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Abstract

Dysbalance in gut microbiota has been linked to increased microbial translocation, leading

to chronic inflammation in HIV-patients, even under effective HAART. Moreover, microbial

translocation is associated with insufficient reconstitution of CD4+T cells, and contributes to

the pathogenesis of immunologic non-response. In a double-blind, randomised, placebo-

controlled trial, we recently showed that, compared to placebo, 12 weeks treatment with pro-

biotic Saccharomyces boulardii significantly reduced plasma levels of bacterial translocation

(Lipopolysaccharide-binding protein or LBP) and systemic inflammation (IL-6) in 44 HIV

virologically suppressed patients, half of whom (n = 22) had immunologic non-response to

antiretroviral therapy (<270 CD4+Tcells/μL despite long-term suppressed viral load). The

aim of the present study was to investigate if this beneficial effect of the probiotic Saccharo-

myces boulardii is due to modified gut microbiome composition, with a decrease of some

species associated with higher systemic levels of microbial translocation and inflammation.

In this study, we used 16S rDNA gene amplification and parallel sequencing to analyze the

probiotic impact on the composition of the gut microbiome (faecal samples) in these 44

patients randomized to receive oral supplementation with probiotic or placebo for 12 weeks.

Compared to the placebo group, in individuals treated with probiotic we observed lower con-

centrations of some gut species, such as those of the Clostridiaceae family, which were cor-

related with systemic levels of bacterial translocation and inflammation markers. In a sub-

study of these patients, we observed significantly higher parameters of microbial transloca-

tion (LBP, soluble CD14) and systemic inflammation in immunologic non-responders than in

immunologic responders, which was correlated with a relative abundance of specific gut

bacterial groups (Lachnospiraceae genus and Proteobacteria). Thus, in this work, we

propose a new therapeutic strategy using the probiotic yeast S. boulardii to modify gut
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microbiome composition. Identifying pro-inflammatory species in the gut microbiome could

also be a useful new marker of poor immune response and a new therapeutic target.

Introduction

Recent studies have shown that gut microbiota is impaired in HIV-patients, even after effective

Highly Active Antirretroviral Therapy (HAART), and a large number of disease-associated

bacteria have been identified. HIV-infection severely damages the gastrointestinal mucosal

barrier resulting in microbial translocation [1–2], which in turn leads to continuous systemic

inflammation and disease progression despite effective HAART [3–6]. Using high-resolution

profiling of the bacterial community by 16S rDNA gene amplification and pyrosequencing,

previous studies have identified a dysbiotic gut pattern in HIV-infected individuals, character-

ized by increased microbial translocation, chronic inflammation and hyperactivation of CD4

+T cells, despite achieving long-term virologic suppression [7–11]. Moreover, microbial trans-

location is associated with insufficient reconstitution of CD4+T cells, and contributes to the

pathogenesis of immunologic non-response [12–16]. A recent study have reported that HIV

gut microbiome must be controlled for HIV risk factors, and after stratifying for sexual orien-

tation, there was no solid evidence of an HIV-specific dysbiosis, but HIV-1 infection remained

consistently associated with reduced bacterial richness and the lowest gut bacterial richness

was observed in immunologic non-responders patients [17].

Recently the intestinal microbiome has been proposed as a novel therapeutic target for

reducing chronic inflammation [18–19] and various interventions such as pre-probiotics have

been proposed to improve the resident gut microbiome [20–22]. Since the specific effects of

HIV infection on the particular gut bacterial taxa that contributes to chronic immunoactiva-

tion are unclear, it seems reasonable to propose treatments to improve the gut bacterial rich-

ness and HIV associated immune dysfunction. However, the beneficial effects of probiotics are

strain-dependent and not all interventions are equally effective [23–25]. Saccharomyces boular-
dii is a probiotic whose clinical efficacy, anti-inflammatory and immunomodulatory effects are

supported by extensive previous studies [26–30]. We recently demonstrated that treatment

with S. boulardii significantly decreased plasma levels of microbial translocation (Lipopolysac-
charide-binding protein or LBP) and inflammation parameters such as cytokine IL-6 in 44

HIV-treated patients, half of whom had an immunodiscordant response to antiretroviral ther-

apy [31]. The aim of the present study was to investigate if this beneficial effect of the probiotic

Saccharomyces boulardii is due to a modification in the gut microbiome composition of this

patients, with a decrease in some species associated with higher systemic levels of microbial

translocation and inflammation. In this study, we used 16S rDNA tagging to analyze the gut

microbiome communities in these 44 patients, to assess the impact of probiotic treatment with

S. boulardii compared to placebo.

In a sub-study of these patients, we explore if the immunological non-response was associ-

ated with higher systemic inflammation and microbial translocation parameters and a distinct

gut microbiome pattern.

Subjects, material and methods

Study design

We performed a double-blind randomized, placebo-controlled trial to analyze the composition

of the gut microbiota, microbial translocation, and inflammation parameters in 44 chronic
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HIV-infected patients with undetectable plasma viral load (<20 copies/mL) for at least 2 years

and a stable HAART regimen. Half of the patients (n = 22) had already been previously

selected as being immunodiscordant or immunological non-responders (INR), defined as

individuals with an persistent unfavorable immunologic response (<270 CD4+Tcells/μL

despite long-term suppressed viral load), while the other 22 had already been previously

selected as immunologic responders (IR: CD4+T count >400 cells/μL). Once the patients had

been included in the IR or INR group, they were double-blind randomized to oral supplemen-

tation with probiotic S. boulardii (capsules with 56.5 mg living yeasts, 2 capsules 3 times per

day, n = 22), or placebo (2 capsules 3 times per day, n = 22) for 12 weeks. All 44 participants

completed the study; none discontinued their participation because of side effects of the treat-

ments or adverse events. (Fig 1. CONSORT Flow diagram). Markers of microbial translocation

and inflammation, immunological and clinical data were collected before and after the inter-

vention (Baseline and week 12), and follow-up visits were conducted until 48 weeks (See “S1

and S2 Protocols” Files). We recently reported the plasma findings in these patients [31]. All

patients also provided 50gr of stool samples before and after the intervention, which were

stored at -80˚C within the first 24–48 hours; to allow us to compare gut microbiome composi-

tion before and after a 12-week treatment with probiotic or placebo. A computer-generated

randomization list was used. Randomization was performed by a hospital pharmacist unre-

lated to the care of the patients, using sequentially numbered containers. The participants and

the care providers were blinded after assignment to interventions.

The study was approved by the Clinical Research Ethics Committee of Hospital del Mar

Medical Research Institute, number 2011/4508, on data 01/Feb/2012, according to the princi-

ples of the Declaration of Helsinki. Written informed consent was obtained from all partici-

pants before enrollment in the study. Patients were recruited between August 2012-July 2013.

The study was registered during the enrollment because it had already been previously notified,

registered and approved by the Hospital del Mar Medical Research Institute Ethics Committee.

The authors confirm that related trial for this intervention is registered at ClinicalTrials.gov

(PROB-VIH, Trial number: NCT01908049). “S1 Checklist”

Microbial translocation markers

Serum levels of soluble CD14 were quantified using a ELISA kit (Quantikine™, R&D Systems,

Minneapolis, MN) on a Quanta-Lyser™ 160 robotic workstation (Inova Diagnostics, San

Diego, CA). Serum LBP was measured using the Immulite™ chemiluminescent immunometric

assay on its automated analyzer (Immulite One, Siemens Healthcare1, Llanberis, UK).

Inflammation markers

Milliplex MAP™ was used to analyze IL-6. Hs-CRP and β2 microglobulin were measured using

the Immulite One™, and plasma fibrinogen with HemosIL™ reagents.

Microbiome taxonomy analyses & bioinformatics

DNA was extracted from frozen stool samples and amplified by PCR targeting 16S gene

regions using primers described elsewhere [32]. We performed library preparation followed

by Illumina sequencing according to standard protocols described previously [33]. The taxo-

nomic composition of the intestinal microbiota was characterized by grouping sequences into

OTUs (Organizational Taxonomic Units). We used the QIIME open source algorithm for han-

dling and interpretation of the data from the raw sequences; following quality assessment of

sequence data, we assigned taxonomic affiliations using the RDP_classifier from the Ribo-

somal Database Project [34].
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Fig 1. CONSORT flow diagram.

https://doi.org/10.1371/journal.pone.0173802.g001
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Statistical analysis

No previous data were available to estimate the sample size; thus, for a Type I error rate of 0.05

and a 1-beta risk of 0.20 in a bilateral contrast, we computed that 22 patients were needed per

study group to detect statistically significant differences between proportions. The assumed

proportions for the power analysis for each group was 0.5. Continuous variables were

expressed as the median and interquartile range, and discrete variables as percentages. Cate-

gorical variables were described as proportions. The Mann-Whitney U-test was used to com-

pare medians, ANOVA to assess differences in continuous variables, and the Pearson’s χ2 test

to evaluate the association between categorical variables. We also conducted multivariate logis-

tic regression analysis to study the correlation between microbial translocation and systemic

inflammation parameters, and conditional backward stepwise regression analysis at baseline

to identify parameters that were correlated with the immunodiscordance. The enter criteria

was a p value<0.1. All the variables studied were selected based on the statistical significance.

For the analysis of qualitative differences between responders and non-responders, we per-

formed a median recoding of LBP, soluble CD4, β2 microglobuline and fibrinogen; the values

obtained were defined as high or low. Statistical analyses were performed using SPSS software

version 20.0 (SPSS, Inc., Chicago, IL) and several open source libraries in R (R Core Team

2014. R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. URL http://www.R-project.org/). The glm (R) function has been

used in the logistic regression analysis.

Results

Patient characteristics

This study included 44 patients. Half of each group were immunological non-responders

(INR), the median age was 47.5 years, 84% were male, and the risk factors for acquiring

HIV infection were Heterosexual (HTX) (46%), Men who Have Sex with Men (MHSM)

(38%) and Injection drug users (IDU) (16%). The profiles of demographic, biological and

clinical parameters were similar in the probiotic and placebo groups [31] (“S1 Table”). All

patients had suppressed viral load for a median of 4.7 years, with NNRTI-based (75%) or

PI-based HAART (25%). The median nadir CD4+T was 108 cells/μl, and 41% had AIDS

diagnosis.

Microbial translocation is correlated with systemic inflammation

We tested for association between microbial translocation measurements and baseline param-

eters from 44 patients, and observed a statistically significant correlation between LBP levels

and plasma levels of soluble CD14 (r = 0.48, p = 0.001), Hs-CRP (r = 0.63, p = 0.0001),

β2 microglobulin (r = 0.59, p = 0.0001), Erythrocyte Sedimentation Rate-ESR (r = 0.57,

p = 0.0001), Fibrinogen (r = 0.64, p = 0.0001), Cd4 nadir (r = -0.53, p = 0.0001), and IL-6

(r = 0.58, p = 0.0001). Using multivariate logistic regression analysis, we found that LBP was

independently correlated with Hs-CRP, ESR and soluble CD14 (“S2 Table”).

Saccharomyces boulardii produces changes in some gut bacterial

communities

Canonical correspondance analysis shows the high influence of probiotic effect versus the time

effect (vertical axis) (Fig 2). Changes in gut microbiome after the interventions are showed

at “S1 Fig” (INRs group). After 12 weeks of probiotic treatment, we observed a significant

decrease in levels of some Clostridiales species with respect to baseline compared with placebo
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(Fig 3). We also observed a significant decreased in Catenibacterium communities (2.65 to

0.04, p = 0.00003), and an increase in levels of Megamonas (p = 0.02) and Desulfovibrionales

(Proteobacteria) (p = 0.05). These probiotic effects on gut microbiota composition were simi-

lar in the INR and IR groups.

We then investigated the correlation between these different stool bacterial populations,

parameters of microbial translocation and systemic inflammation, and observed a statistically

significant correlation between the proportion of Clostridia genera and plasma concentrations

of soluble CD14 (r = 0.63, p = 0.03), LBP (r = 0.71, p = 0.009), and IL-6 (r = 0.69, p = 0.0008;

Fig 4). These correlations were present at baseline in INR group but not in the IRs probably

because IRs have a lower relative abundance of Clostridiaceae at baseline. The correlations are

not statistically significant in probiotic treated group, probably because of a decrease in these

bacterial communities due to the probiotic effect (Fig 5).

Fig 2. Canonical correspondence analysis.

https://doi.org/10.1371/journal.pone.0173802.g002
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Immunological non-response is associated with higher microbial

translocation and the presence of some pro-inflammatory species

The baseline differences between the INR and IR groups are summarized in Table 1. Quantita-

tive analysis of the baseline data indicates that the following variables showed statistically sig-

nificant differences between the INR and IR group: age, current CD4+T count, CD4+T nadir,

HCV coinfection, LBP and β2 microglobulin levels. The INR groups tended to have higher

fibrinogen and soluble CD14 levels. Compared to the IR group, the INR group had a greater

proportion of individuals with values greater than the median of LBP (68.2% vs 27.3%,

p = 0.007); soluble CD14 (72.7% vs 40.9%, p = 0.03); β2 microglobuline (66.7% vs 33%,

p = 0.022) and fibrinogen (65% vs 31.8%, p = 0.03).

High LBP was associated with being an INR (Relative Risk = 5.71; 95% CI = 1.56–20.93;

p = 0.015) and in the conditional backward stepwise regression analysis, high LBP was the

Fig 3. Changes in the proportion of Clostridiales after the interventions.

https://doi.org/10.1371/journal.pone.0173802.g003

Fig 4. Correlations between relative abundance of Clostridiales and soluble CD14 (4A), LBP (4B) and IL6 (4C) before the intervention (INR).

LBP, Lipopolisaccharide Binding-Proteine; IL6, interleukin-6.

https://doi.org/10.1371/journal.pone.0173802.g004
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only variable that could explain immunological non-response (OR = 6.22, 95% CI = 1.63–

23.75, p = 0.007) (“S3 Table”).

Analyzing gut microbiome composition at baseline, we observed a higher proportion of

some Firmicutes species (Clostridia) in the INR group than in the IR group. The proportion of

Proteobacteria was higher in immunodiscordant patients; the proportion of Lachnospiraceae
genera was significantly higher in the INR group (OR = 3.4, p = 0.05) (“S4 Table”).

Discussion

This is the first clinical trial to use 16S rDNA sequencing to analyze changes in gut microbiome

composition following treatment with Saccharomyces boulardii, and how these changes are

correlated with microbial translocation and inflammation in HIV patients.

Microbial imbalance in the gut has been associated with increased microbial translocation,

leading to chronic inflammation. In line with this, various microbial communities resident in

the gut are correlated with plasma bacterial translocation markers (soluble CD14 and LBP)

and pro-inflammatory cytokine interleukin-6 [10–11,35]. We recently reported a significant

reduction in LBP and IL-6 levels in a small cohort of HAART-treated HIV patients supple-

mented with 12 weeks treatment with probiotic S. boulardii compared to placebo [31]. Here,

we take a step further and use 16S rDNA tagging and high throughput sequencing to analyze

microbiome profiles before and after the intervention, and to evaluate whether some predomi-

nant species are associated with increased bacterial translocation, systemic inflammation and

poor immune response in these patients.

Following probiotic treatment, we observed a significant decrease in some Clostridiales,

such as Clostridiaceae and Catenibacterium communities. Previous studies have used PCR or

FISH techniques, rather than 16S rDNA sequencing, to evaluate the effects of supplementation

with specific prebiotics in HAART-naïve infected HIV adults [21] and supplementation with

probiotic S.boulardii in HIV-negative adults with enteritis [36]; these studies reported a conse-

quent reduction in concentrations of pathogenic clostridia-related species, which are consid-

ered to be pro-inflammatory mucotropic bacteria, although these authors did not evaluate if

this was correlated with a decrease in systemic inflammation. Recent studies have reported a

Fig 5. Correlations between relative abundance of Clostridiales and soluble CD14 (5A), LBP (5B) and IL6 (5C) after probiotic treatment. LBP,

Lipopolisaccharide Binding-Proteine; IL6, interleukin-6.

https://doi.org/10.1371/journal.pone.0173802.g005
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higher proportion of Catenibacterium in HIV patients than in healthy individuals [9,11]. Cate-
nibacterium is a Gram-positive, non-spore-forming and anaerobic genus from the family of

Erysipelotrichidae. Taxa in this family were the most enriched [7], or a significant enrichment

was reported [8–9], in the untreated HIV-infected subjects compared to HIV-uninfected indi-

viduals and was correlated with markers of microbial translocation and systemic inflammation

in HIV patients [8]. In our study, the concentration of Catenibacterium, which have also been

associated with other chronic diseases [37–39], also decreased following probiotic treatment.

We observed a relationship between bacterial translocation and various parameters of sys-

temic inflammation. These data are consistent with previous studies demonstrating, in both

treated and untreated HIV patients, a direct correlation between systemic parameters of

Table 1. Differences between Immunological Responders (IR) and Non-Responders (INR).

Responders

(n = 22)

Non–Responders

(n = 22)

p-value

Demographics

Age (years) [SD] 44 (37–49) 52 (47–57) 0.014

Male [n (%)] 21 (95.5) 16 (72.7) 0.042

HIV infection

Risk factor [n (%)]

IDU 0 (0) 6 (100) 0.03

MHSM 12 (70.6) 5 (29.4) 0.06

HTX 10 (50) 10 (50) 1

Time with viral load <50 copies/ml (years) [median (IQR)] 4.5 (3–9.25) 5 (3.75–10) 0.463

Nadir CD4 cell count (/ml) [median (IQR)] 244 (105–293) 47.5 (9–113.75) 0.000

Zenith viral load (log10) [median (IQR)] 4.88 (4.58–5.38) 5.06 (4.39–5.41) 0.770

HCV co-infection [n (%)] 0 (0) 8 (100) 0.002

Current ART [n (%)]

NNRTI 22 (68.8%) 10 (31.3%) 0.000

PI 0 11 (52.4%) 0.000

Absolute CD4T-count (cells/μl) [median (IQR)] 483 (413–630) 219 (169–266) 0.000

Absolute CD8T-count (cells/μl) [median (IQR)] 699.5(472.5–860.5) 594 (353–781) 0.199

Microbial translocation parameters [median (IQR)]

LBP (pg/mL) 5.65 (5.2–6.5) 7.4 (6.1–8.7) 0.011

Soluble CD14 (μg/mL) 1.43 (1.31–1.93) 1.69 (1.55–2.11) 0.082

Inflammation parameters[median (IQR)]

Hs-CRP(mg/dl) 0.22 (0.07–0.35) 0.16 (0.07–0.40) 0.874

IL -6(pg/mL) 1.85 (0.7–2.85) 2.7 (1.02–40.15) 0.466

Ig E (kU/L) 48.9 (16.8–157) 115 (21.6–360) 0.467

Fibrinogen (mg/dl) 257.5 (219–279) 293.5(259.5–324) 0.062

TNF-α(pg/mL) 10.9 (8.7–12.3) 12.7 (7.8–16.9) 0.190

ESR (mm/h) 7 (2–10.5) 10 (6–16.5) 0.100

Vit D 25 OH (ng/mL) 30.97(20.07–0.33) 37.04 (24.6–42.48) 0.253

β2microglobuline (μg/mL) 1.7 (1.54–2.06) 2.12 (1.93–2.86) 0.002

Gut microbiome composition (Relative abundance [%])

Lachnospiraceae (Clostridia) 0.017% 0.093% 0.03

Proteobacteria 0.053% 0.248% 0.06

ART, antiretroviral therapy; PI, protease inhibitor; NNRTI, non-nucleoside; reverse transcriptase inhibitor; LBP, Lipopolysaccharide-binding protein; sCD14,

soluble CD14; hs-CRP, high sensitivity C-reactive protein; IL-6, Interleukin 6; ESR, Erythrocyte Sedimentation Rate; IQR, interquartile range.

https://doi.org/10.1371/journal.pone.0173802.t001
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bacterial translocation, and chronic immune activation and disease progression [40–48]. Fur-

thermore, we found significant correlation between some bacterial taxa (Clostridia) and

parameters of microbial translocation and systemic inflammation in immunological non-

responders group (INR). Recent studies also have demonstrated a statistically significant corre-

lation between some species of Clostridia, including Lachnospiraceae, and increased systemic

immune activation parameters (TNF) in HIV-infected patients [11]. While the immunologic

driving factors of gut dysbiosis related to HIV infection are likely to be complex interestingly,

our study showed a significant reduction in these bacterial communities following probiotic

treatment.

HIV-patients with deficient CD4+Tcell count recovery despite HAART have been defined

as Immunological non-responders (INRs), and are estimated to account for up to 30% of

all treated HIV-infected subjects. This is relevant because this subpopulation is associated

with higher morbi-mortality. This phenomenon has been widely studied using different

approaches, and its pathogenesis is known to be related to older age, nadir CD4 T-cell count,

reduced thymic function, co-infection with hepatotropic viruses, and multiple genetic variants

[12,13]. However, the ultimate cause of the discordant response is excessive CD4 T-cell

destruction due to CD4+T hyperactivation [14], residual viral replication, and persistent anti-

genic stimulation due to microbial translocation. HAART-treated individuals have been

reported to show an inverse correlation between levels of microbial translocation and sus-

tained failure on CD4+T cell reconstitution [15,16]. A history of more advanced immunosup-

pression and the resulting damage to gut immunity and integrity are thought to be an

important factor in the differences observed between groups in gut microbiome and markers

of bacterial translocation and inflammation [49–51]. Our results are consistent with these find-

ings, and extend them by comparing the composition of the gut microbial community in

immunological responders and non-responders. Interestingly, the relative abundance of spe-

cific gut bacterial groups in INR patients is associated with greater bacterial translocation.

Recent studies have shown that Proteobacteria, which are over-represented in our group of

INRs, are responsible for much of the translocation after SIV-infection [52]; although the

mechanisms remain unknown, Brenchley et al.[53] suggested their motility, high metabolic

rate and possession of immune evasion genes as posibble reasons. Identifying gut species that

contribute to the pathogenesis of immunologic non-response and persistent immune activa-

tion could be a new diagnostic and therapeutic tool in this group of HIV-patients with an

increased risk of clinical progression and death.

The multiple anti-inflammatory mechanisms produced by S. boulardii provide molecular

explanations to support its effectiveness in intestinal inflammatory states [30]. It has also been

demonstrated that S. boulardii increases absolute numbers of the main habitual fermenting

bacterial groups, and decreases concentrations of mucotropic occasional bacterial communi-

ties [54]. Several mechanisms of action have been identified directed against the host and path-

ogenic microorganisms, suppressing “bacteria overgrowth” and host cell adherence [30]. One

limitation of this study is that, since S. boulardii is a yeast, we did not perform 16S rDNA gene

amplification and parallel sequencing to demonstrate colonization by the probiotic, or changes

in the gut mycobiome. A decrease in some dysbiotic bacterial genera, replacement of inflam-

mogenic yeast and/or improved functional biostructure of colonic microbiota following S.

boulardii treatment may prevent microbial translocation [54], although our study was not

designed to determine the mechanism through which changes in gut microbiome composition

alter its functional anatomy, metabolomics or mycobiome. Our study has some of the limita-

tions of other studies in this topic. All are small works, and more extensive studies with better

tools than 16s sequencing are needed before drawing definitive conclusions, including selec-

tion of the patients who could best respond to the probiotic treatment, as well as the doses and
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duration of the therapy. However, given the increasingly widespread use of metabolomic and

metagenomic techniques, analysis of gut bacterial contents could be used in the future as a

marker of a dysbiotic microbiome that contributes to chronic systemic inflammation and HIV

progression. More importantly, the gut microbiome can be modified using certain strains of

probiotics to generate a less pro-inflammatory profile; this new therapeutic target is worthy of

further exploration.

Conclusions

We observed a change in gut microbiome composition following probiotic treatment (S. bou-
lardii), with a decrease in some species which are directly correlated with systemic levels of

microbial translocation and inflammation. The use of specific probiotics could be a new thera-

peutic strategy for HIV patients. In addition, our data suggest that identifying pro-inflamma-

tory species in the gut microbiome could be a new marker of poor immune response.
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Formal analysis: HK AA GD AM.

Impact of probiotic Saccharomyces boulardii in gut microbiome composition in HIV-treated patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0173802 April 7, 2017 11 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173802.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173802.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173802.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173802.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173802.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173802.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173802.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0173802.s008
https://doi.org/10.1371/journal.pone.0173802


Funding acquisition: JV HK.

Investigation: JV GD.

Methodology: JV JJH AA GD.

Project administration: JV HK.

Resources: JV JPH A González GD.
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