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Summary

The genus Lactobacillus includes over 215 species

that colonize plants, foods, sewage and the gastroin-

testinal tract (GIT) of humans and animals. In the GIT,

Lactobacillus population can be made by true inhabi-

tants or by bacteria occasionally ingested with fer-

mented or spoiled foods, or with probiotics. This

study longitudinally surveyed Lactobacillus species

and strains in the feces of a healthy subject through

whole genome sequencing (WGS) data-mining, in

order to identify members of the permanent or tran-

sient populations. In three time-points (0, 670 and 700

d), 58 different species were identified, 16 of them

being retrieved for the first time in human feces.

L. rhamnosus, L. ruminis, L. delbrueckii, L. planta-

rum, L. casei and L. acidophilus were the most repre-

sented, with estimated amounts ranging between 6

and 8 Log (cells g21), while the other were detected at

4 or 5 Log (cells g21). 86 Lactobacillus strains

belonging to 52 species were identified. 43 seemingly

occupied the GIT as true residents, since were

detected in a time span of almost 2 years in all the

three samples or in 2 samples separated by 670 or

700 d. As a whole, a stable community of lactobacilli

was disclosed, with wide and understudied

biodiversity.

Introduction

The human colon is inhabited by a complex microbial

community composed largely of bacteria, whose num-

bers reaches up to 1012 cells per gram of intestinal con-

tent, belonging to over thousands species (O’Hara and

Shanahan, 2006). The host and associated microbiota

form an interrelated ecosystem that has major effects on

health or diseases. Differences occurring in microbial

composition and in metabolic activities deeply influence

the health status, since they could promote a healthy

homeostasis or could determine the basis for the onset

of pathologies (Sekirov et al., 2010). Most of colonic

bacteria are members of a resident population that has

a long-term association with the host. Other microorgan-

isms found in the colon can inhabit other sections of the

gastrointestinal tract (GIT), such as the mouth or the

small intestine, shedding alive to the colon but being

unable to replicate in this habitat (Xu and Gordon,

2003). Furthermore, microorganisms ingested with food

and water can transit through the upper intestine and

reach alive the hindgut, after being challenged by the

low pH of the stomach, the digestive enzymes, and the

toxicity of bile salts. Lactobacilli are quite versatile in

terms of ecosystems, and can fall into all these groups.

The genus Lactobacillus includes 217 recognized spe-

cies enlisted in LPSN database (The List of Prokaryotic

Names with Standing in Nomenclature, http://www.bac-

terio.net, last accessed March 2016) (Parte, 2014). It

belongs to the family Lactobacillaceae that, with Entero-

coccaceae and Streptococcaceae, is included in the

order of Lactobacillales within to the gram-positive phy-

lum of Firmicutes. Despite their wide phylogenetic and

functional diversity, lactobacilli are invariably saccharo-

lytic, anaerobic or microaerophilic, aciduric or acido-

philic, non-sporulating rods (Hammes and Hertel, 2006).

Lactobacilli, enterococci and streptococci are included in

the functional group of Lactic Acid Bacteria (LAB), since

they catabolize hexoses to lactic acid through obligate

or facultative homolactic or heterolactic fermentation, the
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latter yielding also two-carbon products (ethanol and/or

acetic acid) and CO2.

Lactobacilli inhabit a variety of habitats where

carbohydrate-based substrates are available, such as

plants, plant-derived matrices, silage, fermented foods

(e.g. dairy products, fermented dough, milk, vegetables

and meats), spoiled foods, organic matrices and sewage

(Hammes and Hertel, 2006). They are also found in the

commensal microbiota naturally colonizing diverse dis-

tricts within the body of humans and animals, such as

the oral cavity, the GIT and the vagina (O’Donnell et al.,

2013; Douillard and de Vos, 2014). Moreover, humans

have safely been ingesting lactobacilli for centuries in

fermented foods and beverages, and more recently, in

probiotic products. This makes the role of lactobacilli

in the ecology of the intestinal microbiota difficult to

determine, since they represent a peculiar microbial

group, whose population can be made up by transient

members or by true inhabitants of diverse districts of the

GIT (Walter, 2008).

Despite the positive impact on health of lactobacilli

and the use as probiotics, reports providing a detailed

description of Lactobacillus population in the human

intestinal microbiota, in terms of species and strains, are

still rare. Several studies aimed to describe the diversity

of Lactobacillus species have been performed through a

cultivation step, introducing some bias. Bacteria belong-

ing to the genus Lactobacillus are expected to be culti-

vable, then easily isolated and enumerated by traditional

culture methods (Hartemink and Rombouts, 1999; Van de

Casteele et al., 2006). However, unlike lactobacilli in food

matrices (e.g. dairy products, meat and vegetables) which

can be easily retrieved on selective plates, isolation from

human feces is hampered by bifidobacteria, that present

similar nutritional and environmental requirements but are

much more numerous (Quartieri et al., 2016). Investigations

based on cultivation of fecal lactobacilli indicated some

recurring species such as L. acidophilus, L. brevis, L. casei,

L. crispatus, L. delbrueckii, L. fermentum, L. gasseri,

L. jensenii, L. johnsonii, L. mucosae, L. paracasei, L. planta-

rum, L. reuteri, L. rhamnosus, L. ruminis, L. salivarius

and L. vaginalis (Reuter, 2001; Dal Bello et al., 2003; Ahrnè

et al., 2005; Delgado et al., 2007; L€onnermatk et al., 2012;
€Ozt€urk and Meterelliy€oz, 2015). Consistently, species-

specific amplification and sequencing of 16S rRNA gene

confirmed the presence of several of the above-cited

species (Heilig et al., 2002).

Presently, traditional microbiological methods are

overtaken by data provided by next-generation sequenc-

ing technologies, such as metagenomic approaches that

disclose the relative amounts of the different microor-

ganisms colonizing this habitat (Frank and Pace, 2008).

Two different ways are accessible at the moment: 16S

rRNA gene sequencing and whole genome sequencing

(WGS). 16S rRNA gene sequencing is the most widely

exploited for metagenome survey, but in most cases the

libraries generated from fecal, colonic or cecal samples

of humans fail to retrieve lactobacilli, likely because of

their relatively small amounts (Walter, 2008). WGS

offers several advantages, such as making available

information about the genome of the microorganisms,

opening the possibility to analyze their functional capa-

bilities, and providing a picture of the taxonomic compo-

sition of microbiota at species- and strain-level, without

the bias of 16S copy number variation and polymerase

chain reaction amplification. In these latter techniques, it

is very difficult to reach taxonomic levels of species or

strains, whereas shotgun approaches with good cover-

age could add statistical power to the taxonomical

assignments even in low abundances.

In the present study, a mining approach was applied

to WGS data already available (Minot et al., 2013), with

the aim to longitudinally characterize the fecal lactobacilli

of a healthy subject over a two years period.

Results and discussion

Metagenomic WGS sequences were utilized to explore

Lactobacillus biodiversity of human gut microbiota and

to discriminate between true inhabitants and transient

bacteria. The data, acquired in a previous longitudinal

study aimed to explore the variation of the intestinal

virome of a male healthy subject (Minot et al., 2013). In

our investigation, three time-points were considered and

compared (0, 670 and 700 d) in order evaluate short-

term (between 670 and 700 d) and long-term variations

(between 0 and 670 or 700 d). WGS sequences were

analysed using the LMAT-Grand database encompass-

ing complete and partial genome sequences from the

NCBI genome database (July 4, 2014), that included

genomes from 78 different Lactobacillus species, with

326 strains identified (Ames et al., 2013). Analysis were

carried out through the LMAT pipeline, using the Aver-

age Read Score to obtain the relative amounts, normal-

ized against the total reads. For more details on the

sequence management and the metagenome process-

ing, please refer to Supporting Information Appendix S1.

The relative amounts of the Lactobacillales classifiable

in the families of Enterococcaceae Lactobacillaceae and

Streptococcaceae were determined. A special attention

was paid to the genus Lactobacillus because of the

diverse environments that different species can occupy,

and for the health promoting properties ascribed to

intestinal colonizers. The bacterial concentration of Lac-

tobacillus species and strains was roughly extrapolated

from the respective relative amount, assuming that the

three fecal samples had the same concentration of

microorganisms (1 3 1012 cells g21). In order to take in
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account this approximations, only the order of magnitude

was considered as reliable and the data were expressed

as Log (cells g21). Doing this assumption, major approx-

imations were introduced for the number of cells per g,

which is likely different among the three samples. How-

ever, the approximation seems reasonable for the aim of

comparing the order of magnitude of bacterial abun-

dance, expressed as the Log of the number of cells per

g of feces.

Lactobacillales

WGS led to the identification of a total of 2.1 107 OTUs.

At the three time-points, the microbiota was dominated

by bacteria, which accounted for the 75%, 80% and 74%

of total microbes at 0, 670 and 700 d, respectively. The

phyla Firmicutes and Bacteroidetes were always the most

represented, whereas the 19%–26% of the bacterial pop-

ulation remained unassigned at taxonomic level (Table 1).

Firmicutes accounted for 21%–36% of total bacteria, with

the class of Bacilli ranging between 1% and 3% of them.

The order Lactobacillales accounted for 47%, 21% and

24% of Bacilli at the three time-points, corresponding to

0.08%–0.3% of the whole bacterial population. The

majority of Lactobacillales (>92%) were ascribable to the

families of Streptococcaceae, Lactobacillaceae and Enter-

ococcaceae, in order of abundance (Table 1).

Streptococcaceae were mostly represented by bacteria

belonging to the genus Streptococcus (89%–97%) that

includes both beneficial commensal species, such as S.

thermophilus, and opportunistic or pathogenic species.

Pathogenic species (Krzy�sciak et al., 2013) of Streptococ-

cus were not identified in the three fecal samples. The

species S. parasanguinis, S. mitis, S. infantis and S. aus-

tralis which are part of the endogenous microbiota of the

oral cavity according to the human oral microbiome data-

base (http://www.homd.org/, last accessed March 2016),

accounted at most for the 5% of streptococci. 59 to 66

Streptococcus species were identified in each sample.

Among the health promoting and pro-technological spe-

cies, S. thermophilus ranged from 5% to 27% of strepto-

cocci and S. salivarius from 4% to 11%. Altogether, S.

thermophilus and S. salivarius represented a rather vari-

able percentage of total bacteria (0.09%, 0.005% and

0.008% at 0, 670 and 700 d respectively).

The bacteria belonging to the family of Enterococca-

ceae were mostly represented by the genus Enterococ-

cus (93%–94%), which included 21 species.

E. cecorum, E. faecium and E. faecalis were the most

abundant enterococci, ranging from 5% to 14%, from

8% to 12% and from 5% to 9% respectively. The spe-

cies E. gilvus, E. avium, E. columbae, E. pallens,

E. moraviensis, E. durans, E. italicus, E. phoeniculicola,

E. caccae, E. saccharolyticus, E. dispar and E. haemo-

peroxidus were common at the different time points,

whereas E. mundtii, E. malodoratus, E. asini and E. vil-

lutum were found at both 670 and 700 d, and E. casseli-

flavus and E. sulfureus only at 700 d.

The genus Lactobacillus covered 94% to 97% of Lac-

tobacillaceae, and ranged from 0.03% to 0.04% of bac-

teria. Excluding unassigned biotypes of the family, the

other Lactobacillaceae belonged to the genus Pediococ-

cus, phylogenetically intermixed with the genus Lactoba-

cillus, and in particular to the species P. claussenii,

P. acidilactici and P. pentosaceus, the two latter being

exploited as starters for fermented foods (Leroy and De

Vuyst, 2004). Interestingly, also P. claussenii, a common

brewery contaminant, was present as a sole biotype in

the three samples, being a stable colonizer of the gut of

this subject during the 2-year period.

Lactobacillus species

Bacteria belonging to the genus Lactobacillus ranged

from 8.4 to 8.6 Log (cells g21), with a great biodiversity

of detected species, being the OTUs spread among 58

different ones out of the 217 recognized. The species

ranged from 4 to 8 Log (cells g21). The most abundant

ones (L. rhamnosus, L. ruminis, L. delbrueckii, L. planta-

rum, L. casei and L. acidophilus; Table 1) were the

same identified in previous studies utilizing culture-

based approaches (Reuter, 2001; Delgado et al., 2007;

Wall et al., 2007; Rajilić-Stojanović and de Vos, 2014).

Many other, especially among those occurring at 4 or 5

Log (cells g21), emerged for the first time in human fecal

samples. This outcome confirmed the drawbacks associ-

ated to isolation of fecal lactobacilli occurring in lower

amounts by cultural methods (Quartieri et al., 2016).

Most of the taxa identified (e.g. L. animalis, L. aci-

dophilus, L. brevis, L. buchneri, L. casei, L. delbrueckii,

L. paracasei, L. pentosus, L. plantarum, L. reuteri, L.

rhamnosus, L. rossiae, L. ruminis and L. sakei) are not

Table 1. Percentage of bacterial WGS reads attributed to the main
phyla and to the class, order, and family of the main intestinal
LABs.

Phylum/Class/Order/Family 0 d 670 d 700 d

Firmicutes 21 26 36
Bacilli 0.8 0.5 0.7

Lactobacillales 0.4 0.1 0.2
Streptococcaceae 0.3 0.05 0.08
Lactobacillaceae 0.04 0.03 0.03
Enterococcaceae 0.02 0.02 0.03

Bacteroidetes 47 52 34
Proteobacteria 6 4 6
Actinobacteria 1 0.7 1
Unassigned bacteria 21 18 22

The relative amounts were calculated normalizing the Total Read
Score (TRS) of each taxa for the sum of all the TRS of the corre-
sponding sample.
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exclusively human commensals, but are found in a vari-

ety of other habitats, such as animals, foods, plants,

organic spoiled matter or sewage (Hammes and Hertel,

2006). Interestingly, diverse species occurring in plants or

foods (e.g. L. acidophilus, L. casei, L. buchneri, L. kiso-

nensis, L. parafaraginis and L. plantarum), likely ingested

with spoiled or fermented aliments, are also enlisted

among the bacteria of the human oral microbiome data-

base (http://www.homd.org/). On the other hand, L. com-

posti, L. farciminis, L. farraginis, L. florum, L. harbinensis,

L. namurensis, L. otakiensis, L. parabrevis, L. pasteurii, L.

pobuzihii, L. sanfranciscensis, L. shenzhenensis, L. suebi-

cus, L. versmoldensis, L. vini, L. zeae have been

described as members of human fecal microbiota for the

first time in the present study. These latter species are

generally isolated on other organic matrices, such as

plants, sewage, foods, organic matter, but have never

been associated to humans or animals (Kr€ockel et al.,

2003; Kitahara et al., 2005; Miyamoto et al., 2005; Rodas

et al., 2006; Vancanneyt et al., 2006; Endo and Okada,

2007a,b; Scheirlinck et al., 2007; Watanabe et al., 2009;

Chen et al., 2010; Endo et al., 2010; Kim et al., 2011;

Nam et al., 2011a,b; Cousin et al., 2013; Zou et al., 2013).

Conversely, L. ceti, L. equicursoris, L. gigeriorum,

L. equi, and L. psittaci were found in animal samples, but

never in human tissues or specimens (Cousin et al., 2012;

Lawson et al., 2001; Morotomi et al., 2002; Vela et al.,

2008; Morita et al., 2010). In order to determine which of

these species are truly inhabitants of our gut, further

insight would be necessary. As a matter of fact, there is

always the possibility that the species found in this

work could have an external origin as bacteria ingested

with food. To address this point, thorough follow-up

approaches are necessary and more work has to be done,

including efforts in isolating these species or sequencing

approaches, to help the evidence of their presence in the

GITas viable bacteria.

Of the 58 Lactobacillus species, 43 were retrieved in

the three samples, 9 in two and 6 in one (Fig. 1). Among

the species occurring in all the samples, L. rhamnosus

dominated the Lactobacillus population at all the time-

points (18.98%–56.74%), being the sole with a mean con-

centration in the magnitude 8 Log (cells g21). L. ruminis,

L. murinus, L. delbrueckii and L. sanfranciscensis were in

the magnitude of 7 Log (cells g21) and accounted on

average from 4.13% to 18.96% of Lactobacillus reads

Fig. 1. Heatmap of Lactobacillus species in the feces of a healthy subject, at 0, 670 and 700 d. Values are Log (cells g21). Colours range from
the lowest (deepest green) to the highest (deepest red) abundance. - indicates values falling below the detection limit of 3.9 Log (cells g21).
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over the three samples. L. ruminis, L. delbrueckii, L. san-

franciscensis and L. acidophilus, identified at all the time-

points, presented wide quantitative differences among the

samples and were particularly abundant at a sole time-

point where peaked up to 8 Log (cells g21). The vast

majority of the recurrent species (27) showed a mean

concentration laying in the magnitude of 5 Log (cells

g21), and generally accounted for <1% of Lactobacillus

reads. Seven species (L. rossiae, L. mucosae, L. coleo-

hominis, L. pentosus, L. composti, L. farciminis, L. namur-

ensis) were present at concentration in the magnitude of

4 Log (cells g21), accounting for <0.1%. For the 43 spe-

cies occurring at all the time-points, no correlation was

observed between the mean abundance and the variation

range over the three samples (Supporting Information

Fig. S1A).

Most of the persistent species (33 out of 43), including

L. delbrueckii, L. murinus, L. rhamnosus and L. ruminis, and

also the majority of the less abundant species with mLog

(cells g21) <6, exhibited a relevant quantitative stability, with

1 or less magnitudes of difference among the time-points,

regardless of their abundance. Only for L. helveticus, L. san-

franciscensis and L. acidophilus DLog (cells g21) was higher

than 2, with the latter showing the widest range (3.6 magni-

tudes) of concentrations over the three time point. Concen-

tration variation over short and long periods was also

considered (Supporting Information Fig. S1B), the former

being the variation between 670 and 700 d, and the latter as

the variation between 0 d and the mean of the two last time

points. The vast majority of the species differed by less than

1 magnitude order over both the short and long periods.

Only L. acidophilus presented short-term and long-term vari-

ation both higher than 2 DLog (cells g21), whereas L. fer-

mentum, L. helveticus, L. mucosae and L. sanfranciscensis

showed high long-term variation, but remained stable over

the short period.

Fig. 2. Heatmap of Lactobacillus strains in the feces of a healthy subject, at 0, 670 and 700 d. Values are Log (cells g21). Colours range from
the lowest (deepest green) to the highest (deepest red) abundance. - indicates values falling below the detection limit of 3.9 Log (cells g21).
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Lactobacillus strains

WGS data allowed a deeper investigation of bacteria

identified, making possible to trace 86 Lactobacillus spp.

strains in one or more samples. The lactobacilli identi-

fied at strain level were the 58.30%, 48.67% and

21.86% of total Lactobacillus OTUs, at the three time-

points. They belonged to 52 species, the following ones

presenting more than one biotype: L. paracasei (8 bio-

types), L. rhamnosus (5), L. casei and L. delbrueckii (5),

L. fermentum and L. plantarum (4), L. ruminis (3), L.

buchneri, L. helveticus and L. iners (2). A positive rela-

tionship was generally observed between the number of

biotypes and the abundance of each species (data not

shown). On the other hand, 8 biotypes of L. paracasei

accounted, on average, for 0.41% of total lactobacilli,

whereas L. sanfranciscensis and L. murinus were repre-

sented by a sole biotype, although they results among

the most abundant Lactobacillus species.

Among the 86 Lactobacillus biotypes, 43 strains

seemingly occupied the GIT as true residents: 34

occurred in all the three samples, and further 9 were

identified both at 0 d and at one of the remainder sam-

ples, 670 or 700 d (Fig. 2). Taking into account the

recurrent presence of the same strains over more than

22 months, albeit the availability of a small set of data

(only 3 points), these 43 strains could be considered as

permanent colonizers of the GIT. It should not be

excluded that quantitative fluctuations, responsible of

concentrations not emerging above the limit of detection

of 3.9 Log (cells g21), may have hindered the identifica-

tion of low abundance colonizers, such as 9 strains

detected at 670 and 700 d, at magnitudes of 4 or 5 Log

(cells g21), but not found at 0 d. Some of the permanent

colonizers belong to species generally associated to

human gut microbiota (e.g. L. casei, L. crispatus, L. del-

brueckii, L. fermentum, L. gasseri, L. johnsonii, L. para-

casei, L. plantarum, L. reuteri, L. rhamnosus, L. ruminis,

L. salivarius and L. vaginalis), while many others belong

to species that have never been previously associated

to humans (L. composti, L. farciminis, L. farraginis, L.

harbinensis, L. namurensis, L. parabrevis, L. sanfrancis-

censis, L. shenzhenensis, L. suebicus, L. versmoldensis,

L. zeae), thus modifying the vision of Lactobacillus ecol-

ogy. It is impossible to determine whether these bacteria

inhabit the colon and fill the functional niches of this

ecosystem, or are members of a bacterial population

residing in another part of the GIT and shedding to the

hindgut. However, it seems implausible that these

strains are transient bacteria, occasionally ingested

twice over a period of 2 years.

Most of the persistent strains (30 out of 34) showed a

relevant quantitative stability, with 1 or less magnitudes

of difference among the time-points, regardless of their

mean concentration, and over both the short and the

long period (Supporting Information Fig. S1C and D).

The exceptions were L. equi DPC 6820, L. mucosae

LM1, and L. sanfranciscensis TMW 1.1304, which pre-

sented quantitative fluctuations >1 Log (cells g21) over

the long time span, and L. ruminis ATCC 27782 which

presented quantitative fluctuations >1 Log (cells g21)

over both the long and the short period.

Conclusions

Up to now, human GIT lactobacilli were perceived not

only as a marginal population, but also as one of the

major transient components of microbiota, originating

from exogenous sources (Walter, 2008). Despite the

limit of a longitudinal approach on a single subject, the

results herein presented indicate the presence of a sta-

ble community of lactobacilli, with wide and understudied

biodiversity. The low concentration of most of the spe-

cies suggests a sub-dominant role in the colonic ecosys-

tem. With this new insight, novel questions arise. A

major challenge is determining the specific GIT district

where this plethora of Lactobacillus species replicates

and grows, in order to discriminate if they are indige-

nous resident of the colon, or whether they reach it

shedding from upstream sites that they colonize. This

can make the difference in terms of microbe-immune

system relationship, since in the latter case lactobacilli

can actively interact with GALT (gut-associated lymphoid

tissue) exerting relevant immunomodulatory properties.

Moreover, a recent study on the interaction between gut

microbiome and virome highlighted the role of phages

and prophages in modulating the bacterial structure and

function of the bacterial community, with lytic lifestyles

being effective in determining the dynamics of sub-

dominant bacteria (Minot et al., 2013; Ogilvie and Jones,

2015). Bacteriophages infecting lactobacilli are numer-

ous, but the knowledge of their biology is still limited to

the industrially relevant ones, and their role in shaping

the community of intestinal Lactobacillus population is

not known so far (Mahony and van Sinderen, 2014). As

a whole, lactobacilli resulted a stable, relatively abun-

dant, and very biodiverse community within the gut

microbiota, but the current status of knowledge on colo-

nic lactobacilli remains a major challenge.
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Fig. S1. Panel A and C: variation of the amounts of Lacto-
bacillus species (A) and strains (C) within the three time-

points, expressed as DLog (cells g21), plotted against their
mean abundance, expressed as mLog (cells g21). Panel B
and D: long term variation of the amounts of Lactobacillus
species (B) and strains (D), plotted against their respective
short term variation. Short term variation is calculated as

the variation between Log (cells g21) at 670 and 700 d,
long term variation as the variation between Log (cells g21)
at 0 d and the mean of the two last time points.
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