within this ouput folder. When the
simulation finishes the system first delivers a raw output,
which is a plain file containing the sampling counts per it-
eration of all simulated objects and EBs. The raw output is
difficult to manage because of the default format it en-
closes. To overcome this difficulty, ARES implements an
output converter engine that processes and splits the raw
output into a set of 5 formatted csv files appointed
as ECO-like.csv, P-like.csv, RS-like.csv, H-like.csv, B-like.csv.
These files constitute together the output that ARES de-
livers after simulation for the user into the output’s arch-
ive (the output’s archive can be accessed using the
“OUTPUTS” tab in the ARES menu). Each csv contains
the counts for each EB and object sampled at the
P-system EB level referred in the file name. For instance,
ECO-like.csv has the counts of all EB and objects sampled
at the ecosystem level, H-like.csv has the counts of all
objects and EBs sampled in the H-like EBs but not in
those of higher levels (i.e. ECO and P-like); and B-like.csv
file has the counts of all objects sampled in B-like EBs. In
each csv, iterations correspond with the rows and are
organized in ascending order (being the starting
configurations the first count in the file) and membranes
and objects correspond with the columns.
ARES also offers other sections for user support,

which can be accessed via the submenu available at the
footer of the ARES interface. 3 of these sections called
“R-TOOLS”, “TUTORIALS”, and “AVAILABLE RULES”
are of particular interest. The first section (R-TOOLS)
gives access to an interface (also managed via menu)
offering the users different scripts mainly but not exclu-
sively developed in “R”, for downstream interrogation of
csv outputs. Note however that the use of R-TOOLS is
not a mandatory task as csvs are open plain files that
can be processed using any other tool or statistical pack-
ages such as Excel, Gnuplot, Matlab and Mathematica,
etc. The second section (“TUTORIALS”) is a repository
where users can upload and download tutorials for P-
system configuration and management of ARES (see also
the section below, “Tutorials and training material”).
Finally the third section (“AVAILABLE RULES”) is a

section where we summarize all pre-designed rules to date
available for each type of EB in order to let the user to
make preliminary evaluations of the rules to take for a par-
ticular simulation before creating the starting configuration
of the P-system. This section also includes a form for users
to make if necessary any specific suggestion for the
implementation of new rules not yet available.

Tutorials and training material
Although management of ARES is quite intuitive, the
design and preparation of the starting configuration of a
P-system model scenario can be an arduous task for re-
searchers not familiarized with membrane computing
(configuration of items, assignation of rules, etc.). Taking
this into primary consideration, we have prepared two
tutorials aimed to give the reader some training material
that can be downloaded from the “TUTORIALS” section
of ARES under the labels “Nosocomial Scenario” and
“Two cockroach farms” respectively. The first tutorial
contemplates a simplified nosocomial scenario provided
with the sole objective of allowing the user to take the
first steps in learning how to configure an exemplary P-
system creating two membrane environments (a commu-
nity and a hospital environment), host EBs (for instance,
patients), microbial communities within hosts, composed
of distinct bacterial EBs and plasmids, carrying AR genes
objects within the bacterial EBs. The tutorial also exempli-
fies how to create clocks to introduce other objects such
as antibiotics in the simulation or how to configure and
tune a basic package of rules. The second tutorial contem-
plates a more elaborated scenario that can be addressed
after completing the first tutorial. This tutorial specifically
focuses on the simulation of two populations of B. germa-
nica (a model insect organism able to implant an intes-
tinal microbiota similar to that of humans [53–56])
respectively emplaced in two separate cages with the pos-
sibility of migrating from one to the other. These two
boxes conceptually represent environmental EBs for hos-
pital and urban-community individuals, here designated
as P1 and P2. Cockroaches of both farms are hosts (H-like
EBs) carrying the same intestinal microbiota, which ac-
cording to Carrasco et al. [56] is predominantly composed
of eight bacterial lineages (B-like EBs). Four of these cellu-
lar lineages will be simulated as Gram-negative, while the
four other will be Gram-positive. All bacterial cells of all
lineages are allowed to carry three distinct types of intra-
cellular plasmids (PL1, PL2 and PL3) capable of horizontal
transfer. One of these (PL1) is carrier of an AR gene
(AR1) conferring resistance to a gram-negative specific
antibiotic designated as “A1”while another plasmid type
(PL2) carries an AR gene (AR2) offering resistance to a
gram-positive specific antibiotic labeled as A2. In the
starting configuration, the third plasmid type (PL3) does
not carry AR genes but during the course of the
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simulation it is allowed to recruit any of two types of AR
genes simulared. Each P-environment has food and water
supplies (RS-like membranes) to simulate the feeding of
H individuals. The overall aim of this tutorial is to com-
pare the response of the microbial communities in two
main scenarios (control and case study) simulated under
three distinct interventions (increase of the rate of migra-
tion, increase of antibiotic dosage, and fumigation). In
total, the tutorial considers eight P-system scenarios
(designated from xml1 to xml8) and provides indications
about how to prepare, configure and simulate the afore-
said scenarios during 600 iterations (equivalent to
600 days). Although the second tutorial is provided solely
for demonstration purposes, it is worth noting that the
ecological scenario of this tutorial is in advanced process
of being implemented in the real world, such a way pro-
viding a powerful tool for “experimental epidemiology” of
antibiotic resistance. Such an epidemiological model will
be useful for the validation of ARES, confronting predic-
tions with real outcomes when the changes are intro-
duced in the computing model and in the experimental
“two cockroach farms” setting.

Conclusions
ARES is a new membrane computing simulator we have
launched with the aim to help researchers develop com-
putational models oriented to help elucidation of hidden
aspects of the epidemiological and ecological complex
patterns of AR that cannot be easily traced in the real
world, due to both practical and complexity reasons.
The underlying computational model of ARES is a
P-system that differs from other models (including other
previously published P-systems) in that both the frame-
work and set of rules permit the user to simulate sto-
chastic dynamics at different environmental (subcellular,
cellular and supracellular) levels of the simulated ecosys-
tem. This ability is what allows the user to asses the recip-
rocal feedback between the different carriers involved in
the dissemination of AR genes, edit the configuration of
the model scenario and then re-run the simulation with
changing the parameters until a correct description of the
AR process is approximated according to real world ob-
servations. ARES is a project in continuous progress and,
therefore, a prototype in which we are working for future
implementations and improvement, including an experi-
mental epidemiology model (the “two cockroach farms
model”). The project is open to all other experts interested
in contributing expertise and criticisms.

Reviewers´ comments and response
Reviewer´s report 1: Eugene Koonin
Reviewer´s comment:
I must indicate that I am not an expert in membrane

computing. That said, my impression is that ARES is a

highly promising, flexible platform for modeling the
complex dynamics of antibiotic resistance evolution. The
description of the model is quite logical and meticulous.
Given the obvious, overarching importance of the study
of antibiotic resistance, I expect that this tool will be in
high demand in the research community.
Authors´ response: Thank you very much for your posi-

tive comments and feedback. We hope the device and the
formalism to be of interest for researchers working in pre-
dictive models for AR evolution or in System Biology. It is
important to also recognize all the previously work done
by the membrane computing community whose know-how
(cited in the “Background” of this article), has been an im-
portant starting reference for us in order to conceptualize
and design the P-system model we introduce in this
article.

Reviewer’s report 2: Erik Bapteste
Reviewer´s comment:
This work is stimulating to read and remarkable by its

ambition: simulating complex systems and following the
evolutionary dynamics of a diversity of objects within
these systems. This manuscript introduces a rather intui-
tive formalization for these two tasks, taking advantage
of P-systems. However intuitive these approaches are, I
fell that an additional illustration, typically a Venn dia-
gram for a simulation considered worthy of interest by
the authors, would greatly help most readers to go
beyond some of the rather abstract (and potentially
discouraging) formalism used in the main text, e.g.
when P-systems are described by pseudo-equations. Such
a Venn diagram would also probably help to immediately
appreciate what hierarchically adjacent regions? or twin
adjacent regions? are on a concrete example.
Authors´ response: Thank you very much for your posi-

tive evaluation and criticisms. This second version of the
manuscript includes a Venn diagram (designated as Fig. 1)
where the framework of membranes and objects contem-
plated by the model are represented (and discussed in
text).

Reviewer´s comment:
When I tested ARES on line, the website was oper-

ational, and user friendly. The proposed implemented
specifications seem sound and numerous enough to be
of use to interested scientists, or to make them feel
scared by the many decisions one must make to fully
benefit from this approach. Typically, not being an
expert on the evolution of such systems, it was difficult
for me to appreciate what sets of parameters and what
rules were realistic ones. While I realize that in principle
comparing simulations results with the biological reality
may help one to a posteriori decipher what parameters
were indeed realistic, I am a bit skeptical that in practice

Campos et al. Biology Direct  (2015) 10:41 Page 10 of 13



this strategy will necessarily work so well for several
reasons:

– How can one measure the similarity between
simulated results and the biological reality? It might
be useful to implement such comparative measures
in ARES.

– How can one know when the simulation results are
significantly close to the reality to be approximated?
Some statistics would be needed here.

– Consistently, how can one discriminate between
multiple scenarios producing comparable results
what scenario is more realistic, if any, especially with
so many parameters? Is there a way to compare, say,
the complexity of two models with equally likely
outputs? I guess these might become tasks for the
future, should ARES evolve in a way that helps its
users to explore parameters ranges in a statistically
meaningful framework.

Authors´ response: Conceptually speaking, membrane
computing is easy and intuitive but it is true that designing
a P-system and preparing the xml input file for running
the P system with an appropriate starting configuration is
a daunting task because of the reasons you indicate. This
motivated us to design ARES as friendly as possible in
order to let the users to deal with membrane computing
without being an expert in membrane computing. However,
it is also true that to appropriately manage ARES, the user
must do an first effort in getting familiar with at least the
basic principles of membrane computing and also make
another effort in getting some training. These issues, moti-
vated us to create several support sections in ARES (see
also our response to the minor comments). One of these
sections (that called R-TOOLS) consists of a collection of R-
scripts managed via interface for statistical interrogation
of the ARES outputs. Evidently, ARES, and of course the
aforemenctioned R-TOOLS section, are both work in pro-
gress with obvious limitations but the project is scalable. In
this first release we have designed the basal P-system
model and have programmed the software implementation
of this P-system. At present, we are preparing new imple-
mentations. The 3 questions you address are excellent ex-
amples of new improvements we take note in order to
implement them as soon as possible. Meanwhile, it is
worth noting that the output released by ARES is a plain
file the user is free to process with any third-party statis-
tical package and statistical model or test (ANOVA,
MANOVA, etc.) for comparing/discriminating the outputs
of one or more scenarios among them or with empirical
observations, which in turn can help the user to tune the
starting configuration and re-run a simulation as many
time as needed until a particular configuration approxi-
mates the real world observation.

Reviewer´s minor comment 1:

– Some generic terms related to P-systems, such as
membrane structure? or regions?, could be misleading
in this particular context of medicine and microbial
evolution, and may deserve to be adjusted.

Authors´ response: In this version we have used the term
“Ecological Boundary” (EB) when referring to particular
membranes of the P-system framework. Hope you will find
this term more appropiate.

Reviewer´s minor comment 2:

– It is easy to get lost in the numerous options
(specifications and such): maybe having examples of
what are considered as realistic parameters in some
known environment (i.e. having default values
associated with particular environments), or the
possibility to run a simple pre-implemented case
study might help the user to perform meaningful
analyses ? Maybe such a pre-implemented P-system
is just what the import environments? option already
offers, but this option did not seem to work for me
on line.

Authors´ response: We have created a section called
“TUTORIALS” within ARES that permits users to upload
and share new tutorials with other users and where we
also provide 2 tutorials (one very simple and the other a
bit more complex) with material and indications allow-
ing the user to get some training before starting with his/
own P-systems. In addition we have also created a con-
tact section for users support as well as another section
for frequently asked questions (FAQs). Also, and consider-
ing your feedback, we have created another section called
“AVAILABLE RULES” where all pre-designed rules to date
implemented in ARES are listed with the aim to let the
users pre-study the whole set of rules and then evaluate
which rules are appropriate or not for their interests. This
new section also includes a form for users to make us rec-
ommendations in regards of new rules not yet contem-
plated that we will also try to program as soon as possible.
Finally, let us to make one clarification; at present, there
are not pre-implemented P-systems in ARES but the possi-
bility to re-use the complete (or partial) configuration of a
P-system previously introduced and stored in ARES by the
user. The option did not work for you because you do not
have any P-system configuration in ARES previously stored.
We have clarified this in FAQS and where correspond in
the system of forms of ARES but we also take note in any
case of this interesting suggestion - have a collection of P-
system configuration modules (i.e. pieces) pre-implemented
in ARES – for further improvements.
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Reviewer´s minor comment 3:

– For GEC descriptions, please explain what distinct
numerical values will mean (i.e. will the same
number mean that bacteria belong to the same gene
exchange community, or will the value? 0? mean
that bacteria do not belong to any GEC? Or does it
indicate that a particular set of bacteria can be split
into 3 GEC, when 3 is the value chosen?)

Authors´ response: Done in text.

Reviewer´s minor comment 4:

– The password on ARES must contain numbers, but
it does not say this right away.

Authors´ response: Amended.

Reviewer´s minor comment 5:

– It might be nice to also have a Venn diagram as the
output to compare the overall picture before?, and
after simulation?

Authors´ response: Originally we aimed to implement
Venn diagrams in the way you suggest (at the beggining
or at the end of a simulation) but we dismissed the idea
because it is only viable when plotting small P-systems.
Bear in mind that one expect to find distinct types and
subtypes of EBs and objects in the starting (or final) con-
figuration of a more or less regular P-system for AR evo-
lution, as well as a variety of rules assigned to each EB
subtype. Note that although the population size of some
membranes and objects to plot can be defined in single
units (no more than a ten), the population size of just
one bacterial lineage could reach thousands or even mil-
lions of EBs. We are however, working in order to find a
satisfactory graphical solution when representing P-system
complex scenarios via ARES.
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