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Abstract
Aims To investigate the interactions among fecal and plasma glutamate levels, insulin resistance cognition and gut microbiota 
composition in obese and non-obese subjects.
Methods Gut microbiota composition (shotgun) and plasma and fecal glutamate, glutamine and acetate (NMR) were ana-
lyzed in a pilot study of obese and non-obese subjects (n = 35). Neuropsychological tests [Trail making test A (TMT-A) 
and Trail making test B (TMT-B)] scores measured cognitive information about processing speed, mental flexibility and 
executive function.
Results Trail-making test score was significantly altered in obese compared with non-obese subjects. Fecal glutamate and 
glutamate/glutamine ratio tended to be lower among obese subjects while fecal glutamate/acetate ratio was negatively asso-
ciated with BMI and TMT-A scores. Plasma glutamate/acetate ratio was negatively associated with TMT-B. The relative 
abundance (RA) of some bacterial families influenced glutamate levels, given the positive association of fecal glutamate/
glutamine ratio with Corynebacteriaceae, Coriobacteriaceae and Burkholderiaceae RA. In contrast, Streptococaceae RA, 
that was significantly higher in obese subjects, negatively correlated with fecal glutamate/glutamine ratio. To close the circle, 
Coriobacteriaceae/Streptococaceae ratio and Corynebacteriaceae/Streptococaceae ratio were associated both with TMT-A 
scores and fecal glutamate/glutamine ratio.
Conclusions Gut microbiota composition is associated with processing speed and mental flexibility in part through changes 
in fecal and plasma glutamate metabolism.

Keywords Microbiota · Metabolomics · Glutamate · Trail making test · Cognition

Introduction

Gut microbiota is known to produce a wide repertoire of 
compounds that may potentially play an important role in 
brain function (the so called gut microbiota-brain axis) and 
behavior. This axis is a bidirectional communication system 
and involves neuronal, endocrine, immune and metabolic 
pathways, although there is still a long way to decipher its 
physiology [1]. There is some evidence that bacterial com-
mensals may regulate neurotransmission, neurogenesis, brain 
inflammatory status and activation of the hypothalamic–pitui-
tary–adrenal [2]. Microbiota is characterized by its important 
plasticity, changing dramatically and rapidly in response to diet 
[2]. The neurochemicals produced by both multicellular organ-
isms and prokaryotes, such as serotonin, GABA or glutamate, 
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are considered part of the language that uses the gut–micro-
biota–brain system [3].

Glutamate, the main neurotransmitter of the central nervous 
system, is a non-essential amino acid that plays a key role in 
the development and function of normal brain activity, regu-
lating communication between neurons and brain plasticity. 
Glutamate is a key factor involved in memory and learning 
[3, 4]. When glutamate concentrations are low in the brain 
gray matter, evaluated using magnetic resonance spectroscopy, 
there is a poorer performance in several cognitive tests, like the 
trail making test-A (TMT-A) [5]. This is a neuropsychological 
test that provides information about visual and motor process-
ing speed, while trail making test B (TMT-B) provides infor-
mation about flexibility and executive function. In both tests, 
shorter times to completion indicate better performance [6, 7].

Biochemically, glutamate is close to the entry point of 
inorganic nitrogen, there are two pathways in enteric bac-
teria: glutamate by the action of glutamine synthetase and 
glutamate synthase from glutamine, or by the enzyme gluta-
mate dehydrogenase (GDH) from 2-oxoglutarate. Glutamine 
Synthetase/Glutamate-glutamine-oxoglutarate aminotrans-
ferase [GS/GOGAT] cycle into organic nitrogen metabo-
lism [8, 9]. Acetate and butyrate are the products that result 
from the fermentation of glutamate [10], being acetate the 
most common short chain fatty acids in the human colon, 
produced in the large intestine by anaerobic intestinal micro-
biota through fermentation of non-digestible carbohydrate 
[11]. Glutamine plasma level was significantly higher after 
weight loss compared with their baseline values in a 3-week 
weight loss program [12], and other studies have confirmed 
increased levels of plasma glutamine levels after body mass 
reduction [13, 14]. In fact, plasma glutamine/glutamate ratio 
was associated with insulin resistance (HOMA-IR) [15].

As glutamate is also central to nitrogen metabolic circuits 
of enteric bacteria, and some bacterial species (Bacteroides 
thetaiotaomicron) have been associated with increased glu-
tamate levels [16, 17], we hypothesized that glutamate levels 
in plasma and feces could be influenced by the composi-
tion of the gut microbiota. As we described altered TMT-A 
scores in subjects with obesity in a previous study [14], we 
explored the potential associations of TMT-A with gluta-
mate levels and gut microbiota composition. We explored 
glutamate/glutamine ratio as a proxy measure of glutamate 
generation and glutamate/acetate ratio evaluating glutamate 
degradation.

Methods

Subjects

We recruited 35 subjects (19 obese and 16 non-obese sub-
jects that were similar in age and sex) at the Endocrinology 

Service of the Hospital Universitari Dr. Josep Trueta 
(Girona, Spain) from January to September 2012. Inclu-
sion criteria were age from 30 to 65 years, and ability to 
understand study procedures. Systemic diseases, infection in 
the previous month, serious chronic illness, > 20 g ethanol 
intake/day, or use of medications that might interfere insulin 
action were exclusion criteria. The institutional review board 
approved the study protocol and all subjects gave written 
informed consent, after the nature and potential risks for the 
study were explained to them.

Analytical methods

Fasting plasma glucose, insulin, HOMA-IR, HDL-choles-
terol, fasting triglycerides, plasma LBP and C-reactive pro-
tein concentration measurement were performed as previ-
ously described [18].

Metabolomic analysis

For metabolomic analyses, plasma and feces were collected 
after an overnight fast and stored at − 80 °C until NMR 
measurement. For analysis, plasma samples were thawed 
on ice. 300 µl of 10%  D2O buffer (0.04%  NaN3, 140 mM 
 Na2HPO4, 5 mM TSP, pH 7.4) were pour into 300 µl of 
plasma sample. Then, 550 µl of the sample was transferred 
to a 5-mm NMR tube for analysis. Feces, were treated after 
thawing samples on ice. 100 mg of sample were mix with 
1 ml 0.1 M PBS (pH 7.4) and submitted to 3 freeze/thaw 
cycles with liquid nitrogen. Then, sample was centrifuge 
at 12,000g for 20 min. Supernatant was filtered through a 
0.22 µm filter, collected and stored at − 80 °C until NMR 
measurement. For feces extracts, 1H NMR spectra were 
acquired at 27  °C on a Bruker AVI-600 using a 5  mm 
TCI cryoprobe and processed using Topspin3.2 software 
(Bruker Biospin). 1H 1D NMR spectra with water presat-
uration (25 Hz) and a noesy mixing time of 10 ms were 
acquired with 256 free induction decays (FIDs). 64 k data 
points were digitalized over a spectral width of 30 ppm for 
an optimal baseline correction. A 4 s relaxation delay was 
incorporated between FIDs. The FID was multiplied by an 
exponential function with a 0.5 Hz line broadening factor. 
For plasma, a Carr–Purcell–Meiboom–Gill (CPMG) spin-
echo pulse sequence, which generates spectra edited by T2 
relaxation times with reduced signals from high molecular 
weight species and improved resolution of low molecular 
weight metabolite resonances, was acquired with a total of 
16 accumulations and 72 K data points over a spectral width 
of 16 ppm. A 4-s relaxation delay was included between 
FIDs and a water presaturation pulse of 25 Hz was applied.

The parameters for 2D experiments were 512 incre-
ments in t1 and 32 FIDS for total correlation spectroscopy 
(TOCSY) experiments with MLEV pulse sequence, and 256 
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t1 increments and 96 FIDS for HSQC (Heteronuclear Single 
Quantum Correlation) experiments. Both experiments had 
a relaxation delay of 1.5 s and were acquired in the phase-
sensitive mode. The mixing time for TOCSY spectra was 
set to 65 ms.

Glutamate and glutamine metabolites were assigned to 
the signals in the 1H-NMR using 2D experiments, human 
metabolome database [19] and the biological magnetic reso-
nance bank database [20]. Spectra were normalized to total 
intensity to minimize the differences in concentration and 
experimental error during the extraction process. Optimal 
integration regions were defined for each metabolite, an 
attempt being made to select the signals without overlap-
ping. Integration was performed with global spectra decon-
volution in MestreNova 8.1.

Gut microbiota composition

Stool specimens were obtained from patients using sterile 
containers and were immediately frozen in liquid nitrogen 
and stored at − 80 °C until analysis. Samples were processed 
individually using the Fast DNA Spin Kit for faeces (MP 
Biomedicals, Solon, OH). Briefly, a frozen aliquot (400 mg) 
of each sample was added to a 2 mL tube containing 825 µL 
sodium phosphate buffer, 275 µL of pre-lysis solution and 
Lysing matrix E, a mixture of ceramic and silica particles 
designed to efficiently lyse all stool microorganisms. Each 
extraction tube was agitated twice for 40 s using a Fast Prep 
FP120 instrument at a speed setting of 6 to ensure proper 
extraction of fungal DNA, a crucial point in the methodol-
ogy. Tubes were cooled on ice between the different agita-
tion procedures. DNA extraction was then carried out fol-
lowing the manufacturer’s instructions. The quantity and 
quality of isolated DNA was determined with a Nanodrop 
ND-1000 spectrophotometer (Nanodrop Technologies, 
Wilmington, DE, USA).

Applying the following parameters: min_length: 50, 
trim_qual_right: 20, trim_qual_type: mean, and trim_qual_
window: 20. R1 and R2 from Illumina sequencing where 
joined using fastq-join from each-tools suite. Three files per 
sample were obtained, one of joined pairs of reads and two 
of not joined reads. The fastq files were converted into fasta 
files using the ‘fastq_to_fasta’ tool from the FastX-Toolkit 
program. Those files were filtered from human contamina-
tion using bowtie2program [21].

The unaligned files, i.e., those that did not map against 
the human genome, were the input files of a BLASTn 
search against a customized bacterial database (Bacte-
ria_2015_06_09) consisting of the human microbiome 
and the bacterial genomes downloaded from the NCBI 
FTP site (ftp://ftp.ncbi.nlm.nih.gov/genom es/human  
microbiome/Bacteria/ and updated to July 2014 and June 
2015, respectively). The best hits of the BLASTn output 

files were extracted, converted into contingency tables 
and transformed into BIOM format to be used as input 
files of the Quantitative Insights Into Microbial Ecology 
(QIIME) open-source software pipeline version 1.9.0, that 
implemented the RA calculations of the bacterial hits at 
different taxonomical levels. This pipeline was also used 
to estimate the alpha diversity or diversity within samples, 
through the calculation of the Shannon diversity index of 
the samples, using the following parameters for rarefac-
tions: 20 steps of 40 iterations each, comprised between 
100 and 213,096 reads (the number of reads of the smallest 
sample) with increments of 10,654 reads per step. Diver-
sity was calculated for the first and second visit of the 
subjects. Beta diversity or diversity among samples was 
also estimated to generate Principal Coordinates Analysis 
(PCoA) of the samples, from Bray- Curtis dissimilarity 
and Canberra distance matrices.

Neuropsychological assessment TMT‑A and TMT‑B

The TMT-A (TMT-A, greater focus on attention) con-
sisted of a standardized page in which numbers 1 to 25 are 
scattered within the circles, and participants were asked 
to connect the numbers in order as quickly as possible. 
Before starting the test, a 6-item practice test was admin-
istered to the participants to make sure they understood 
both tasks. A maximum time of 300 s was allowed before 
suspending the test. The direct scores of TMT-A were the 
time in seconds taken to complete each task. In the same 
way, TMT-B (Trail B, greater focus on executive function) 
consisted of an alternating sequence of numbered circles 
and letters [6, 22]. In both tests, shorter times to comple-
tion indicate better performance.

Statistical analysis

Statistical analyses were performed using SPSS 19.0 sta-
tistical package for Windows (IBM Corp., 188 Armonk, 
NY, USA) and R Commander (the R Foundation). Param-
eters that did not fulfill normal distribution were logarith-
mically transformed to improve symmetry for subsequent 
analyses. Descriptive results of continuous variables are 
expressed as mean and standard deviation (SD) or median 
and their interquartile range as appropriate for the distri-
bution of variables. Analysis student unpaired t tests were 
used to evaluate the effects of obesity. Bivariate correla-
tions (Spearman’ tests) and multiple linear regression anal-
ysis were performed to test the independent associations 
between bacterial family relative abundances and meta-
bolic parameters and cognitive tests. Levels of statistical 
significance were set at p < 0.05.

ftp://ftp.ncbi.nlm.nih.gov/genomes/human
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Results

Characteristics of the subjects in this cohort according to 
obesity status are shown in Table 1. HOMA-IR was sig-
nificantly increased among obese participants while age 
and years of education did not show significant differences 
between groups (Table 1).

We detected two signals indicative of fecal glutamate. 
One of them had the cleanest signal (purity greater than 
95%) while the other had a glutamine-overlapped signal 
(purity greater than 80%, here named glutamate*). To cal-
culate the fecal glutamate/glutamine and glutamate/acetate 
ratio we used that signal with the purity greater than 95%.

Plasma glutamate/glutamine ratio, indicative of gluta-
mate generation from glutamine metabolism, significantly 
and positively correlated with BMI (r = 0.418, p = 0.017), 
fasting triglycerides (r = 0.62, p = 0.0001) and ultrasensitive-
CRP (r = 0.55, p = 0.002). Fecal glutamate/glutamine ratio 
was significantly and positively correlated with fasting glu-
cose (r = 0.346, p = 0.042). Fecal glutamate/acetate ratio was 
negatively correlated with fasting triglycerides (r = − 0.436, 
p = 0.012) and ultrasensitive-CRP (r = − 0.414, p = 0.025) 
while fecal glutamate/acetate ratio in feces was negatively 
correlated with BMI (r = − 0.406, p = 0.015) (Table S1).

Trail making test scores are associated with fecal 
glutamate

TMT-A score was significantly increased among obese 
patients, indicative of a poorer performance (more time 
to complete the test) (Table 1 and Figure S1). Fecal glu-
tamate was negatively associated with TMT-A score (r = 
− 0.377, p = 0.025) (Fig. 1a). Fecal glutamate* also signifi-
cantly correlated with TMT-A (r = − 0.493, p = 0.0026) and 
TMT-B (r = − 0.38, p = 0.026) (Fig. 1b), while fecal acetate 
levels were positively associated with TMT-B (r = 0.512, 
p = 0.0002) (Figure S2A) (Fig. 2).

Fecal glutamate/glutamine ratio showed significant and 
negative associations with TMT-A (r = − 0.610, p = 0.0001), 
suggesting better performance with increased glutamate/glu-
tamine ratio (Fig. 1c). Glutamate/acetate ratio in feces nega-
tively correlated with TMT-A (r = − 0.455, p = 0.0061) and 
TMT-B (r = − 0.471, p = 0.0050) while glutamate/acetate 
ratio in plasma only positively associated with TMT-B (r = 
− 0.357, p = 0.0487) (Figure S2C).

Fecal glutamate is linked to gut microbiota 
composition

At family level, we analyzed the possible relationships 
between the relative abundance (RA) of bacterial families 
with both fecal and plasma glutamate and/or TMT-A/TMT-B 
scores. Those highlighted families are shown in figure S3A.

Of the bacterial families showing relatively high RA 
(over 3%), only Streptococaceae and Coriobacteriaceae 

Table 1  Clinical parameters, 
fecal and plasma glutamate and 
glutamine in association with 
obesity

BMI < 30 BMI > 30 p

N 35 16 19
Body Mass Index (kg/m2) 32.657 ± 9.802 23.588 ± 3.216 40.295 ± 6.177 < 0.0001
Patient age (years) 51.971 ± 8.322 50.063 ± 10.415 53.579 ± 5.872 0.2427
Education (years) 15.364 ± 2.956 16 ± 3.12 14.765 ± 2.751 0.2361
HOMA-IR 2.404 ± 3.168 0.922 ± 0.418 3.712 ± 3.927 0.0100
Trail making test A 38.657 ± 17.555 29.625 ± 9.415 46.263 ± 19.356 0.0027
Trail making test B 102.588 ± 52.111 92.933 ± 50.787 110.211 ± 53.229 0.3449
Fecal glutamate (glutamine-over-

lapped signal) (a.u)
13.494 ± 4.796 14.901 ± 4.086 12.309 ± 5.128 0.1125

Fecal glutamate (a.u) 11.559 ± 6.193 13.734 ± 7.604 9.726 ± 4.064 0.0716
Fecal glutamine (a.u) 12.380 ± 4.687 13.101 ± 5.902 11.773 ± 3.856 0.4474
Fecal acetate (a.u) 67.827 ± 55.575 51.815 ± 48.625 81.31 ± 58.685 0.1190
Glutamate/glutamine ratio in feces 0.958 ± 0.359 1.076 ± 0.359 0.859 ± 0.337 0.0742
Glutamate/acetate ratio in feces 0.477 ± 0.444 0.622 ± 0.465 0.354 ± 0.396 0.0747
Plasma glutamate (a.u) 0.723 ± 0.153 0.705 ± 0.144 0.739 ± 0.164 0.5413
Plasma glutamine (a.u) 1.074 ± 0.173 1.109 ± 0.212 1.042 ± 0.129 0.2786
Plasma acetate (a.u) 0.209 ± 0.032 0.209 ± 0.034 0.209 ± 0.031 0.9630
Glutamate/glutamine ratio in plasma 0.683 ± 0.152 0.644 ± 0.129 0.717 ± 0.167 0.1784
Glutamate/acetate ratio in plasma 3.471 ± 0.516 3.39 ± 0.498 3.542 ± 0.536 0.4171
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were significantly associated with TMT, fecal glutamate or 
plasma glutamate levels. Interestingly, only Streptococaceae 
RA was significantly increased among obese participants 
(Table S2). Streptococaceae RA was negatively correlated 
with fecal glutamate* (r = − 0.458, p = 0.016) and positively 
associated with TMT-A score (r = 0.48, p = 0.009) (Fig. 3a) 

(Fig. 4a). Coriobacteriaceae RA showed significant cor-
relation with plasma glutamate (r = 0.615, p = 0.0011) and 
TMT-B (r = − 0.445, p = 0.0226) (Fig. 4b). In addition, 
Coriobacteriaceae RA was significantly associated with 
fecal glutamate* (r = 0.446, p = 0.0198) and showed a trend 
with TMT-A (r = − 0.325, p = 0.09). Coriobacteriaceae RA 

Fig. 1  Bivariate correlations between TMT and fecal glutamate. Fecal glutamate vs. TMT-A and TMT-B (a). Fecal glutamate* (Fecal glutamate 
(glutamine-overlapped signal)) vs. TMT-A and TMT-B (b). Glutamate/glutamine ratio in feces vs. TMT-A and TMT-B (c)
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was positively associated with fecal glutamate/glutamine 
ratio (r = 0.30, p = 0.012), Coriobacteriaceae RA was also 
significantly and positively correlated with glutamate/acetate 
ratio in plasma (r = 0.517, p = 0.0081) and showed a trend 
with fecal glutamate/acetate ratio (r = 0.379, p = 0.0516) 
(Fig. 3a) (Figure S2C).

Of the other families with relatively high RA (over 
0.06%), only Corynebacteriaceae and Burkholderiaceae 
RA had a significant association with both fecal glutamate 
and TMT-A (Figure S3B). Corynebacteriaceae RA was posi-
tively correlated with fecal glutamate (r = 0.389, p = 0.0450), 
fecal glutamate/glutamine ratio (r = 0.47, p = 0.013) and 
negatively correlated with TMT-A (r = − 0.399, p = 0.039) 
(Fig. 3a) (Fig. 4d). Burkholderiaceae RA was positively cor-
related with fecal glutamate (r = 0.40, p = 0.035) fecal glu-
tamate/glutamine ratio (r = 0.451, p = 0.018) and negatively 
correlated with TMT-A (r = − 0.42, p = 0.026) (Fig. 3a) 
(Fig. 4e).

Of note, fecal glutamate/glutamine ratio was positively 
correlated with Coriobacteriaceae (r = 0.300, p = 0.0129), 
Corynebacteriaceae (r = 0.471, p = 0.0131), Burkholde-
riaceae (r = 0.451, p = 0.0182). On the other hand, gluta-
mate/glutamine ratio in feces was negatively correlated with 
Streptococaceae (r = − 0.568, p = 0.0020) (Fig. 3a).

We then explored the possible associations with fam-
ily RA ratios. Fecal glutamate/glutamine ratio correlated 
with Coriobacteriaceae/Streptococaceae ratio (C/S ratio) 
(r = 0.60, p = 0.0008), Corynebacteriaceae/Streptococaceae 
ratio (CY/S ratio) (r = 0.64, p = 0.0003), Burkholderiaceae/
Streptococaceae ratio (B/S ratio) (r = 0.61, p = 0.0007). 
TMT-A showed association with CY/S ratio (r = − 0.519, 
p = 0.0055), C/S ratio (r = − 0.551, p = 0.0029) and B/S 
ratio (r = − 0.494, p = 0.0088). C/S ratio was associated 
with fecal glutamate/acetate ratio (r = 0.455, p = 0.0171) 
and showed a trend with TMT-B (r = − 0.348, p = 0.0810) 
(Fig. 3b).

Burkholderiaceae RA/Coriobacteriaceae RA ratio (B/C 
ratio) was associated with plasma glutamate (r = − 0.59, 
p = 0.0016), plasma glutamate/acetate ratio (r = − 0.543, 
p = 0.005) and showed a trend with TMT-B (r = 0.34, 
p = 0.08) (Fig. 3b).

Burkholderiaceae + Coriobacteriaceae/Streptococaceae 
ratio ((B + C)/S ratio) was significantly correlated with fecal 
glutamate/glutamine ratio (r = 0.614, p = 0.0007), with fecal 
glutamate/acetate (r = 0.454, p = 0.0175) and with TMT-A 
score (r = − 0.5640, p = 0.0022) (Fig. 3b).

Finally, we performed multivariate linear regression 
analysis. The variance of TMT-A score was independently 
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explained by Streptococaceae, Coriobacteriaceae, 
Corynebacteriaceae, and Burkholderiaceae RA even after 
controlling for age and BMI (Table S3A). Furthermore, 
the variance of TMT-A score and TMT-B score were 

independently explained by B/C ratio even after control-
ling for age and BMI (Table 2b and Table S3B).

The variance of fecal glutamate/glutamine ratio was inde-
pendently predicted by Corynebacteriaceae RA and CY/S 
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Fig. 4  Bivariate correlations graphs between fecal glutamate. TMT and the relative abundance of several bacterial families
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ratio. Other models indicated that fecal glutamate/glutamine 
ratio variance was explained by (B + C)/S and C/S ratios, 
Coriobacteriaceae RA, and BMI (Table S4).

Discussion

The plasma profile of metabolites in obese subjects has 
recently disclosed differences in glutamine and glutamate 
levels in association with insulin resistance [23]. In fact, 
plasma glutamate was strongly associated with BMI [24]. 
Previous studies showed an increased level of glutamine 
plasma after the body mass reduction [13, 14]. We here 
confirm positive associations of glutamate/glutamine ratio 
in plasma with BMI and glutamate/acetate ratio in plasma 
showed association tendency with BMI. Furthermore, 
plasma glutamate/glutamine ratio and glutamate/acetate 
ratio in plasma were associated with HOMA-IR.

Decreased cognitive flexibility in obese individuals 
is well known [25]. In the present study, we found that 
fecal glutamate was associated with a decrease in the time 
required to complete TMT-A, which implies better cogni-
tive function, better performance of visual and motor pro-
cessing speed, while plasma glutamate/glutamine ratio 
was associated with improvements in TMT-B scores in the 
obese group. Glutamate in plasma has been suggested to 
participate in the glutamate homeostasis of the brain, since 
its accumulation produces neurotoxicity [26]. In agreement 
with current results, negative associations between brain glu-
tamate concentration at gray matter (using MR) and TMT-A 
(5) have been described. In this sense, polymorphisms of 
the CADM2 gene have been described in association with 
decreased glutamate, generating a loss of cognitive flexibil-
ity [27, 28]. Fecal glutamate/acetate ratio was also associ-
ated with TMT-A and TMT-B, while that ratio in plasma was 
associated with TMT-B score. Therefore, greater proportion 
of glutamate relative to acetate could be due to decreased 
catabolism of glutamate, both in plasma and in feces and 
could indicate better performance in the cognitive tests.

Interestingly, the relative abundance of several bacte-
rial families was associated with glutamate levels. In fact, 
several bacterial strains such as Corynebacterium glutami-
cum, Brevibacterium lactofermentum, and Brevibacterium 
flavum have been extensively used for the industrial fer-
mentative production of glutamate [29]. Corynebacterium 
glutamicum was isolated in the search to identify a natural 
glutamate producer in 1956 [30] and widely used as an 
industrial workhorse for the production of amino acids and 
various bio-based chemicals [31]. We found that the RA of 
Corynebacteriaceae, Coriobacteriaceae (phylum Actino-
bacteria), and Burkholderiaceae (phylum Proteobacteria) 
were associated with higher fecal glutamate/glutamine 
ratio. We have also found that Coriobacteriaceae RA was Ta
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positively associated with plasma glutamate and nega-
tively with TMT-B. In the literature, on the other hand, 
the relative abundance of Bacteroides thetaiotaomicron 
has been described to be linked to lower plasma glutamate 
levels, maintaining glutamate in a relatively narrow range 
[24]. We have not explored gut microbiota composition at 
the species level.

While Burkholderiaceae, Coriobacteriaceae, and 
Corynebacteriaceae were associated with better perfor-
mance in the TMT-A, Streptococaceae RA was associ-
ated with impairment in the performance of TMT-A, with 
relative increased RA in the obese group.

Among families of bacteria associated with TMT and 
fecal and plasma glutamate C/S ratio and CY/S ratio were 
most consistently associated with TMT-A and its associ-
ated glutamate/glutamine ratio in feces. Interestingly, B/C 
ratio did not remain significantly associated with impair-
ment of TMT-B after controlling for patient age and BMI.

Our study has evaluated multiple associations among 
gut microbiota composition, cognitive tests and fecal 
and plasma metabolites. It is important to state that the 
cross-sectional design is a limitation of our study, and 
also precludes to extrapolate these findings to the general 
population.

In summary, current findings suggest that the microbiota 
could affect the levels of fecal glutamate and acetate, result-
ing in a better performance in cognitive tests. Whether the 
modulation of fecal metabolites through changes in diet 
composition may impact cognitive function should be 
explored in future studies.
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