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ABSTRACT Membrane computing is a bio-inspired computing paradigm whose de-
vices are the so-called membrane systems or P systems. The P system designed in
this work reproduces complex biological landscapes in the computer world. It uses
nested “membrane-surrounded entities” able to divide, propagate, and die; to be
transferred into other membranes; to exchange informative material according to
flexible rules; and to mutate and be selected by external agents. This allows the ex-
ploration of hierarchical interactive dynamics resulting from the probabilistic interac-
tion of genes (phenotypes), clones, species, hosts, environments, and antibiotic chal-
lenges. Our model facilitates analysis of several aspects of the rules that govern the
multilevel evolutionary biology of antibiotic resistance. We examined a number of
selected landscapes where we predict the effects of different rates of patient flow
from hospital to the community and vice versa, the cross-transmission rates be-
tween patients with bacterial propagules of different sizes, the proportion of pa-
tients treated with antibiotics, and the antibiotics and dosing found in the opening
spaces in the microbiota where resistant phenotypes multiply. We also evaluated the
selective strengths of some drugs and the influence of the time 0 resistance compo-
sition of the species and bacterial clones in the evolution of resistance phenotypes.
In summary, we provide case studies analyzing the hierarchical dynamics of antibi-
otic resistance using a novel computing model with reciprocity within and between
levels of biological organization, a type of approach that may be expanded in the
multilevel analysis of complex microbial landscapes.

IMPORTANCE The work that we present here represents the culmination of many
years of investigation in looking for a suitable methodology to simulate the multihi-
erarchical processes involved in antibiotic resistance. Everything started with our
early appreciation of the different independent but embedded biological units that
shape the biology, ecology, and evolution of antibiotic-resistant microorganisms.
Genes, plasmids carrying these genes, cells hosting plasmids, populations of cells,
microbial communities, and host’s populations constitute a complex system where
changes in one component might influence the other ones. How would it be possi-
ble to simulate such a complexity of antibiotic resistance as it occurs in the real
world? Can the process be predicted, at least at the local level? A few years ago,
and because of their structural resemblance to biological systems, we realized that
membrane computing procedures could provide a suitable frame to approach these
questions. Our manuscript describes the first application of this modeling methodol-

Citation Campos M, Capilla R, Naya F, Futami
R, Coque T, Moya A, Fernandez-Lanza V,
Cantón R, Sempere JM, Llorens C, Baquero F.
2019. Simulating multilevel dynamics of
antimicrobial resistance in a membrane
computing model. mBio 10:e02460-18. https://
doi.org/10.1128/mBio.02460-18.

Editor Karen Bush, Indiana University
Bloomington

Copyright © 2019 Campos et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Carlos Llorens,
carlos.llorens@biotechvana.com, or Fernando
Baquero, baquero@bitmailer.net.

This article is a direct contribution from a
Fellow of the American Academy of
Microbiology. Solicited external reviewers:
Marc Lipsitch, Harvard School of Public Health;
David Shlaes, Former Professor of Medicine,
Case Western Reserve University; Mario-de-
Jesus Pérez-Jiménez, University of Seville.

Received 14 November 2018
Accepted 30 November 2018
Published 29 January 2019

RESEARCH ARTICLE
Ecological and Evolutionary Science

crossm

January/February 2019 Volume 10 Issue 1 e02460-18 ® mbio.asm.org 1

 on M
ay 20, 2019 by guest

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://orcid.org/0000-0003-1675-3173
https://doi.org/10.1128/mBio.02460-18
https://doi.org/10.1128/mBio.02460-18
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:carlos.llorens@biotechvana.com
mailto:baquero@bitmailer.net
https://crossmark.crossref.org/dialog/?doi=10.1128/mBio.02460-18&domain=pdf&date_stamp=2019-1-29
https://mbio.asm.org
http://mbio.asm.org/


ogy to the field of antibiotic resistance and offers a bunch of examples—just a lim-
ited number of them in comparison with the possible ones to illustrate its unprece-
dented explanatory power.

KEYWORDS antibiotic resistance, membrane computing, multilevel, computer
modeling, mathematical modeling

Antibiotic (Ab) resistance is the result of the complex interaction of discrete evolu-
tionary entities placed in different hierarchical levels of biological organization,

including resistance genes, mobile genetic elements, clones, species, genetic exchange
communities, microbiomes, and the hosts of these bacterial ensembles placed in
particular biological environments (1–3). Under the influence of external environmental
variations (such as exposure to antibiotics), all of these evolutionary entities might have
independent rates of variation and selection, but as they are hierarchically linked, the
changes in each of them can influence all of the other entities (4), as they constitute a
global “nested biological system” (5).

Membrane computing is an individual-based natural computing paradigm aimed at
abstract computing ideas and models from the structure and the functioning of living
cells, as well as from the way that the cells are organized in tissues or higher-order
structures (6, 7). Included among the computational models using this paradigm are “P
systems,” consisting in placing objects (in our case, biological entities) into virtual
cell-like or tissue-like membrane structures such that one membrane or one cell,
respectively, represents a hierarchical level, that is, a region of the embedded system.
For instance, each bacterial cell is a membrane containing plasmids (as objects), and a
plasmid is a membrane containing genes (as objects). The mobility of entities, objects,
across membranes is possible according to preestablished rewriting rules, and the
collection of multisets of entities evolves in synchronous, parallel, and nondeterministic
manners. The objects have assigned rules with respect to passing through membranes
(to mimic intracellular or intercellular transmission) (8, 9), to dissolving (to mimic
elimination), and to dividing themselves (to mimic replication). In this work, we used a
P system to simulate multilevel dynamics of antibiotic resistance, based on our first
published prototype (8, 9). This computational model facilitates an approach that is
computationally hard to accomplish or simply impossible to address experimentally.
Our work allows the estimation and evaluation of global and specific effects on the
frequency of each of the biological entities involved in antibiotic resistance occurring
because of changes taking place (as following antibiotic exposure) in one or (simulta-
neously) in several of them. Note that, albeit antibiotic resistance is a major problem in
public health, in terms of biosystems, it is only a particular example of “evolution in
action.” Our model can be easily applied to many other complex evolutionary land-
scapes, involving other genes, phenotypes, cells, populations, communities, and eco-
systems.

RESULTS

The main objective of the present work is to present the possibilities of membrane
computational modeling as a powerful tool in the evaluation of the factors that, at
various biological levels, might influence the dynamics of antibiotic resistance. The
results provided below should not be taken as predictions of the evolution of resistance
but instead as illustrations of some of the possibilities of this model for the study of the
multilevel dynamics of resistance, by simultaneously changing parameters in state
variables and observing after a single run the effect on the frequency of resistant
species and populations. Note that the model is probabilistic and that the rules are
selected in a probabilistic way. So, each computation produces an output such that the
results obtained are not entirely identical in consecutive runs of the program but are
relatively close (see Fig. S1 in the supplemental material). In the following paragraphs,
antibiotics (Ab) are named AbA, AbC, and AbF and the corresponding resistances (R)
AbAR, AbCR, and AbFR, respectively; to facilitate reading, we suggest the identification
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of AbA as the aminopenicillins, AbC as cefotaxime-ceftazidime, and AbF as fluoroquino-
lones (FLQs), using the initials of three of the major groups of antibiotics used in clinical
practice (Table 1).

The basic scenario in the hospital and community compartments. (i) Dynamics
of bacterial resistance phenotypes in Escherichia coli. Waves of successive replace-
ments of resistance phenotypes in hospital-based E. coli strains during 20,000 time
steps (about 2.3 years, as the time steps represent approximately 1 h/step) are illus-
trated in Fig. 1. The main features of this process, mimicking clonal interference, are as
follows: (i) a sharp decrease in the density of the fully susceptible phenotype (pink line);
(ii) a rapid increase of the phenotype AbAR (aminopenicillin resistance), resulting from
the transfer of the plasmid with AbAR to the susceptible population and consequent
selection (red); (iii) increase by selection and, marginally, by acquisition of mutational
resistance of the phenotype AbFR (fluoroquinolone resistance) (violet); (iv) increase of
double resistances AbAR and AbFR by acquisition of an AbFR mutation with the
organisms of AbAR-only phenotype and by the transfer of the plasmid encoding AbAR
from the AbAR-only phenotype to the AbFR-only phenotype (brown); (v) increase of
the phenotype with double resistances AbAR and AbCR by capture by the AbAR-only
predominant phenotype of a plasmid containing AbCR (cefotaxime resistance) that
originated in Klebsiella pneumoniae (light blue); (vi) almost simultaneous emergence
but later predominance of the multiresistant organisms with phenotype AbAR,
AbCR, and AbFR by mutational acquisition of AbFR by the doubly resistant pheno-
type AbAR-AbCR and, also, of the plasmid-mediated AbCR by the AbAR-AbFR pheno-
type (dark blue); (vii) close in time, emergence (but with low density) of the phenotype
AbCR-only by the acquisition of the plasmid encoding AbCR by the fully susceptible

TABLE 1 Abbreviations used in the text and figures

Abbreviation(s) Meaning

Bacterial populations in the model
Ec Escherichia coli
Kp Klebsiella pneumoniae
Ef Enterococcus faecium
Pa Pseudomonas aeruginosa

Antibiotics (Ab) and resistance phenotypes (R)
AbA, AbAR Antibiotic A (aminopenicillins)
AbC, AbCR Antibiotic C (cefotaxime)
AbF, AbFR Antibiotic F (fluoroquinolones)

E. coli and K. pneumoniae resistance phenotypes (in figures)
Ec0, Kp0 Susceptible
EcA, KpA Resistant to antibiotic A
EcC, KpC Resistant to antibiotic C
EcF, KpF Resistant to antibiotic F
EcAC, KpAC Resistant to antibiotics A and C
EcAF, KPAF Resistant to antibiotics A and F
EcACF, KpACF Resistant to antibiotics A, C, and F

E. coli starting clones
Ecc0 Antibiotic susceptible
EccA Resistant to antibiotic A
EccF Resistant to antibiotic F
EccAF Resistant to antibiotics A and F

Enterococcus resistance phenotypes
Ef(1)0 Antibiotic A susceptible
Ef1(1)A Resistant to antibiotic A
Ef(2)AF Resistant to antibiotics A and F

Conjugative elements
PL1 Plasmid 1
CO1 Conjugative element in Enterococcus
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phenotype and the AbAR phenotype and loss of plasmid-mediated AbAR by incom-
patibility with the incoming plasmid (light green); and (viii) the acquisition of the AbFR
mutation by the AbCR-only phenotype or by plasmid reception of an AbCR trait from
K. pneumoniae in AbFR, giving rise to the phenotype AbCR-AbFR (olive green). In the
community, where the antibiotic exposure is less frequent, a similar dynamic sequence
occurs but at a much lower rate (Fig. 2).

FIG 1 Dynamics of bacterial resistance phenotypes in E. coli. Pink, susceptible; red, AbAR (AMP); violet, AbFR (FLQ); brown,
AbAR and AbFR; light blue, AbAR and AbCR; dark blue, AbAR, AbCR, and AbFR; light green, AbCR; olive green, AbCR and AbFR.
In ordinates, numbers of hecto-cells (h-cells; packages of 100 identical cells) in all hosts per milliliter (with each host
represented by 1 ml of colonic content); in abscissa, time (1,000 steps, roughly equivalent to 42 days).

FIG 2 Comparative dynamics of E. coli phenotypes in the hospital (up, left) and the community (down, left). In the right part, species dynamics in the hospital
(up) and the community (down): E. coli (black), K. pneumoniae (yellow green), E. faecium AbAS (dark green), and E. faecium AbAR (violet). P. aeruginosa is not
visible in this representation (low numbers).
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(ii) Dynamics of bacterial species. Antibiotic use and antibiotic resistance influence
the long-term dynamics of bacterial species in the hospital environment (Fig. 2C and D).
Under the conditions of our basic scenario, E. coli populations (black) tend to prevail.
Enterococcus faecium (violet) and K. pneumoniae (yellow-green) populations were main-
tained during the experiment. In the community, E. coli has a stronger dominance over
other species, and similar dynamics occur as in the hospital, at lower rates.

Klebsiella pneumoniae (Fig. S3) is intrinsically resistant to AbA, and in our case it
harbors a plasmid encoding AbCR (cefotaxime [CTX]) and a mutation encoding AbFR
(fluoroquinolone [FLQ]). In the hospital, the AbCR phenotype is readily selected.
However, because of the high density of E. coli populations with the plasmid-mediated
AbAR, several Klebsiella strains receive this plasmid. These Klebsiella strains receive no
benefit from this plasmid because they are intrinsically aminopenicillin resistant, but
incompatibility with the plasmid determining AbCR occurs, eliminating AbCR from the
recipients and giving rise to the phenotype AbAR-AbFR (purple). That contributes to
the decline in AbCR-containing phenotypes (olive green). In any case, the dominance
of E. coli prevents significant growth of K. pneumoniae. Enterococcus faecium (Fig. S3) is
intrinsically resistant to AbC (AbCR, CTX), but there are two variants, one AbA (amin-
openicillin [AMP]) susceptible and the other AbA resistant, the latter of which has AbFR
also. However, the AbAS variant can acquire the AbAR trait from the resistant one by
(infrequent) horizontal genetic transfer and can become an AbAR donor. There is
replacement dynamics of AbAS by the AbAR phenotype.

(iii) Influence of baseline resistance composition on the dynamics of bacterial
species. The local evolution of antibiotic resistance can depend on the baseline
composition of susceptible and resistant bacterial populations (Fig. 3). In a baseline
scenario, we consider a density of 8,600 h-cells (1 h-cell � 100 identical cells; see the
section “Quantitative structure of the basic model application” below) of E. coli among
which 5,000 cells are susceptible, 2,500 have plasmid-mediated aminopenicillin resis-

FIG 3 Influence of baseline E. coli resistance phenotype composition on the dynamics of bacterial species. On the left, data represent comparative dynamics
of E. coli phenotypes in the basic hospital scenario (top) and with reduced numbers of resistant phenotypes (bottom). Colors and axes are as described for Fig. 1.
On the right, data represent comparative dynamics of bacterial species in the basic model (top) and the reduced basal resistances (bottom); colors are as
described for Fig. 2.
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tance (PL1-AbAR), 1,000 have fluoroquinolone resistance (AbFR), and 100 combine both
resistances. To mimic a “more-susceptible scenario,” values were changed to 8,000
susceptible cells, 500 with PL1-AbAR, 50 with AbFR, and 50 with PL1-AbAR and AbFR.
Higher proportions of susceptible E. coli cells facilitate the increase in the populations
of the more resistant organisms, K. pneumoniae and AbAR E. faecium. Because of the
selection of K. pneumoniae (olive green) harboring cefotaxime resistance (PL1-AbCR)
and because of the ability of transfer of the PL1 plasmid to E. coli, the proportion of E.
coli cells with cefotaxime resistance (mainly light and dark blue) increases in the
scenario with a lower resistance baseline for E. coli. This example illustrates the
hypothesis that a higher prevalence of resistance in the E. coli component of the gut
flora might reduce the frequency of other resistant organisms, which might inspire
interventions directed to restore the susceptibility in particular species (10, 11).

(iv) Single-clone E. coli dynamics: influence of baseline resistances. In the
previous analysis, subpopulations of E. coli were characterized by their antibiotic
resistance phenotype (phenotype populations). Alternatively, we can follow the evo-
lution of four independent E. coli clones, each tagged in the model with particular
signals (unrelated with AbR), namely, E. coli clone 0 (Ecc0), EccA, EccF, and EccAF (see
Table 1), and, starting with specific resistance traits, allowing for the possibility that the
frequency of these “ancestor clones” within a clone might change through time by the
gain or loss of a trait. Fig. 4 shows the densities of these ancestor clones through time.
The details of the sequential trait acquisitions for each of these clones are shown in
Fig. S2. The fully susceptible E. coli clone (Ecc0) first acquires AbAR (red) and AbCR
(green). The AbAR phenotype facilitates the capture by lateral gene transfer of AbCR
(CTX), giving rise to the double AbAR-AbCR phenotype (light blue). The incorporation
of AbF-R (violet; FLQ) in the fully susceptible clone occurs early (later in the AbAR
population) such that the rise of the multiresistant phenotype (dark blue) occurs later
and again at low numbers. The presence of the AbAR trait in the clone at time zero
(EccA) increases the success of the clone and includes the acquisition of AbFR and the
multiresistant phenotype. Interestingly, the presence of AbFR (fluoroquinolone resis-
tance) at the origin (EccF) was critical for the enhancement of the numbers of doubly
resistant and multiresistant phenotypes. The clones that were more susceptible at the
origin remain relatively stable in numbers, suggesting that clonal composition tends to
level off along the continued challenges under antibiotic exposure.

FIG 4 Single-clone E. coli dynamics in the hospital: influence of baseline resistances. In pink, clone Ecc0 starting with full
susceptibility; in red, with AbAR (EccA); in violet, with AbFR (EccF); in brown, with AbAR and AbFR (EccAF).
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(v) Dynamics of mobile genetic elements and resistance traits. We consider E.
coli, K. pneumoniae, and Pseudomonas aeruginosa to be members of a “genetic ex-
change community” (12, 13) for the plasmid PL1. As shown in Fig. 5, we can compare
the evolutionary advantage of the same resistance phenotypic trait (AbAR) harbored in
a plasmid, as in E. coli, to that of the trait harbored in the chromosome, as in K.
pneumoniae. The overall success of the PL1 plasmid (blue line) benefits from the fact
that this mobile element is selected by two different antibiotics (AbA and AbC;
resistance shown in red and green lines, respectively). Interestingly, resistance to AbFR
(violet) is selected from early stages of the experiment, and after 4,000 steps it
converges with the AbCR, a plasmid-mediated trait, meaning that this plasmid is
maintained almost exclusively in strains harboring AbFR genes, similarly to empirical
findings (14, 15). When the conjugation rate of PL1 was increased, the main effect was
the reduction in selection of K. pneumoniae, as the predominance of the PL1-AbAR
plasmid from the more abundant populations of E. coli tended to dislodge PL1-AbCR
from K. pneumoniae (results not shown).

Dynamics under conditions of changing scenarios in the hospital and com-
munity compartments. (i) Frequency of patient flow between hospital and com-
munity. The frequency of exchange of individuals between the hospital and the
community (hospital admission and discharge rates) influences the evolution of anti-
biotic resistance (Fig. 6). This occurs because sensitive bacteria enter the hospital with
newly admitted patients from the community (where resistance rates are low), and this
‘‘immigration’’ allows sensitive bacteria to ‘‘wash out’’ resistant bacteria (16). Multire-
sistant E. coli strains emerge much earlier with decreased flow rates, because bacteria
resistant to individual drugs have more time to coexist and thus to exchange resis-
tances by gene flow and because the length of “frequent exposure” to different
antibiotics (and, consequently, selection) increases (17). The effect of the slow flow of
patients to the community is a late reduction in multiresistance (AbAR-AbCR-AbFR) and
an earlier reduction in double resistances (AbAR-AbFR and AbAR-AbCR). In the com-
munity compartment, however, multiresistance increases when the flow from the
hospital is more frequent.

(ii) Frequency of patients treated with antibiotics. Higher proportions of patients
exposed to antibiotics increase selection of antibiotic resistance (16). We analyzed this

FIG 5 Dynamics of a plasmid and resistance traits in the hospital environment. The species E. coli, K. pneumoniae, and P.
aeruginosa are included as a genetic exchange community. In blue, total number of the plasmid PL1; in bright red, plasmid
PL1 with the gene AbAR (AMP); in green, PL1 with AbCR (CTX); in violet, chromosomal AbFR (FLQ) gene; in red-brown,
chromosomal AbAR (as in K. pneumoniae). In ordinates, number of plasmids or resistance traits in h-cells (packages of 100
identical cells) in all hosts per milliliter (with each host represented by 1 ml of colonic content).
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effect in our model, considering proportions of 20%, 10%, and 5% of patients exposed
to 7 consecutive days of antibiotic therapy at four doses per day (Fig. 7). If a high
proportion (20%) of patients are treated, E. coli multiresistance is efficiently selected, as
well as K. pneumoniae and E. faecium resistance. If this proportion is reduced to 10%
(and, particularly, to 5%), there is a substantial reduction in the amount of resistant E.
coli cells and the emergence of multiresistant bacteria is delayed (individual resistance
data not shown for these species). However, the evolution of E. coli toward more
multiresistance partially counteracts the selective advantage of these species, restrict-
ing their growth to some extent, even under conditions of high densities of treated
patients.

(iii) Frequency of bacterial transmission rates in the hospital. Transmission of
bacteria (i.e., any type of bacteria, including commensals) among individuals in the
hospital influences the spread of antibiotic resistance. The effect of transmission rates
of 5% and 20% per hour was analyzed (Fig. 8), and the results expressed the proportion
of individuals that acquired any kind of bacteria from another individual per hour.
These rates might appear exceedingly high, indicating very frequent transmission
between hosts, but we refer here to rates of cross-colonization involving “any type of
bacteria.” Normal microbiota transmission rates between hosts have never been mea-
sured, such measurements probably requiring a complex metagenomic approach (18).
Differences in effects on evolution of E. coli phenotypes in comparisons of 10% and 20%
colonization rates are unclear; perhaps 10% transmission produces full effects and 20%
does not add much more. The subtractive representation allows discernment of a
global advantage for the multiresistant phenotypes (AbAR-AbCR-AbFR) when the
proportion of interhost transmission rises from 5% to 20%. The monoresistant AbAR

FIG 6 Influence of flow of patients between hospital and community. On the left, influence on E. coli resistance phenotypes in the hospital when one patient
is admitted at/discharged from the hospital every 2 (top), 4 (middle), or 8 hours (bottom). On the right, subtractive representation of E. coli phenotypes in the
hospital: 2 h versus 4 h (first panel); 4 h vs. 8 h (second panel). Below, E. coli phenotypes in the community with a flow of 2 h versus 4 h (third panel); 4 h vs.
8 h (fourth panel).
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phenotype tends to be maintained longer under conditions of low contagion rates.
Note that multiresistant phenotype “bursts” occur (dark blue spikes in the figure) also
with low contagion rates (5% box in Fig. 8) and that “bursts” of less-resistant bacteria
(red spikes) also occur with high contagion rates (20% box). Notice that the increase in
cross-colonization rates favors the transmission not only of resistant populations but
also of the more susceptible ones, to a certain extent compensating for the spread of
the resistant-phenotype populations.

(iv) Size of transmitted bacterial load. The absolute number of intestinal bacteria
that are transmitted from one host to another one is certainly a factor influencing the
acquisition of resistant (or susceptible) bacteria by the recipient. However, this number
is extremely difficult to determine, as it depends not only on the mechanism of
transmission (19, 20) but also on the possibility that the recipient might have already
harbored bacterial organisms indistinguishable from those that are transmitted (21). On
the other hand, efficient transmission able to influence colonic microbiota depends on
the number of bacteria in the donor host and on the ability of different bacteria to
colonize not only in the lower intestine but also in intermediate locations in the body,
probably including the mouth or upper intestine (22). To evaluate the potential effect
of different bacterial loads acting as inocula, we considered a final immigrant popula-
tion reaching the colonic compartment equivalent to 0.1%, 0.5%, and 1% of the donor
microbiota. As in previous cases, the evolution of multiresistance favored E. coli
(Fig. S4). Multiresistant E. coli emerges earlier and reaches higher levels in higher-count
inocula, but less-resistant strains are maintained because the higher-count inocula also
contain more susceptible bacteria.

(v) Intensity of the effect of antibiotics on bacterial populations. The issue of the
relationship of the “potency” (intensity of antibacterial activity) of antibiotics to the
selection of resistance has been a matter of recent discussions (23–26). To illustrate

FIG 7 Influence of the frequency of patients treated with antibiotics. On the left, E. coli phenotypes when 20% (top), 10% (middle), or 5% (bottom) of patients
received antibiotics during a week at four doses per day. On the right, effect on bacterial species. Colors are as described for Fig. 1 and 2.
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the point, we changed the bactericidal effect of the antibiotics used in the model.
Clinical species were killed at rates of 30% and 15% (reflecting a population decrease)
in the first and second hour of exposure, respectively, and these rates were then
decreased to 7.5% to 3.75%. Note that these modest killing rates are intended to reflect
the diminished effect of antibiotics in slow-growing clinical bacteria located in a
complex colonic microbiome. The more susceptible E. coli phenotypes are maintained
for longer periods when the killing intensity of antibiotics is lower; in contrast, the
multiresistant phenotype emerges earlier and reaches higher numbers when the
intensity of antibiotic action increases (Fig. 9). Under conditions of high antibiotic
intensity, there is also a (small) increase in the levels of the resistant K. pneumoniae and
E. faecium phenotypes. This experiment shows that a high rate of elimination of the
more susceptible bacteria favors the colonization by the more resistant ones.

(vi) Intensity of the antibiotic effect on colonic microbiota. The proportion of the
colonic microbiota killed by antibiotic treatment (and, thus, the size of the open niche
for other strains to multiply) constitutes an important factor in the multiplication of
potentially pathogenic bacteria and hence affects acquisition (mutational or plasmid-
mediated) of resistance and transmission to other hosts. In the basic model, the rates
of reduction of the population were 25% for AbA, 20% for AbC, and 10% for AbF; in an
alternative scenario, these proportions were modified to 10%, 5%, and 2%, respectively.
The results of this change were impressive (Fig. 10): the numbers of bacteria were
reduced but also the evolution toward antibiotic resistance (EC) occurred at a lower
rate, and even if the proportions of resistance phenotypes were to steadily increase
through time, the absolute numbers would not grow, thus limiting host-to-host
transmission.

FIG 8 Influence of the frequency of bacterial cross-transmission rates in the hospital. On the left, dynamics of E. coli phenotypes when bacterial exchanges
between patients occurred in 5% (top) or 20% (middle) per hour. On the right, influence on the species composition: 5% (top) or 20% (middle). A subtractive
representation (5% versus 20%) is provided at the bottom. Colors are as described for Fig. 1 and 2.
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(vii) Strength of antibiotic selection on resistance traits. The strength of antibi-
otic selection is an important parameter in the evolutionary biology of antibiotic
resistance (27). Our computational model allows heuristic acquisition of knowledge
about the strength of selection of an antibiotic for a particular resistance trait, consid-
ering how the resulting trend is (or is not) compatible with the observed reality. An
example is the following unanswered question: does plasmid-mediated cefotaxime
resistance (AbCR) also provide protection against aminopenicillins (AbAR)? Strains
harboring TEM or SHV extended-spectrum beta-lactamases hydrolyzing cefotaxime
probably retain sufficient levels of aminopenicillin hydrolysis to be selected by amin-
openicillins. However, the cefotaxime-resistant/aminopenicillin-susceptible phenotype
is rare in hospital isolates. In our model, this was investigated by providing different
strengths of ampicillin (AbA) selection for a cefotaxime-resistant phenotype (AbCR) as
follows: no selection (0%), selection in only 10% of the cases (10%), and full selection
(100%). The implementation of the model (Fig. S5) showed that if ampicillin were able
to select for cefotaxime resistance, the aminopenicillin-susceptible and cefotaxime-
resistant phenotype should be prevalent from early stages. This is not what is observed
in the natural hospital environment, suggesting that ampicillin is not a major selector
for cefotaxime resistance.

DISCUSSION

The rate of antibiotic resistance among bacterial species in a given environment is
the result of the interaction of biological elements within a framework determined by
many local variables, constituting a complex parameter space (28–30). There is a need
to consider (in an integrated way) how changes in these parameters might influence
the evolution of resistant organisms. This endeavor requires the application of new
computational tools that should consider the nested structure of the microbial eco-
systems, where mechanisms of resistance (genes) can circulate in mobile genetic
elements among bacterial clones and species belonging to genetic exchange commu-

FIG 9 Influence of the activity of the antibiotic on E. coli phenotypes (left) and the species composition (right). (Upper panels) Susceptible bacteria were
eliminated at rates of 30% after the first hour of exposure and 15% after the second hour. (Lower panels) The elimination rates were lower: 7.5% after the first
hour and 3.75% after the second hour. Colors are as described for Fig. 1 and 2.
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nities (12, 13) located in different compartments (as in the hospital or the community).
A number of different factors critically influence the evolution of this complex system,
such as antibiotic exposure (frequency of treated patients, drug dosages, the strength
of antibiotic effects on commensal bacterial communities, and the replication rate of
the microbial organisms), as well as the fitness costs imposed by antibiotic resistance,
the rate of exchange of colonized hosts between compartments with different levels of
antibiotic exposure (hospital and community), or the rates of cross-transmission of
bacterial organisms among these compartments. The challenge that we are addressing
in this work is that of simultaneously combining for the first time all these factors (and
potentially more) in a single computing model to understand the selective and
ecological processes leading to the selection and spread of antibiotic resistance. In
comparison with the available classic mathematical models that have been applied to
the study of evolution of antibiotic resistance (31), the one we are discussing in this
work is far more comprehensive in terms of the level of capture of the multilevel
parametric complexity of the phenomenon. Note that results obtained with the model
and presented here correspond to only a very limited number of possible “computa-
tional experiments,” chosen to show the possibilities of the model, but that virtually
unlimited numbers of other experiments, with different combinations of parameters,
are feasible à la carte with a user-friendly interface. In addition, our model can illustrate
principles, generate hypotheses, and guide and facilitate the interpretation of empirical
studies (32, 33). Examples of these heuristic predictions are that resistance (lower
antibiotic effect) in colonic commensal flora can minimize colonization by resistant
pathogens, the possible minor role of aminopenicillins in the selection of extended-
spectrum beta-lactamases (AbCR), or the possibility of the presence of plasmids con-
ferring aminopenicillin resistance in K. pneumoniae (phenotypically “invisible,” as this
organism has chromosomal resistance to the drug).

Our results are presented in terms of the ensemble of biological entities contained
in the whole landscape (for instance, in the hospital), aggregated across individual

FIG 10 Influence of the intensity of the antibiotic effect on colonic microbiota of patients in the hospital. (Left) Effects on E. coli phenotype of a reduction in
microbiota of 25% for AbA, 20% for AbC, and 10% for AbF (top); these values were reduced to 10%, 5%, and 2%, respectively (bottom). (Right) The effects on
the species composition.
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hosts. This “pooling” approach, which originated in ecological studies, has already been
used in studies of antibiotic resistance (34). Environments (such as the hospital) are
depicted as single “big world” units colonized by “big world populations,” including
those that are antibiotic resistant but also the susceptible ones, which can limit the
spread of resistance—in a sense, “spreading health” (35). In this scenario, how might
antibiotics modify the available colonization space (36, 37)? Our model includes elim-
ination of part of the global colonic microbiota with antibiotic use, favoring the
colonization of resistant organisms, which were previously in the minority.

We can reproduce the successive “waves” of increasingly resistant phenotypes in our
computational experiments, mimicking the clonal interference phenomenon (38). We
show that the speed and intensity of this process depend on the global resistance
landscape and the density and phenotype of the bacterial subpopulations. Our model
predicts that previous mutational ciprofloxacin resistance facilitates fast evolution of
multiresistance by horizontal acquisition of resistance genes (14, 15). We also show that
the long-term dissemination of chromosomally encoded genes is far less effective than
the spread of traits encoded in transferable plasmids, even though some limitations are
detectable because of plasmid incompatibility. A frequently overlooked aspect of
antibiotic resistance suggested by the results of our membrane computing experi-
ments is that, over the long term, the evolution of multiresistance probably favors some
predominant species such as E. coli, where there is also an increasing benefit for the
more resistant clones.

The consequences of changes in the transmission and treatment rates of the
hospital and the community were also explored in our model. Several mathematical
models have been used to investigate these changes also (16, 37–45). It is clear that
reducing discharges and admissions of patient in hospitals has the effect of increasing
the local rates of antibiotic resistance, but in our model, increases in the proportions of
antibiotic-treated patients in the hospital have a stronger effect, stressing the impor-
tance of precision in prescribing antibiotic therapy (44). The increasing rates of hospital
cross-colonization also influence the rise of resistance, but this effect seems lower than
expected, probably because higher transmission rates also assure transmission of the
more susceptible antibiotic populations, in a kind of “washing out” process of resis-
tance, such as that which occurs when the community-hospital flow increases (16). The
model also predicts that increases in the “amount” of bacteria transmitted between
hosts favor increases of antibiotic resistance. We considered another frequently over-
looked factor, namely, the consequences of increases in the “intensity” (aggressiveness)
of the antibiotic therapy because of frequent dosage and particularly in terms of its
ability to reduce the populations of colonic microbiota and, therefore, the “colonization
resistance” for resistant opportunistic pathogens (46).

Precise data are not always easy to obtain, and the type of mathematical or
computational models should influence the results of predictions (47). However, be-
cause of the functional analogy of membrane computing with the biological world, we
hypothesize that the trends revealed in our computational model reflect general
processes in the evolutionary biology of antibiotic resistance. If the model were fed
with objective data extracted from a real landscape (which would be possible with a
user-friendly interface), it could provide a reasonable expectation of the potential
evolutionary trends in the particular environment and could support the adoption of
corrective interventions (48). Validation of this computational model is the next nec-
essary step; in an approach to this goal, we are developing an “experimental epide-
miology” model where the parameters could be altered and measured (49) and are also
planning prospective hospital-based observations.

Finally, we stress that the type of membrane computing model that was applied in
this work can be easily escalated or adapted to a variety of applications in systems
biology (50, 51) and in particular can be used to support efforts to understand complex
ecological systems with nested hierarchical structures and involving microorganisms
(52).
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MATERIALS AND METHODS
Software implementation and computing model. All computational simulations were performed

using an updated version of ARES (Antibiotic Resistance Evolution Simulator) (8), which is the software
implementation of a P system for the modeling of antibiotic resistance evolution. This P system model
works with objects and membranes distributed in different regions organized in a tree-like structure as
in the P system classic model but now with more-specific rules: the “object rules” can modify an object
(evolution rules) or move the object out, in, or between membranes; and the “membrane rules” can
move membranes out, in, or between regions that contain them as “object rules” and can dissolve and
duplicate membranes. When a membrane is dissolved, all the membranes and objects inside disappear.
For duplication, we can define which objects are to be duplicated and which ones are to be distributed;
the membranes are always distributed. The implementation of our P system uses a stochastic method to
apply the rules (the rules being ordered by priorities), and each rule has a “probability” to be applied.
Other computational objects can be introduced, either to tag particular membranes or to interact with
the embedded membranes, for instance, mimicking antibiotics, according to a set of preestablished rules
and specifications. We obtain an evolutionary scenario that includes several types of nested computing
membranes emulating entities such as (i) resistance genes, located in the plasmid, in other conjugative
elements, or in the chromosome; (ii) plasmids and conjugative elements transferring genes between
bacterial cells; (iii) bacterial cells; (iv) microbiotas where different bacterial species and subspecies
(clones) can meet; (v) hosts containing the microbiotic ensembles; and (vi) the environment(s) where the
hosts are contained. The current version of ARES (2.0) can be freely downloaded at https://sourceforge
.net/projects/ares-simulator/. ARES 2.0 runs in any computer (is a Java application), albeit it is highly
recommendable to install it in at least a 4-by-6-core server with 128 GB of RAM. The original ARES Web
site at http://gydb.org/ares offers sections with information about the rules and parameters currently
used by ARES.

Anatomy of the model application. The current application of the model was structured accord-
ingly with the following composition: (i) compartments containing individual hosts at particular densities,
mimicking a hospital (H) and a community environment (C) (flux of individuals between the two
compartments occurs at variable rates, mimicking admission or discharge from the hospital); (ii) clinically
relevant bacterial populations colonizing these hosts, consisting of the species Escherichia coli, Entero-
coccus faecium, Klebsiella pneumoniae, and Pseudomonas aeruginosa. These populations diversify from
their initial phenotype by acquisition of mutations and/or mobile genetic elements and of PL1 plasmids
circulating in E. coli, K. pneumoniae, and P. aeruginosa or of conjugative elements (CO1) in E. faecium. The
cell can maintain two copies of the PL1 plasmid (containing resistance to AbA [PL1-AbAR] or AbC
[PL1-AbCR]) but not more, so that when a third copy of the PL1 plasmid enters the cell, one of the three
is stochastically removed. AbCR produces some degree of resistance to AbA, and we believe that this
antibiotic also (in 10% of the cases) selects cells containing plasmid PL1-AbCR. CO1 is an E. faecium
“plasmid-like” mechanism of transfer of chromosomal gene AbAR (CO1-AbAR); a single copy of CO1-
AbAR exists in the receiving host. Acquisition of (extrinsic) resistance to AbA (AbAR) is mediated by
acquisition of PL1 (or CO1), resistance to AbC (AbCR) by acquisition of PL1 containing the AbCR
resistance determinant, and resistance to AbF (AbFR) by mutation. Note that the following results occur
in our representations: for example, when Ec0 (susceptible) receives PL1 with AbAR, it becomes EcA;
when it receives PL1 with AbCR, it becomes Ec2C; and when Ec0, Ec1, and Ec2 mutate to AbFR, they
become EcF, EcAF3, and EcCF, respectively. The acquisition of PL1 with AbAR by EcCF or of PL1 with AbCR
by EcAF produces the multiresistant strain EcACF.

Quantitative structure of the basic model application. (i) Hospitalized hosts in the population.
The data corresponding to the number of hosts in the hospital and community environments reflect an
optimal proportion of 10 hospital beds per 1,000 individuals in the community (https://data.oecd.org/
healtheqt/hospital-beds.htm). In our model, the hospital compartment has 100 occupied beds and
corresponds to a population of 10,000 individuals in the community.

The rates of admission and discharge from hospital are equivalent at 3 to 10 individuals/population
of 10,000/day (https://www.cdc.gov/nchs/nhds/index.htm). In the basic model, 6 individuals from the
community are admitted to the hospital and 6 are discharged from the hospital to the community per
day (at approximately 4-h intervals). Patients are stochastically admitted or discharged, meaning that
about 75% of the patients stay in the hospital between 6 and 9 days.

The bacterial colonization space of the populations of the clinical species considered here (Table 1)
and of other basic colonic microbiota populations is defined as the volume occupied by these bacterial
populations. Under natural conditions, the sum of these populations is estimated in 108 cells per ml of
the colonic content. Clinical species constitute only 1% of the cells in each milliliter and have a basal
colonization space of 1% of each milliliter of colonic content (0.01 ml). How these spaces are considered
for counting populations in the model is explained in the next section.

The ensemble of other populations of microbiota is considered in our basic study model as an
ensemble surrounded by a single membrane. The colonic space occupied by these populations can
change because of antibiotic exposure. Throughout a course of treatment (7 days), the antibiotics AbA,
AbC, and AbF reduce the intestinal microbiota 25%, 20%, and 10%, respectively. As an example, if we
consider that 10% of the basic colonic populations was eliminated by antibiotic exposure, their now
empty space (0.1 ml) would be occupied by antibiotic-resistant clinical populations and by the colonic
populations that survived the challenge. In the absence of antibiotic exposure, the colonic populations
are restored to their original population size in two months. Clinical populations are comparatively faster
in colonizing the empty space.
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(ii) Populations’ operative packages and counts. To facilitate the process of model running, we
consider that a population of 108 cells in nature is equivalent to 106 cells in the model. In other words,
one “hecto-cell” (h-cell) in the model represents an “operative package” of 100 cells in the real world.
Because of the very high effective population sizes in bacteria, these 100 cells are considered represen-
tative of a uniform population of a single cell type. A certain increase in stochasticity might occur
because of using h-cells; however, run replicates do not differ significantly (see Fig. S1 in the supple-
mental material). Also, for computational efficiency, we considered that each patient (in a hospital) or
individual (in the community compartment) is represented in the model by 1 ml of its colonized colonic
space (about 3,000 ml) and refer to the corresponding value as a “host-ml.” Consequently, in most of the
figures we represent our results as a numbers of h-cells in all hosts per milliliter.

(iii) Quantitative distribution of clinical species and clones. In the basal scenario, the distribution
of species in these 1,000,000 cells (contained in 1 ml) is as follows: for E. coli, 860,000 cells, including
500,000 susceptible cells, 250,000 cells containing PL1-AbAR, 100,000 cells with the AbFR mutation, and
10,000 cells with both PL1-AbAR and the AbFR mutation; for E. faecium, 99,500 AbA susceptible and
20,000 AbAR; for K. pneumoniae, 20,000 with chromosomal AbAR, PL1-AbCR, and AbFR; for P. aeruginosa,
500 containing PL1-AbCR. At time zero, the distributions are identical in hospitalized and community
patients.

(iv) Tagging starting clone populations in E. coli. To be able to follow the evolution of particular
lineages inside E. coli, four ancestral clones (Ecc) were distinguished, differing in the original resistance
phenotype (with Ecc0 as a fully susceptible clone, EccA harboring PL1 determining AbAR, EccF harboring
AbFR, and EccAF with PL1-AbAR and AbFR) (Table 1). Each of these clones is tagged at time zero with
a distinctive “object” in the model which remains fixed to the membrane, multiplies with the membrane,
and is never lost. Each of the daughter membranes throughout the progeny can alter its phenotype by
mutation or lateral gene acquisition, but the ancestral clone remains detectable.

(v) Multiplication rates. We consider the basal multiplication rate (of 1) the rate corresponding to
Ec0, where each bacterial cell gives rise to two daughter cells every hour. In comparison, the rate for E.
faecium is 0.85, that for K. pneumoniae is 0.9, and that for P. aeruginosa is 0.15. The acquisition of a
mutation, a plasmid, or a mobile element imposes an extra cost corresponding to a value of 0.03.
Therefore, the rate for Ec0 is 1, that for EcA is 0.97 (because of the cost of PL1-AbAR), that for EcC is 0.97
(cost of PL1-AbCR), that for EcF is 0.97 (cost of mutation), that for EcAF is 0.94 (PL1-AbAR and AbFR), that
for Ef(1) is 0.85, that for Ef(2) is 0.79 (CO1-AbAR and AbFR), that for K. pneumoniae is 0.84 (PL1-AbAR and
AbFR), and that for P. aeruginosa with PL1-AbCR is 0.12 (PL1-AbCR). The number of cell replications is
limited according to the available space (see above).

Transfer of bacterial organisms from one host to another is expressed by the proportion of individuals
that can stochastically produce an effective transfer of commensal or clinical bacteria or susceptible or
resistant bacteria to another individual (contagion index [CI]). If contagion is 5% (i.e., if the CI � 5), that
means that among 100 patients, 5 “donors” transmit bacteria to 5 “recipients” per hour. In the case of
the basic scenario, CI � 5 in the hospital and CI � 1 in the community (all data corresponding to results
with CI � 0.01 are available on request). In the basic scenario, donors contribute to the colonic
microbiota of recipient individuals with 0.1%, 0.5%, and 1% of their own bacteria. These inocula do not
necessarily reflect the number of cells transferred but do reflect endogenous multiplication after transfer,
as proposed in other models (53). In any case, cross-transmission is responsible for most new acquisitions
of pathogenic bacteria (54).

The frequency of plasmid transfer between bacteria occurs randomly and reciprocally at equivalently
high rates among E. coli and K. pneumoniae populations; in the basic model, the rate is 0.0001,
representing one effective transfer occurring in 1 of 10,000 potential recipient cells. Plasmid transfer
occurs at a lower rate of 0.000000001 in the interactions of E. coli and K. pneumoniae with P. aeruginosa.
Conjugative element-mediated transfer of resistance among E. faecium populations occurs at a frequency
of 0.0001, but E. faecium bacteria are unable to receive resistance genes from or donate resistance genes
to any of the other bacteria considered. In the case of E. coli and K. pneumoniae plasmids, we consider
plasmid limitation in the number of accepted plasmids such that if a bacterial cell with two plasmids
receives a third plasmid, there is a stochastic loss of one of the residents or the incoming plasmid but
all three cannot coexist in the same cell.

Mutational resistance is considered only in the present version of the model for resistance to AbF
(fluoroquinolones). Organisms of the model-targeted populations mutate to AbF at the same rate, i.e., 1
mutant every 108 bacterial cells per cell division.

(vi) Antibiotic exposure. In the basic model, 5%, 10%, or 20% of the individuals in the hospital
compartment are exposed to antibiotics each day, each individual being exposed (treated) for 7 days. In
the community compartment, 1.3% of individuals are receiving treatment, with each of them also
exposed to antibiotics for 7 days. Antibiotics AbA, AbC, and AbF are used in the hospital and the
community compartments at proportions of 30%, 40%, and 30% and of 75%, 5%, and 20%, respectively.
In the basic scenario, a single patient is treated with only one antibiotic that is administered every 6 h.

(vii) Intensity of the effect of antibiotics on susceptible clinical populations. After each dose is
administered, all three (bactericidal) antibiotics induce a decrease of 30% in the susceptible population
after the first hour of dose exposure and 15% in the second hour. These relatively modest bactericidal
effects reflect the reduction in the antibiotic killing rates of clinical populations inserted into the colonic
microbiota. The antibiotic stochastically penetrates at those percentages of bacterial cells, and those that
are susceptible are removed (killed). Therapy is maintained in the treated individual for 7 days.

(viii) Intensity of the effect of antibiotics on colonic microbiota. Antibiotics exert an effect that
reduces the density of the colonic commensal microbiota, resulting in free space and nutrients that can
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benefit the clinical populations. In the basic model, the levels of such reductions are 25% for AbA, 20%
for AbC, and 10% for AbF.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.02460-18.
FIG S1, EPS file, 2.5 MB.
FIG S2, EPS file, 2.5 MB.
FIG S3, EPS file, 1.5 MB.
FIG S4, EPS file, 3 MB.
FIG S5, EPS file, 0.1 MB.
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