3D Force-Free Neutron Star Magnetospheres

CoCoNuT meeting 2023 Potsdam

Petros Stefanou Jose Pons Pablo Cerdá-Durán

MINISTERIO DE CIENCIA E INNOVACIÓN

Financiado por la Unión Europea NextGenerationEU

Resiliencia

Overview

- ➤ Magnetars
- Motivation
 - Observational
 Data
 - > Origin

Physical Framework

- ➤ Force-Free field
- ➤ Grad-Rubin Method
- Results

 Models with hotspots

Future Ideas

1. Introduction

What is a magnetar?

Magnetars

A class of NS with

- ★ Extreme magnetic fields $B \ge 10^{14} G$
- ★ Slow rotation $P \sim 1-10s$
- ★ Young age

- → Rapid spin-down due to magnetic braking
- → Dissipation of magnetic energy into radiation
- → Transient X-ray activity

2. Motivation

Why is it important to model Magnetar magnetospheres?

Observations

X-rays

- Short duration bursts
- Long duration outbursts
- Highly energetic flores
- Extended decays
- Pulsed emission

Origin of observational phenomenology

Presence of strong twisted magnetosphere linked to interior evolution

Critical point where the twist becomes unsustainable

Release of magnetic energy that feeds the X-ray activity

3. Physical framework

How do we describe the problem?

Force-Free Field

Assumptions

- Gravity, inertia and plasma pressure are much smaller than E/M forces
- 2. Rotationally induced electric fields are negligible due to slow rotation

Main equations

 $J \times B = 0$ $\Rightarrow \nabla \times B = \alpha B$ $\nabla \cdot B = 0$ $\Rightarrow B \cdot \nabla \alpha = 0$

Grad-Rubin Method

- Decompose the problem in an elliptic part for B and a hyperbolic part for α
- → Give boundary conditions at the surface
- → Iterate until convergence

Decomposition

$$\mathbf{B}^{(n)} \cdot
abla lpha^{(n+1)} = 0$$

 $\overline{\mathbf{V} imes \mathbf{B}^{(n+1)}} = lpha^{(n+1)} \mathbf{B}^{(n)}$

4. Results

What have we found?

A dipole with two hotspots

Surface boundary conditions:

Stefanou+ 2023

(d) $\theta_1 = 85^\circ$

α [R⁻¹] **2,00**

1,50

1,00

0,50

0,00

α [R⁻¹] 1,50

1,12

0,75

0,38

0,00

α [R⁻¹] **3,00**

1,12

0,75

0,38

0,00

α [R⁻¹] 1,50

1,12

0,75

0,38

0,00

(f) $\theta_1 = 35^\circ$

(h) $\sigma = 0.15$

(b) $\alpha_0 = 2.0$

(e) $\theta_1 = 60^\circ$

(i) $\sigma = 0.25$

Stefanou+ 2023

15

5. Future Ideas

Where do we go from here?

- Multipole magnetic field
- Stability of solutions
- ➤ Emission spectrum
- ➤ Consider rotation
- Couple with interior evolution

Thank you!