
Tirant v3

User’s Guide

 1 Introduction
 2 System Overview

 2.1 Login Nodes
 2.2 Password Management
 2.3 Transferring files
 2.4 Compilation for the architecture
 2.5 Intel Compiler Licenses
 2.6 GNU Compilers
 2.7 Login Nodes

 3 File Systems
 3.1 Root File-system
 3.2 LUSTRE File-system
 3.3 Local Hard Drive

 4 Running Jobs
 4.1 Queues
 4.2 Submitting jobs
 4.3 Interactive Sessions
 4.4 Job directives
 4.5 Examples
 4.6 Resource usage and job priorities

 5 Software Environment
 5.1 Modules Environment
 5.2 C Compilers
 5.3 FORTRAN Compilers

 6 Getting Help
 7 Appendices

 7.1 SSH
 7.2 Transferring files
 7.3 Using X11

Last update: 04/27/20

 1 Introduction

This user’s guide for the Tirant v3 cluster is intended to provide the
minimum amount of information needed by a new user of this system. As
such, it assumes that the user is familiar with many of the standard features
of supercomputing as the Linux operating system.

Here you can find most of the information you need to use our
computing resources and the technical documentation about the machine.
Please read carefully this document and if any doubt arises do not hesitate to
contact us (see section Getting Help).

This user’s guide is based on the MareNostrum v4 user’s guide, the main
RES node. All RES nodes are similar, so users will find that it is easy to use
any of them if they have prior experience with any of the machines.

 2 System Overview

Tirant v3 is a supercomputer based on Intel Xeon (v1, Sandy Bridge)
processors. It is an IBM system composed of rear door water cooled
iDataPlex racks, a Mellanox InfiniBand FDR10 high performance network
interconnect and runs OpenSuSE Leap 42.3 as operating system. Its current
Linpack Rpeak performarce is 111,8 Teraflops.

This general-purpose block consists of 4 racks housing 336 nodes with
a total of 5376 processor cores and ~ 10 Terabytes of main memory.
Compute nodes are equipped with:

• 2 sockets Intel Xeon SandyBridge E5-2670 with 8 cores each @ 2.6GHz
for a total of 16 cores per node

• 32 GB of DDR3 main memory

• 40 Gbit/s InfiniBand FDR10 PCIE card

• 1 Gbit/s Ethernet

• 500 GB local SATA HD, available as temporary storage during jobs
($TMPDIR=/scratch/tmp/[jobid])

The processors support well-known vectorization instructions such as
SSE 4.2 and AVX.

 2.1 Login Nodes

You can connect to the Tirant supercomputer using two public login
nodes. The logins are:

tirant.uv.es (tirant1.uv.es or login1.uv.es)
tirant2.uv.es (login2.uv.es)

 2.2 Password Management

The first time you log in the system, you will be forced to change the
password. However, you can change the password at any time using the
command “passwd”. If you forget your password, please contact us to have it
reset. You password will revert to the original password that was sent to you
in the welcome email and you will need to change it again.

 2.3 Transferring files

The only way to transfer files to Tirant is using scp or sftp to login nodes.
You can execute the scp command from or to login nodes. It is possible to
use rsync also. If you think that you need another way to do it, please contact
us.

On a Windows system, most of the secure shell clients come with a tool
to make secure copies. There are several tools that accomplish the
requirements, please refer to the Appendix, where you will find the most
common ones and examples of use.

 2.4 Compilation for the architecture

To generate code that is optimized for the target architecture and the
supported features such as SSE, MMX and AVX instruction sets you will have
to use the corresponding compiler flags. For compilations of MPI
applications, an MPI installation needs to be loaded in your session as well.
For example Intel MPI via ‘module load impi/2018.3.222’.

The latest Intel compilers provide the best possible optimizations for the
Xeon architecture. That includes the main compilers (intel/2018.3.222), the
Intel MPI software stack (impi/2018.3.222) and the math kernel libraries MKL
(mkl/2018.3.222) in their latest versions. We highly recommend linking
against MKL where supported to achieve the best performance results. An
older version (2017.7.259) of the Intel compilers and libraries is available in
case of problems with recent ones. With time there will be newer Intel
versions available but we will default to the 2018.3.222 version.

To separately load the Intel compilers please use:

module load intel/2018.3.222

The corresponding optimization flags for icc are: CFLAGS=“-O3 -xHost”.
As the login nodes are of the exact same architecture as the compute nodes,
the -xHost flag enables all possible optimizations available on the execution
hosts.

 2.5 Intel Compiler Licenses

We recommend compiling using either login1 (tirant1.uv.es), login2
(tirant2.uv.es) or the partition interactive if your compilation exceeds 20
minutes. For reasons of licensing it is only possible to execute two
simultaneous compilations. Should all of them be in use when trying to
compile, you will experience a delay when the compiler starts and tries to
checkout a license.

In this case an error message like the one below will appear. If that is the
case, please wait a couple of minutes and try again.

fort: error #10052: could not checkout FLEXlm license
Error: A license for Comp-CL is not available (-9,57)

 2.6 GNU compilers

The GNU compiler provided by the system is version 4.8.5. For better
support of new hardware features we recommend to use the latest version
that can be loaded via the modules system. Currently the latest version
available in Tirant is gcc 8.1.0. Gcc and Gfortran compilers can be used
loading the corresponding module:

module load gcc/8.1.0

 3 File Systems

IMPORTANT: It is your responsibility as a user of our facilities to backup
all your critical data. In this moment we CAN’T provide any backup of any file
system on Tirant.

Each user has several areas of disk space for storing files. These areas
may have size or time limits, please read carefully all this section to know
about the usage policy of each of these file systems. There are 3 different
types of storage available inside a node:

• Root file system: is the file system where the operating system resides
• LUSTRE filesystem: LUSTRE is a distributed networked filesystem which

can be accessed from all the nodes
• Local hard drive: Every node has an internal hard drive

 3.1 Root File system

The root file system, where the operating system is stored doesn’t reside
in the node, this is a NFS file system mounted from one of the servers.

As this is a remote file system only data from the operating system has
to reside in this file system. It is NOT permitted the use of /tmp for temporary
user data. The local hard drive can be used for this purpose as you can read
just ahead.

 3.2 LUSTRE File system

The LUSTRE file system is a high-performance shared-disk file system
providing fast, reliable data access from all nodes of the cluster to a global
file system. LUSTRE allows parallel applications simultaneous access to a set
of files (even a single file) from any node that has the LUSTRE file system
mounted while providing a high level of control over all file system operations.

These are the partitions of the LUSTRE file systems available in the machine
from all nodes:

• /apps (or /storage/apps): Over this file system will reside the
applications and libraries that have already been installed on the

machine. Take a look at the directories to know the applications
available for general use.

• /home (or /storage/home): This file system has the home directories of
all the users, and when you log in you start in your home directory by
default. Every user will have their own home directory to store their own
source code and their personal data. A default quota will be enforced
on all users to limit the amount of data stored there. Also, it is highly
discouraged to run jobs from this file system unless you need to access
little amounts of data (less than 1GB). Please run your jobs on your
group’s /storage/projects or /storage/scratch instead.

• /storage/projects: In addition to the home directory, there is a directory
in /storage/projects for each group of users. For instance, the group
“vlc00” will have a “/storage/projects/vlc00” directory ready to use. This
space is intended to store data that needs to be shared between the
users of the same group or project. A quota per group will be enforced
depending on the space assigned by the Access Committee. It is the
project’s manager responsibility to determine and coordinate the better
use of this space, and how it is distributed or shared between their
users.

• /storage/scratch: Each user will have a directory over /storage/scratch.
Its intended use is to store temporary files of your jobs during their
execution. A quota per group will be enforced depending on the space
assigned by the Access Committee.

 3.3 Local Hard Drive

Every node has a local SATA hard drive (HDD) that can be used as a
local scratch space to store temporary files during executions of one of your
jobs. This space is mounted over /scratch/tmp/$JOBID directory and pointed
out by $TMPDIR environment variable (and $SCRDIR in Gaussian scripts). The
amount of space within the /scratch file system is about 480 GB. All data
stored in these local hard drives at the compute nodes will not be available
from the login nodes. You should use the directory referred to by $TMPDIR to
save your temporary files during job executions. This directory will
automatically be cleaned after the job finishes.

 4 Running Jobs

Slurm is the utility used for batch processing support, so all jobs must
be run through it. This section provides information for getting started with
job execution at the cluster.

Important notice: All jobs requesting 16 or more cores will automatically
use all requested nodes in exclusive mode. For example if you request 17
cores you will receive two complete nodes (16 cores * 2 = 32 cores) and the
consumed runtime of these 32 cores will be reflected in your budget.

 4.1 Queues

There are several queues present in the machine and different users
may access different queues. All queues have different limits in amount of
cores for the jobs and duration.

The standard configuration and limits of the queues are the following

Queue Max cores per job Cores per project Maximum wallclock
Interactive 16 (login2) 16 12 h
UV class_t 1024 3072 72 h
UV class_u 512 2048 24h
RES class_a 1024 3072 72 h
RES class_b 1024 2048 48 h
RES class_c 512 2048 24 h

We provide a command that allows users to check the queues they have
available at a given time and the limits associated with them. This command
is tirant_showq.sh and you can use it in any of the login machines. It will
give you a list of what queues can you use and which one is your default (the
one that you don't need to specify when you launch your scripts). The script is
useful because you can learn about the limits that each queue imposes to
your jobs. There are general queue limits that apply to any jobs and specific
limits to your project account or user. Usually the limits involve maximum
number of CPUs or nodes that a single job can use. There are also limits
about the maximum number of CPUs a project account can use. You will also
be able to see how many jobs you have submitted and are running and also
the total amount of jobs in the queue (including jobs from other project
accounts). You can use this to have a rough idea of the general utilization that
the machine has at a given time.

 4.2 Submitting jobs

The method for submitting jobs is to use the SLURM sbatch directives
directly. A job is the execution unit for SLURM. A job is defined by a text file
containing a set of directives describing the job’s requirements, and the
commands to execute.

In order to ensure the proper scheduling of jobs, there are execution
limitations in the number of nodes and cores that can be used at the same
time by a group.

These are the basic directives to submit jobs with sbatch:

sbatch <job_script>

Submits a “job script” to the queue system (see Job directives).

squeue

Shows all the submitted jobs.

scancel <job_id>

Remove the job from the queue system, canceling the execution of the
processes, if they were still running.

 4.3 Interactive Sessions

Allocation of an interactive session in the interactive partition has to be
done through SLURM:

salloc –partition=interactive –qos=interactive

This will create a job on the interactive qos just executing a shell. This
allows the user to execute small processes that need more than 10 minutes
of CPU, like long compilations or file transfers.

 4.4 Job directives

A job must contain a series of directives to inform the batch system
about the characteristics of the job. These directives appear as comments in
the job script and have to conform to the sbatch syntax (you can also pass
them directly in the sbatch command).

Sbatch syntax is of the form:

#SBATCH --directive=value

Additionally, the job script may contain a set of commands to execute. If
not, an external script may be provided with the ‘executable’ directive. Here
you may find the most common directives:

• #SBATCH --qos=QUEUE_NAME

To request the queue for the job. If it is not specified (preferred way), Slurm
will use the user’s default queue.

• #SBATCH --time=DD-HH:MM:SS

The limit of wall clock time. This is a mandatory field and you must set it to a
value greater than real execution time for your application and smaller than
the time limits granted to the user by the queue. Notice that your job will be
killed after the time has passed.

• #SBATCH --workdir=PATHNAME

The working directory of your job (i.e. where the job will run). If not specified,
it is the current working directory at the time the job was submitted.

• #SBATCH --error=FILE

The name of the file to collect the standard error output (stderr) of the job.

• #SBATCH --output=FILE

The name of the file to collect the standard output (stdout) of the job.

• #SBATCH --ntasks=NUMBER

The number of processes to start. Optionally, you can specify how many
threads each process would open with the directive.

• #SBATCH --cpus-per-task=NUMBER

The number of cores assigned to the job will be the total_tasks number *
cpus_per_task number.

• #SBATCH --tasks-per-node=NUMBER

The number of tasks assigned to a node.

• #SBATCH --array=<indexes>

Submit a job array, multiple jobs to be executed with identical parameters.
The indexes specification identifies what array index values should be used.

Multiple values may be specified using a comma separated list and/or a
range of values with a “-” separator. Job arrays will have two additional
environment variable set. ’SLURM_ARRAY_JOB_ID’ will be set to the first job
ID of the array. ‘SLURM_ARRAY_TASK_ID’ will be set to the job array index
value. For example:

sbatch --array=1-3 job.cmd
Submitted batch job 36

Will generate a job array containing three jobs and then the environment
variables will be set as follows:

Job 1
SLURM_JOB_ID=36
SLURM_ARRAY_JOB_ID=36
SLURM_ARRAY_TASK_ID=1

Job 2
SLURM_JOB_ID=37
SLURM_ARRAY_JOB_ID=36
SLURM_ARRAY_TASK_ID=2

Job 3
SLURM_JOB_ID=38
SLURM_ARRAY_JOB_ID=36
SLURM_ARRAY_TASK_ID=3

Here you will find some interesting environmental variables:

Variable Meaning
SLURM_JOBID Specifies the job ID of the executing job
SLURM_NPROCS Specifies the total number of processes in the job
SLURM_NNODES Is the actual number of nodes assigned to run your job

SLURM_PROCID
Specifies the MPI rank (or relative process ID) for the current process. The
range is from 0-(SLURM_NPROCS–1)

SLURM_NODEID
Specifies relative node ID of the current job. The range is from 0-
(SLURM_NNODES–1)

SLURM_LOCALID Specifies the node-local task ID for the process within a job

For more information:

man sbatch
man srun
man salloc

 4.5 Examples

You will find this examples on /storage/apps/SLURM_EXAMPLES, ready
to copy, modify and use.

Example for a sequential job:

#!/bin/bash
#SBATCH --job-name="test_serial"
#SBATCH --workdir=.
#SBATCH --output=serial_%j.out
#SBATCH --error=serial_%j.err
#SBATCH --ntasks=1
#SBATCH --time=00:02:00
./serial_binary> serial.out

Examples for some parallel jobs:

• Running a pure OpenMP job on one Tirant node using 16 cores on the
interactive queue:

#!/bin/bash
#SBATCH --job-name=OpenMP
#SBATCH --workdir=.
#SBATCH --output=omp_%j.out
#SBATCH --error=omp_%j.err
#SBATCH --cpus-per-task=16
#SBATCH --ntasks=1
#SBATCH –time=00:10:00
#SBATCH --partition=interactive
#SBATCH --qos=interactive
./openmp_binary

• Running on two Tirant nodes using a pure MPI job

#!/bin/bash
#SBATCH --job-name=MPI
#SBATCH --output=mpi_%j.out
#SBATCH --error=mpi_%j.err
#SBATCH --ntasks=32
srun ./mpi_binary

• Running a hybrid MPI+OpenMP job on two Tirant nodes with 16 MPI
tasks (8 per node), each using 2 cores via OpenMP:

#!/bin/bash
#SBATCH --job-name=Hybrid
#SBATCH --workdir=.
#SBATCH --output=mpi_%j.out
#SBATCH --error=mpi_%j.err
#SBATCH --ntasks=16
#SBATCH --cpus-per-task=2

#SBATCH --tasks-per-node=8
#SBATCH --time=00:02:00
srun ./parallel_binary> parallel.output

 4.6 Resource usage and job priorities

Projects will have assigned a certain amount of compute hours or core
hours that are available to use. One core hour is the computing time of one
core during the time of one hour. That is a full node with 16 cores running a
job for one hour will use up 16 core hours from the assigned budget. The
accounting is solely based in the amount of compute hours used.

The priority of a job and therefore its scheduling in the queues is being
determined by a multitude of factors. The most important and influential ones
are the fairshare in between groups, waiting time in queues and job size.
Tirant is a system meant for and favoring large executions so that jobs using
more cores have a higher priority. The time while waiting in queues for
execution is being taken into account as well and jobs gain more and more
priority the longer they are waiting. Finally our queue system implements a
fairshare policy between groups. Users who did not run many jobs and
consumed compute hours will get a higher priority for their jobs than groups
that have a high usage. This is to allow everyone their fair share of compute
time and the option to run jobs without one group or another being favored.
You can review your current fair share score using the command

sshare -la

 5 Software Environment

All software and numerical libraries available at the cluster can be found
at /apps/. If you need something that is not there please contact us to get it
installed.

 5.1 Modules Environment

The lmod environment modules package provides a dynamic
modification of a user’s environment via modulefiles. Each modulefile
contains the information needed to configure the shell for an application or a
compilation. Modules can be loaded and unloaded dynamically, in a clean

fashion. All popular shells are supported, including bash, ksh, zsh, sh, csh,
tcsh, as well as some scripting languages such as perl.

Installed software packages are divided into five categories:

• Environment: modulefiles dedicated to prepare the environment, for
example, get all necessary variables to use openmpi to compile or run
programs

• Tools: useful tools which can be used at any time (php, perl, …)
• Applications: High Performance Computers programs (GROMACS, …)
• Libraries: Those are tipycally loaded at a compilation time, they load

into the environment the correct compiler and linker flags (FFTW,
LAPACK, …)

• Compilers: Compiler suites available for the system (intel, gcc, …)

Modules can be invoked in two ways: by name alone or by name and
version. Invoking them by name implies loading the default module version.
This is usually the most recent version that has been tested to be stable
(recommended) or the only version available.

% module load intel

Invoking by version loads the version specified of the application. As of
this writing, the previous command and the following one load the same
module.

% module load intel/2018.3.222

The most important commands for modules are these:

• module list: shows all the loaded modules
• module avail: shows all the modules the user is able to load
• module purge: removes all the loaded modules
• module load <modulename>: loads the necessary environment variables

for the selected modulefile (PATH, MANPATH, LD_LIBRARY_PATH…)
• module unload <modulename>: removes all environment changes made

by module load command
• module switch <oldmodule> <newmodule>: unloads the first module

(oldmodule) and loads the second module (newmodule)

You can run “module help” any time to check the command’s usage and
options or check the module(1) manpage for further information.

 5.2 C Compilers

In the cluster you can find these C/C++ compilers:

icc / icpc -> Intel C/C++ Compilers

% man icc
% man icpc

gcc /g++ -> GNU Compilers for C/C++

% man gcc
% man g++

All invocations of the C or C++ compilers follow these suffix conventions
for input files:

.C, .cc, .cpp, or .cxx -> C++ source file.

.c -> C source file

.i -> preprocessed C source file

.so -> shared object file

.o -> object file for ld command

.s -> assembler source file

By default, the pre-processor is run on both C and C++ source files.
These are the default sizes of the standard C/C++ datatypes on the machine

Default datatype sizes on the machine

Type Length (bytes)
bool (c++ only) 1
char 1
wchar_t 4
short 2
int 4
long 8
float 4
double 8
long double 16

To compile MPI programs it is recommended to use the following handy
wrappers: mpicc, mpicxx for C and C++ source code. You need to choose the
Parallel environment first: module load openmpi / module load impi. These
wrappers will include all the necessary libraries to build MPI applications
without having to specify all the details by hand.

% mpicc a.c -o a.exe
% mpicxx a.C -o a.exe

OpenMP directives are fully supported by the Intel C and C++ compilers.
To use it, the flag -qopenmp must be added to the compile command line.

% icc -qopenmp -o exename filename.c
% icpc -qopenmp -o exename filename.C

You can also mix MPI + OPENMP code using -openmp with the mpi
wrappers mentioned above.

 5.3 FORTRAN Compilers

In the cluster you can find these compilers:

ifort -> Intel Fortran Compilers

% man ifort

gfortran -> GNU Compilers for FORTRAN

% man gfortran

By default, the compilers expect all FORTRAN source files to have the
extension “.f”, and all FORTRAN source files that require pre-processing to
have the extension “.F”. The same applies to FORTRAN 90 source files with
extensions “.f90” and “.F90”.

In order to use MPI, again you can use the wrappers mpif77 or mpif90
depending on the source code type. You can always man mpif77 to see a
detailed list of options to configure the wrappers, ie: change the default
compiler.

% mpif77 a.f -o a.exe

OpenMP directives are fully supported by the Intel Fortran compiler
when the option “-qopenmp” is set:

% ifort -qopenmp

 6 Getting Help

UV provides users with consulting assistance. User support consultants
are available during normal business hours, Monday to Friday, 09 a.m. to 15
p.m. (CEST time).

User questions and support are handled at: res_support@uv.es

mailto:support@bsc.es
mailto:support@bsc.es
mailto:support@bsc.es
mailto:support@bsc.es

If you need assistance, please supply us with the nature of the problem,
the date and time that the problem occurred, and the location of any other
relevant information, such as output files. Please contact us if you have any
questions or comments regarding policies or procedures or you think you
need help with your project.

 7 Appendices

 7.1 SSH

SSH is a program that enables secure logins over an insecure network. It
encrypts all the data passing both ways, so that if it is intercepted it cannot
be read. It also replaces the old an insecure tools like telnet, rlogin, rcp, ftp,
etc. SSH is a client-server software. Both machines must have ssh installed
for it to work.

We have already installed a ssh server in our machines. You must have
installed an ssh client in your local machine. SSH is available without charge
for almost all versions of UNIX (including Linux and MacOS X) and recent
versions of Windows 10. For UNIX and derivatives, we recommend using the
OpenSSH client, downloadable from: http://www.openssh.org, and for
Windows users we recommend the built-in client in recent versions or using
free SSH clients like Putty (can be downloaded from: http://www.putty.org).
Any client compatible with SSH version 2 can be used. MobaXterm is also a
great option.

No matter your client, you will need to specify the following information:

• Select SSH as default protocol
• Select port 22
• Specify the remote machine and username

 7.2 Transferring files

To transfer files to or from the cluster you need a secure copy (scp)
client. There are several different clients, but as previously mentioned, we
recommend using Putty clients for transferring files: pscp. You can find it at
the same web page as Putty (http://www.putty.org).

Some other possible tools for users requiring graphical file transfers could be:

http://www.putty.org/
http://www.putty.org/
http://www.openssh.org/

• WinSCP: Freeware Sftp and Scp client for Windows
(http://www.winscp.net)

• MobaXterm: available personal license
(https://mobaxterm.mobatek.net)

 7.3 Using X11

In order to start remote X applications you need and X-Server running in
your local machine. Here is a list of most common X-servers for windows:

• Cygwin/X: http://x.cygwin.com
• VcXsrv: https://sourceforge.net/projects/vcxsrv/ (similar to XQuartz in Mac OS X).

Can be used in conjunction with WSL linux distros running in Windows
(you can get them in the Microsoft Store).

• X-Win32: http://www.starnet.com
• WinaXe: http://labf.com
• XconnectPro: http://www.labtam-inc.com
• Exceed: http://www.hummingbird.com

Both Cygwin/X and VcXsrv are open source and free X servers, you need
to pay for the others.

Once the X-Server is running run putty with X11 forwarding enabled:

MobaXterm (https://mobaxterm.mobatek.net) allows to use X11. It is a
great tool, but using full features require to purchase a license.

https://mobaxterm.mobatek.net/
http://www.hummingbird.com/
http://www.labtam-inc.com/
http://labf.com/
http://www.starnet.com/
https://sourceforge.net/projects/vcxsrv/
http://x.cygwin.com/
https://mobaxterm.mobatek.net/
http://www.winscp.net/

