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J. JULIÁN TOLEDO

Dpto. Análisis Matemático, Univ. València
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Introduction

The goal of this course is to present recent results on nonlocal problems with dif-
ferent boundary conditions. One of the main tools used is the Nonlinear Semigroup
Theory. We also give some results concerning limits of solutions to nonlocal problems
when a rescaling parameter goes to zero, recovering local problems.

The prototype of nonlocal problems that will be considered is the following:

ut(x, t) = (J ∗ u− u)(x, t) =

∫
RN
J(x− y)u(y, t) dy − u(x, t) ,

where J : RN → R is a nonnegative, radial, continuous function with total mass
equal to 1.

vii



viii INTRODUCTION

Prototype equation:

(0.1) ut(x, t) =

∫
RN
J(x− y)(u(y, t)− u(x, t)) dy .

If u(x, t) is thought of as a density at a point x at time t and

J(x− y) is thought of as the probability distribution of jumping

from location y to location x,

then∫
RN
J(y−x)u(y, t) dy = (J ∗u)(x, t) is the rate at which individuals are arriving

at position x from all other places and

u(x, t) =

∫
RN
J(y− x)u(x, t) dy is the rate at which they are leaving location x

to travel to all other sites.

This consideration, in the absence of external or internal sources, leads immediately
to the fact that the density u satisfies equation (0.1).
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Equation (0.1) is said to be of nonlocal diffusion since the diffusion of the density
u at a point x and time t depends not only on u at x, but on all the values of u in a
neighborhood of x through the convolution term J ∗ u.

Let us now fix a bounded domain Ω in RN . For local problems the two most common
boundary conditions are Neumann’s and Dirichlet’s. When looking at boundary
conditions for nonlocal problems, one has to modify the usual formulations for local
problems. For Neumann boundary conditions we propose ut(x, t) =

∫
Ω

J(x− y)(u(y, t)− u(x, t)) dy, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

In this model, the integral term takes only into account the diffusion inside Ω. The
individuals may not enter or leave the domain. This is analogous to what is called
homogeneous Neumann boundary conditions in the literature.
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For Dirichlet boundary conditions we consider
ut(x, t) =

∫
RN
J(x− y)u(y, t) dy − u(x, t), x ∈ Ω, t > 0,

u(x, t) = 0, x 6∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

In this model, diffusion takes place in the whole RN , but we assume that u vanishes
outside Ω. Think as we had a hostile environment outside Ω, and any individual that
jumps outside dies instantaneously. This is the analog of what is called homogeneous
Dirichlet boundary conditions for the heat equation. However, the boundary datum
is not understood in the usual sense of traces considered for local problems.

Nonlocal problems have been used to model very different applied situations, for
example in biology, image processing, particle systems, coagulation models, nonlocal
anisotropic models for phase transition, mathematical finances using optimal control
theory, etc. They share many properties with the classical local evolution problems,
however, there is no regularizing effect in general.
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Our interest in this course is concerned with nonlinear problems. We study nonlocal
analogs of the p–Laplacian evolution problems for 1 < p <∞:

ut(t, x) =

∫
A

J(x− y)|u(t, y)− u(t, x)|p−2(u(t, y)− u(t, x))dy for x ∈ Ω, t > 0,

for J : RN → R a nonnegative continuous radial function with compact support,
J(0) > 0 and

∫
RN J(x)dx = 1.

In a bounded domain Ω, the above problem is a Dirichlet type problem by taking
A = RN and u = 0 in RN \ Ω, a Neumann type problem by taking A = Ω. And a
Cauchy problem in the whole RN if A = Ω = RN .

We also present a nonlocal versions of the Total Variation Flow, for a non-degenerate
kernel and for a singular kernel.

Finally we present a sandpile model, an optimal mass transport problem, a median
value problem and a best Lipschitz extension problem, obtained as limit problems of
nonlocal p–Laplacian problems.
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THEME 1

Nonlinear semigroups: an overview

1.1. Abstract Cauchy problems. Mild solutions

We outline some of the main points of the theory of nonlinear semigroups and
evolution equations governed by accretive operators. We refer to [17], [18], [19],
[20], [26], [27], [28], [29] and [30].

One of our main objectives will be the study of evolution problems of the form

(CP)x,f

{
u′(t) + Au(t) = f (t) on (0, T ),

u(0) = x,

where X is a real Banach space with norm denoted by ‖ · ‖, f : (0, T ) → X
and A : D(A) → 2X is a (multivalued) operator. The use of multivalued nonlinear
operators permits to obtain a coherent theory but also it is quite useful in applications.

A problem of the form (CP)x,f is called an abstract Cauchy problem.

1.1
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Let A be an operator in X and f ∈ L1(0, T ;X).

Definition 1.1. A function u is called a strong solution of (CP)x,f if

u ∈ C([0, T ];X) ∩W 1,1
loc (0, T ;X) and{

u′ + Au(t) 3 f (t) a.e. t ∈ (0, T ),

u(0) = x.

Let us now introduce a more general concept of solution for (CP)x,f , mild solution,
introduced by M. G. Crandall and T. M. Liggett in [30] and Ph. Bénilan in [18].
Roughly speaking, a mild solution of the problem

u′ + Au 3 f on [a, b]

is a continuous function u ∈ C([0, T ];X) which is the uniform limit of solutions of
time-discretized problems given by the following implicit Euler scheme:

v(ti)− v(ti−1)

ti − ti−1
+ Av(ti) 3 fi,

where fi are approximations of f as |ti − ti−1| → 0.
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Definition 1.2.

1. Let ε > 0. An ε-discretization of u′ + Au 3 f on [a, b] consists of a partition
t0 < t1 < · · · < tN and a finite sequence f1, f2, . . . , fN of elements of X such that

a ≤ t0 < t1 < · · · < tN ≤ b, with

ti − ti−1 ≤ ε, i = 1, . . . , N, t0 − a ≤ ε and b− tN ≤ ε.

and
N∑
i=1

∫ ti

ti−1

‖f (s)− fi‖ ds ≤ ε.

We will denote this discretization by DA(t0, . . . , tN ; f1, . . . , fN).

2. A solution of the discretization DA(t0, . . . , tN ; f1, . . . , fN) is a piecewise con-
stant function v : [t0, tN ] → X whose values v(t0) = v0, v(t) = vi for t ∈]ti−1, ti],
i = 1, . . . , N satisfy

vi − vi−1

ti − ti−1
+ Avi 3 fi, i = 1, . . . , N.

3. An ε-approximate solution of (CP)x0,f
is a solution v of an ε-discretization

DA(0 = t0, . . . , tN , f1, . . . , fN) of u′ + Au 3 f on [0, T ] with ‖v(0)− x0‖ < ε.

4. And u is a mild solution of (CP)x0,f on [0, T ] if and only if u ∈ C([0, T ];X)
and for each ε > 0 there is an ε-approximate solution v of (CP)x0,f such that ‖u(t)−
v(t)‖ < ε on the domain of v.
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Theorem 1.3. Let A be an operator in X and f ∈ L1
loc(0, T ;X). Then

(i) If u is a strong solution of (CP)x0,f on [0, T ] then u is a mild solution.

(ii) If u is a mild solution of (CP)x0,f on [0, T ], then u(t) ∈ D(A) for all t ∈ [0, T ].

(iii) Let A be the closure of the operator A. Then u is a mild solution of
u′+Au 3 f on [0, T ], u(0) = x0, if and only if u is a mild solution of u′+Au 3 f
on [0, T ], u(0) = x0.

1.2. Accretive operators. Uniqueness of mild solutions

The existence of mild solutions requires, as we just pointed out before, the existence
of solutions of discretized equations of the form

xi − xi−1

ti − ti−1
+ Axi 3 fi, i = 1, . . . , N

or equivalently

xi + (ti − ti−1)Axi 3 (ti − ti−1)fi + xi−1, i = 1, . . . , N,

Accretive operators guarantees uniqueness of such solutions:

Definition 1.4. An operator A in X is accretive if

‖x− x̂‖ ≤ ‖x− x̂ + λ(y − ŷ)‖ whenever λ > 0 and (x, y), (x̂, ŷ) ∈ A.
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Note that A is accretive if and only if, for λ > 0,∥∥(I + λA)−1z − (I + λA)−1ẑ
∥∥ ≤ ‖z − ẑ‖,

that is, A is accretive if and only if JAλ := (I + λA)−1 (called the resolvent of A) is
a single-valued nonexpansive map for λ > 0.

An operator in a Hilbert space is accretive iff it is monotone, that is,

(x− x̂|y − ŷ) ≥ 0 for all (x, y), (x̂, ŷ) ∈ A.

Accretivity implies uniqueness of mild solutions:

Theorem 1.5. Let A accretive, f, f̂ ∈ L1(0, T ;X), and let u, û be mild solu-
tions on [0, T ] of (CP)x0,f and (CP)x̂0,f̂

respectively. Then

‖u(t)− û(t)‖ ≤ ‖x0 − x̂0‖ +

∫ t

0

‖f (s)− f̂ (s)‖ ds, for t ∈ [0, T ].

1.3. Range conditions. Existence of mild solutions

But apart from accretivity one should expect a range condition to get the existence
of solution as well. One could ask for R(I + λA) = X for all λ > 0:

An operator A is said to be m-accretive in X if A is accretive and R(I +λA) = X
for all λ > 0; if and only if there exists one λ > 0 such that R(I + λA) = X .
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It is easy to see that each m-accretive operator A in X is maximal accretive in the
sense that every accretive extension of A coincides with A. In general, the converse
is not true, but it is in Hilbert spaces:

Theorem 1.6 (Minty’s Theorem). Let H be a Hilbert space and A an accretive
operator in H. Then A is m-accretive if and only if A is maximal monotone.

One of the most important examples of maximal monotone operators in Hilbert
spaces comes from optimization theory: subdifferentials of convex functions.

Let (H, ( | )) be a Hilbert space and ϕ : H → (−∞,+∞] convex. Its subdifferen-
tial ∂ϕ is the operator defined by

w ∈ ∂ϕ(z) ⇐⇒ ϕ(x) ≥ ϕ(z) + (w|x− z) ∀x ∈ H.
If (ẑ, ŵ), (z, w) ∈ ∂ϕ, then ϕ(z) ≥ ϕ(ẑ) + (ŵ|z − ẑ) and ϕ(ẑ) ≥ ϕ(z) + (w|ẑ − z).
Adding this inequalities we get (w− ŵ|z− ẑ) ≥ 0. Thus, ∂ϕ is a monotone operator.

Now, if ϕ is convex, lower semicontinuous and proper, then ∂ϕ is maximal monotone
and D(∂ϕ) = D(ϕ).

Observe that 0 ∈ ∂ϕ(z) if and only if ϕ(x) ≥ ϕ(z) for all x ∈ H , if and only if
ϕ(z) = minx∈D(ϕ)ϕ(x). Therefore,

0 ∈ ∂ϕ(z) is the Euler equation of the variational problem

ϕ(z) = min
x∈D(ϕ)

ϕ(x).
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Given a closed convex subset K of H , the indicator function of K is defined by

IK(u) =

{
0 if u ∈ K,
+∞ if u 6∈ K.

Its subdifferential is characterized as follows:

v ∈ ∂IK(u) ⇐⇒ u ∈ K and (v, w − u) ≤ 0 ∀w ∈ K.

Theorem 1.7 (Crandall-Liggett, Bénilan). Suppose that A is m–accretive in X,
f ∈ L1(0, T ;X) and x ∈ D(A). Then

u′ + Au 3 f on [0, T ], u(0) = x,

has a unique mild solution u on [0, T ].

If we set e−tAx to be the mild solution of u′ + Au 3 0 on (0,+∞) with initial
data x, then (e−tA)t≥0 is a contraction semigroup: the semigroup generated by −A.

In the homogeneous case we can debilitate the m-accretivity of the operator and
get an explicit representation of the mild solution.

Definition 1.8. We say that an accretive operator A satisfies the range condition
when

D(A) ⊂ R(I + λA) for all λ > 0.
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Theorem 1.9 (Crandall-Liggett Theorem). If A is accretive and satisfies the
range condition, then (e−tA)t≥0 is a semigroup of contractions on D(A) and

e−tAx = lim
n→∞

(
I +

t

n
A

)−n
x for x ∈ D(A).

1.4. Regularity of mild solutions

In general mild solutions are not strong solutions. When they are?

Theorem 1.10. Assume X is reflexive. Let A be an accretive operator in X,
f ∈ BV (0, T ;X) and x ∈ D(A). If u is a mild solution of (CP)x,f on [0, T ], then
u ∈ W 1,1(0, T ;X) and u is a strong solution.

Also:

Theorem 1.11. Let H be a Hilbert space and ϕ : H → (−∞,+∞] a proper,
convex and lower semicontinuous function such that Minϕ = 0. Suppose f ∈
L2(0, T ;H) and x0 ∈ D(∂ϕ); then the mild solution u(t) of{

u′ + ∂ϕ(u) 3 f on [0, T ],

u(0) = x0,

is a strong solution.
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1.5. Dependence

Theorem 1.12 (Brezis-Pazy Theorem). Let An be m-accretive in X, xn ∈
D(An) and fn ∈ L1(0, T ;X) for n = 1, 2, . . . ,∞. Let un be the mild solution
of

u′n + Anun 3 fn in [0, T ], un(0) = xn.

If fn → f∞ in L1(0, T ;X) and xn → x∞ as n→∞ and

lim
n→∞

(I + λAn)−1z = (I + λA∞)−1z,

for some λ > 0 and all z ∈ D, with D dense in X, then

lim
n→∞

un(t) = u∞(t) uniformly on [0, T ].

For subdifferentials of convex lower semicontinuous functionals in Hilbert spaces,
to prove the convergence of the resolvent it is enough to show the convergence of the
functionals in the sense of Mosco ([49]).
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Mosco convergence.

Given a sequence Ψn,Ψ : H → (−∞,+∞] of convex lower semicontinuous func-
tionals, we say that Ψn converges to Ψ in the sense of Mosco if

(1) ∀u ∈ D(Ψ) ∃un ∈ D(Ψn) : un → u and Ψ(u) ≥ lim supn→∞Ψn(un);

(2) for every subsequence nk, as uk ⇀ u, we have Ψ(u) ≤ lim infk Ψnk(uk).

Or equivalently:

w-lim sup
n→∞

Epi(Ψn) ⊂ Epi(Ψ) ⊂ s-lim inf
n→∞

Epi(Ψn),

where

s-lim inf
n→∞

An = {x ∈ H : ∃xn ∈ An, xn → x}

w-lim sup
n→∞

An = {x ∈ H : ∃xnk ∈ Ank, xnk ⇀ x}.
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From Theorem 1.12 and using the results of H. Attouch ([16]) we have:

Theorem 1.13. The following statements are equivalent:

(i) Ψn converges to Ψ in the sense of Mosco.

(ii) (I + λ∂Ψn)−1x→ (I + λ∂Ψ)−1x, ∀λ > 0, x ∈ H.

Moreover, any of these two conditions implies that

(iii) for every x0 ∈ D(∂Ψ) and x0,n ∈ D(∂Ψn) such that x0,n → x0, and every
fn, f ∈ L2(0, T ;H) with fn → f , if un(t), u(t) are the strong solutions of{

u′n(t) + ∂Ψn(un(t)) 3 fn, a.e. t ∈ (0, T ),

un(0) = x0,n,

and {
u′(t) + ∂Ψ(u(t)) 3 f, a.e. t ∈ (0, T ),

u(0) = x0,

respectively, then
un → u in C([0, T ];H).
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1.6. Completely accretive operators

Many nonlinear semigroups that appear in the applications are also order-preserving
and contractions in every Lp. Ph. Bénilan and M. G Crandall ([19]) introduced a
class of operators, named completely accretive, for which the semigroup generated by
the Crandall-Liggett exponential formula enjoys these properties. In this section we
outline some of the main points given in [19].

Let Ω be an open set in RN and let M(Ω) be the space of measurable functions
from Ω into R.

For u, v ∈M(Ω), we write

u� v if and only if

∫
Ω

j(u)dx ≤
∫

Ω

j(v)dx

for all j ∈ J0 := {j : R→ [0,∞] convex, l.s.c., j(0) = 0} .

Definition 1.14. Let A be an operator in M(Ω). We say that A is completely
accretive if

u− û� u− û + λ(v − v̂) for all λ > 0 and all (u, v), (û, v̂) ∈ A.

The definition of completely accretive operators does not refer explicitly to topolo-
gies or norms. However, if A is completely accretive in M(Ω) and A ⊂ Lp(Ω)×Lp(Ω)
(1 ≤ p ≤ ∞) then A is accretive in Lp(Ω).
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Let P0 = {q ∈ C∞(R) : 0 ≤ q′ ≤ 1, supp(q′) is compact and 0 6∈ supp(q)} . The
following result provides a very useful characterization of complete accretivity.

Proposition 1.15. If A ⊆ Lp(Ω) × Lp(Ω), 1 ≤ p < ∞, then A is completely
accretive if and only if∫

Ω

q(u− û)(v − v̂) ≥ 0 for any q ∈ P0, (u, v), (û, v̂) ∈ A.

Proposition 1.16. Let 1 ≤ p < +∞.

(i) Let u ∈ Lp(Ω). Then {v ∈M(Ω) : v � u} is a weakly sequentially compact
subset of Lp(Ω).

(ii) If {un} is a sequence satisfying un � u ∈ Lp(Ω) for all n, and un ⇀ u
weakly in Lp(Ω), then ‖un − u‖p → 0.

Definition 1.17. Let X be a linear subspace of M(Ω). An operator A in X is
m-completely accretive in X if A is completely accretive and R(I + λA) = X for
λ > 0

Proposition 1.18. Let 1 ≤ p < +∞. Let A be a completely accretive operator
in Lp(Ω). Suppose there exists λ > 0 for which R(I + λA) is dense in Lp(Ω).

Then the operator A
Lp(Ω)

is the unique m-completely accretive extension of A
in Lp(Ω).
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Let 1 ≤ p ≤ +∞. If A is m-completely accretive in Lp(Ω), by Crandall-Liggett’s
theorem, A generates a contraction semigroup in Lp(Ω) given by the exponential
formula

e−tAu0 = ‖ · ‖p- lim
n→∞

(
I +

t

n
A

)−n
u0 for any u0 ∈ D(A)

Lp(Ω)
.

Moreover, for any t > 0, e−tA is a ‖.‖q–T–contraction for any 1 ≤ q ≤ ∞.

Proposition 1.19. Let |Ω| < ∞. If A ⊆ L1(Ω) × L1(Ω) is an m-completely
accretive operator in L1(Ω), then for every u0 ∈ D(A), the mild solution of the
problem {

u′ + Au 3 0,

u(0) = u0

is in W 1,1(0, T ;X) and is a strong solution.

Moreover the following regularizing effect holds:

Theorem 1.20. Let 1 ≤ p < +∞. Let A an m-completely accretive operator
in Lp(Ω), positively homogeneous of degree 0 < m 6= 1, i.e, A(λu) = λmAu for
u ∈ D(A). Then for u ∈ D(A) ∩ Lp(Ω) and t > 0, we have e−tAu ∈ D(A).
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Nonlocal p–Laplacian problems

Model evolution equations for nonlinear local diffusion:

- the porous medium equation, vt = ∆
(
|v|m−1v

)
,

- the p-Laplacian evolution, vt = div
(
|∇v|p−2∇v

)
.

Here we will study a nonlocal analog of the p-Laplacian evolution with Neumann
boundary conditions and the Neumann problem for the nonlocal total variational flow,
both for non-degenerate kernels, and the Dirichlet problem for fractional 1–Laplacian
evolution.

We will study:

- existence and uniqueness,

- if the kernel is rescaled in an appropriate way, the corresponding solutions of
the nonlocal evolution problems converge to the solution of the corresponding local
evolution problems.

The asymptotic behaviour is also studied in [10], [12], [48]. A nonlocal analogous
problem to the porous medium equation for non–degenerate kernel can be found in [9].

2.1



2.2 2. NONLOCAL p–LAPLACIAN PROBLEMS

2.1. The Neumann problem for nonlocal p–Laplacian evolution with
non–degenerate kernels

Let J : RN → R be a nonnegative continuous radial function with compact support,

J(0) > 0 and
∫
RN J(x)dx = 1,

and Ω ⊂ RN a bounded domain.

We begin with the study of the nonlocal p–Laplacian evolution problem with Neumann
boundary conditions:

(2.1)

 ut(x, t) =

∫
Ω

J(x− y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t)) dy,

u(x, 0) = u0(x), x ∈ Ω, t > 0.

Definition 2.1. A solution of (2.1) in [0, T ] is a function u ∈ W 1,1(0, T ;L1(Ω))
that satisfies u(x, 0) = u0(x) a.e. x ∈ Ω and

ut(x, t) =

∫
Ω

J(x− y)|u(y, t)− u(x, t)|p−2(u(y, t)− u(x, t)) dy

a.e. in Ω× (0, T ).
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2.1.1. Existence and uniqueness.

Tools: Nonlinear Semigroup Theory.

We introduce the following operator in L1(Ω) associated with problem (2.1):

BJ
p u(x) = −

∫
Ω

J(x− y)|u(y)− u(x)|p−2(u(y)− u(x)) dy, x ∈ Ω.

Observe that

- BJ
p is positively homogeneous of degree p− 1;

- for p > 2, Lp−1(Ω) ⊂ D(BJ
p );

- and for 1 < p ≤ 2, D(BJ
p ) = L1(Ω) and BJ

p is closed in L1(Ω)× L1(Ω).

Using the following integration by parts formula:

Lemma 2.2. For every u, v ∈ Lp(Ω),

−
∫

Ω

∫
Ω

J(x− y)|u(y)− u(x)|p−2(u(y)− u(x))dy v(x) dx

=
1

2

∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)|p−2(u(y)− u(x))(v(y)− v(x)) dy dx.

we have the following monotonicity result for BJ
p :
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Lemma 2.3. Let T : R → R be a nondecreasing function. Then, for every
u, v ∈ Lp(Ω) such that T(u− v) ∈ Lp(Ω), we have∫

Ω

(BJ
p u(x)−BJ

p v(x))T(u(x)− v(x))dx

=
1

2

∫
Ω

∫
Ω

J(x− y) (T(u(y)− v(y))− T(u(x)− v(x)))

×
(
|u(y)− u(x)|p−2(u(y)− u(x))− |v(y)− v(x)|p−2(v(y)− v(x))

)
dy dx ≥ 0.

From it we obtain easily that BJ
p is completely accretive. Now we will also prove

that:

Theorem 2.4. The operator BJ
p satisfies the range condition

(2.2) Lp(Ω) ⊂ R(I + BJ
p ).

Therefore, for any φ ∈ Lp(Ω) there is a unique solution of the problem u+BJ
p u = φ

and the resolvent (I + BJ
p )−1 is a contraction in Lq(Ω) for all 1 ≤ q ≤ +∞.
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Proof. We want to prove that for any φ ∈ Lp(Ω) there exists u ∈ D(BJ
p ) such

that u = (I + BJ
p )−1φ.

Let us first take φ ∈ L∞(Ω). Let An,m : Lp(Ω)→ Lp
′
(Ω) be the continuous mono-

tone operator defined by

An,m(u) := Tc(u) + BJ
p u +

1

n
|u|p−2u+ − 1

m
|u|p−2u−,

where Tc(r) = c ∧ (r ∨ (−c)), c ≥ 0, r ∈ R.

An,m is coercive in Lp(Ω):

lim
‖u‖Lp(Ω)→+∞

∫
Ω

An,m(u)u

‖u‖Lp(Ω)
= +∞.

Then ([25, Corollary 30]) there exists un,m ∈ Lp(Ω) such that

Tc(un,m) + BJ
p un,m +

1

n
|un,m|p−2u+

n,m −
1

m
|un,m|p−2u−n,m = φ.

Using monotonicity we obtain that Tc(un,m)� φ. Consequently, taking c > ‖φ‖L∞(Ω),
we see that un,m � φ and

un,m + BJ
p un,m +

1

n
|un,m|p−2u+

n,m −
1

m
|un,m|p−2u−n,m = φ.
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Using that un,m is increasing in n (and decreasing in m), that un,m � φ, and the
the monotone convergence, passing to the limit in n we get um a solution to

um + BJ
p um −

1

m
|um|p−2u−m = φ,

and um � φ.

Now, um is decreasing in m. Then, taking limits in m we obtain a solution u to

u + BJ
p u = φ.

Let now φ ∈ Lp(Ω). Take φn ∈ L∞(Ω), φn → φ in Lp(Ω). Then, by the previous

step, there exists un = (I + BJ
p )−1φn. Using that BJ

p is completely accretive we get

un → u in Lp(Ω), and then also BJ
p un → BJ

p u in Lp
′
(Ω). Then, we conclude that

u + BJ
p u = φ. �

If BJp denotes the closure of BJ
p in L1(Ω), then by Theorem 2.4 we obtain that BJp

is m-completely accretive in L1(Ω), consequently, by Theorem 1.7:

Theorem 2.5. Let T > 0 and u0 ∈ L1(Ω). Then there exists a unique mild
solution u of

(2.3)

{
u′(t) + BJ

p u(t) = 0, t ∈ (0, T ),

u(0) = u0.
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Now, by Theorem 1.10, thanks to the complete accretivity of BJ
p and the range

condition (2.2), we have:

Corollary 2.6. If u0 ∈ Lp(Ω), the unique mild solution of (2.3) is a strong
solution of problem (2.1) and a solution in the sense of Definition 2.1.

If 1 < p ≤ 2, since D(BJ
p ) = L1(Ω) and BJ

p is closed in L1(Ω) × L1(Ω), by
Proposition 1.19:

Corollary 2.7. Let 1 < p ≤ 2. If u0 ∈ L1(Ω), the unique mild solution
of (2.3) is a strong solution of problem (2.1) and a solution in the sense of
Definition 2.1.

Moreover, we have the following contraction principle:

Corollary 2.8. For q ∈ [1,+∞], if ui0 ∈ Lq(Ω), i = 1, 2, we have:

‖(u1(t)− u2(t))+‖Lq(Ω) ≤ ‖(u10 − u20)+‖Lq(Ω) for every t ∈ [0, T ].
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2.1.2. Rescaling the kernel. Convergence to the local p–Laplacian.

Let Ω be a bounded smooth domain in RN . For fixed p > 1 we consider the rescaled
kernels

Jp,ε(x) :=
CJ,p
εp+N

J
(x
ε

)
,

where C−1
J,p := 1

2

∫
RN J(z)|zN |p dz is a normalizing constant.

The solution uε of problem (2.1), with the kernel J replaced by Jp,ε, converges,
as the scaling parameter ε goes to zero, to the solution of the classical p–Laplacian
evolution problem with homogeneous Neumann boundary conditions:

(2.4)


vt = ∆pv in Ω× (0, T ),

|∇v|p−2∇v · η = 0 on ∂Ω× (0, T ),

v(x, 0) = u0(x) in Ω,

where η is the unit outward normal on ∂Ω and ∆pv = div(|∇v|p−2∇v) is the so–called
p–Laplacian of v.



J. JULIÁN TOLEDO 2.9

Some facts about the local p-Laplacian equation.

Associated to the p–Laplacian with homogeneous boundary condition, the following
operator Bp ⊂ L1(Ω) × L1(Ω) is defined: (v, v̂) ∈ Bp if and only if v̂ ∈ L1(Ω),
v ∈ W 1,p(Ω) and∫

Ω

|∇v|p−2∇v · ∇ξ dx =

∫
Ω

v̂ξ dx for every ξ ∈ W 1,p(Ω) ∩ L∞(Ω),

and it is proved thatBp is a completely accretive operator in L1(Ω) with dense domain
satisfying a range condition, which implies that its closure Bp in L1(Ω)×L1(Ω) is an
m-completely accretive operator in L1(Ω) with dense domain (see [6] or [7]).

In [5] and [8] it is shown that for any u0 ∈ L1(Ω), the unique mild solution
v(t) = e−tBpu0 given by Crandall-Liggett’s exponential formula is the unique entropy
solution of 

vt = ∆pv in Ω× (0, T ),

|∇v|p−2∇v · η = 0 on ∂Ω× (0, T ),

v(x, 0) = u0(x) in Ω,
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A formal calculation for N = 1. Let u(x) be a smooth function and consider

Aε(u)(x) =
1

εp+1

∫
R
J

(
x− y
ε

)
|u(y)− u(x)|p−2(u(y)− u(x)) dy.

Changing variables, y = x + εz, we get

(2.5) Aε(u)(x) =
1

εp

∫
R
J(z)|u(x + εz)− u(x)|p−2(u(x + εz)− u(x)) dz.

Expanding in powers of ε we obtain

|u(x + εz)− u(x)|p−2 = εp−2
∣∣∣u′(x)z + u′′(x)

2 εz2 + O(ε2)
∣∣∣p−2

= εp−2|u′(x)|p−2|z|p−2 + εp−1(p− 2)|u′(x)z|p−4u′(x)z
u′′(x)

2
z2 + O(εp),

and

u(x + εz)− u(x) = εu′(x)z +
u′′(x)

2
ε2z2 + O(ε3).

Hence, (2.5) becomes

Aε(u)(x) =
1

ε

∫
R
J(z)|z|p−2z dz|u′(x)|p−2u′(x)

+
1

2

∫
R
J(z)|z|p dz

(
(p− 2)|u′(x)|p−2u′′(x) + |u′(x)|p−2u′′(x)

)
+ O(ε),
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that is,

Aε(u)(x) =
1

ε

∫
R
J(z)|z|p−2z dz|u′(x)|p−2u′(x)

+
1

2

∫
R
J(z)|z|p dz(|u′(x)|p−2u′(x))′ + O(ε).

Using that J is radially symmetric, the first integral vanishes and therefore

lim
ε→0

Aε(u)(x) = C(|u′(x)|p−2u′(x))′,

where

C =
1

2

∫
R
J(z)|z|p dz.

The objective is to make this formal calculation rigorous.

Tools:

- a precompactness result (a variant of [23, Theorem 4]).

- Nonlinear Semigroup Theory.

For a function g defined in a set D, we denote by g to its extension by 0 outside D.
BV (D) is the space of bounded variation functions.
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Theorem 2.9 (The precompactness result). Let 1 ≤ q < +∞ and D ⊂ RN

open. Let ρ : RN → R be a nonnegative continuous radial function with compact
support, non identically zero. Let {fn}n ⊂ Lq(D) such that

(2.6)

∫
D

∫
D

nN |fn(y)− fn(x)|qρ(n(y − x)) dx dy ≤ M

nq
.

1. If {fn} is weakly convergent in Lq(D) to f , then:

(i) For q > 1, f ∈ W 1,q(D), and moreover

(ρ(z))1/q χD

(
x +

1

n
z

)
fn
(
x + 1

nz
)
− fn(x)

1/n
⇀ (ρ(z))1/q z · ∇f (x)

weakly in Lq(D)× Lq(RN).

(ii) For q = 1, f ∈ BV (D), and moreover

ρ(z)χD

(
. +

1

n
z

)
fn
(
. + 1

nz
)
− fn(.)

1/n
⇀ ρ(z)z ·Df

in the sense of measures.

2. Suppose D is a smooth bounded domain in RN and ρ(x) ≥ ρ(y) if |x| ≤ |y|.
Then there exists a subsequence {fnk} such that

(i) if q > 1, fnk → f in Lq(D) with f ∈ W 1,q(D);

(ii) if q = 1, fnk → f in L1(D) with f ∈ BV (D).
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Theorem 2.10. Suppose J(x) ≥ J(y) if |x| ≤ |y|. For any φ ∈ L∞(Ω),

(2.7)
(
I + B

Jp,ε
p

)−1

φ→ (I + Bp)
−1 φ in Lp(Ω) as ε→ 0.

Proof. For ε > 0, let uε =
(
I + B

Jp,ε
p

)−1

φ. Then

(2.8)∫
Ω

uεξ −
CJ,p
εp+N

∫
Ω

∫
Ω

J

(
x− y
ε

)
|uε(y)− uε(x)|p−2(uε(y)− uε(x)) dy ξ(x) dx

=

∫
Ω

φξ for every ξ ∈ L∞(Ω).

Aim: find a sequence εn → 0 such that uεn → v in Lp(Ω), v ∈ W 1,p(Ω) and
v = (I + Bp)

−1 φ, that is,∫
Ω

vξ +

∫
Ω

|∇v|p−2∇v · ∇ξ =

∫
Ω

φξ for every ξ ∈ W 1,p(Ω) ∩ L∞(Ω).

We have that uε � φ; therefore, by Proposition 1.16, there exists a sequence
εn → 0 such that

uεn ⇀ v weakly in Lp(Ω) and in L2(Ω), and v � φ.

Consequently, ‖uεn‖L∞(Ω), ‖v‖L∞(Ω) ≤ ‖φ‖L∞(Ω).
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Changing variables, we can rewrite (2.8) as

(2.9)

∫
Ω

φ(x)ξ(x) dx−
∫

Ω

uε(x)ξ(x) dx

=

∫
RN

∫
Ω

CJ,p
2
J(z)χΩ(x + εz)

∣∣∣∣uε(x + εz)− uε(x)

ε

∣∣∣∣p−2

×uε(x + εz)− uε(x)

ε

ξ(x + εz)− ξ(x)

ε
dx dz.

Taking ε = εn and ξ = uεn in (2.9), we get∫
Ω

∫
Ω

1

2

CJ,p
εNn

J

(
x− y
εn

) ∣∣∣∣uεn(y)− uεn(x)

εn

∣∣∣∣p dx dy
=

∫
RN

∫
Ω

CJ,p
2
J(z)χΩ(x + εnz)

∣∣∣∣uεn(x + εnz)− uεn(x)

εn

∣∣∣∣p dx dz ≤M.



J. JULIÁN TOLEDO 2.15

That is, ∫
RN

∫
Ω

CJ,p
2
J(z)χΩ(x + εnz)

∣∣∣∣uεn(x + εnz)− uεn(x)

εn

∣∣∣∣p dx dz ≤M,

uεn ⇀ v weakly in Lp(Ω).

Therefore, by Theorem 2.9, v ∈ W 1,p(Ω) and
(2.10)(

CJ,p
2
J(z)

)1/p

χΩ(x + εnz)
uεn(x + εnz)− uεn(x)

εn
⇀

(
CJ,p

2
J(z)

)1/p

z · ∇v(x)

weakly in Lp(Ω)× Lp(RN). Moreover, there exists χ ∈ Lp′(Ω)× Lp′(RN) such that

(J(z))1/p′ χΩ(x + εnz)

∣∣∣∣uεn(x + εnz)− uεn(x)

εn

∣∣∣∣p−2
uεn(x + εnz)− uεn(x)

εn

⇀ (J(z))1/p′ χ(x, z)

weakly in Lp
′
(Ω)× Lp′(RN).

Therefore, passing to the limit in (2.9) for ε = εn, we get

(2.11)

∫
Ω

vξ +

∫
RN

∫
Ω

CJ,p
2
J(z)χ(x, z) z · ∇ξ(x) dx dz =

∫
Ω

φξ

for every smooth ξ and by approximation for every ξ ∈ W 1,p(Ω).
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We now show that

(2.12)

∫
RN

∫
Ω

CJ,p
2
J(z)χ(x, z)z · ∇ξ(x) dx dz =

∫
Ω

|∇v|p−2∇v · ∇ξ.

Taking ξ = uεn in (2.9):

∫
Ω

u2
ε(x)dx +

∫
RN

∫
Ω

CJ,p
2
J(z)χΩ(x + εz)

∣∣∣∣uε(x + εz)− uε(x)

ε

∣∣∣∣p dxdz =

∫
Ω

φ(x)uεndx.

Taking now limits, using that

∫
Ω

v2 ≤ lim inf
n

∫
Ω

u2
εn

and (2.11) for ξ = v we get:

(2.13)

lim sup
n

∫
RN

∫
Ω

CJ,p
2
J(z)χΩ(x + εnz)

∣∣∣∣uεn(x + εnz)− uεn(x)

εn

∣∣∣∣p dx dz
≤
∫
RN

∫
Ω

CJ,p
2
J(z)χ(x, z) z · ∇v(x) dx dz.
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By the monotonicity Lemma 2.3, for every ρ smooth,

− CJ,p
εp+Nn

∫
Ω

∫
Ω

J

(
x− y
εn

)
|ρ(y)− ρ(x)|p−2(ρ(y)− ρ(x)) dy (uεn(x)− ρ(x)) dx

≤ − CJ,p
εp+Nn

∫
Ω

∫
Ω

J

(
x− y
εn

)
|uεn(y)− uεn(x)|p−2

×(uεn(y)− uεn(x)) dy (uεn(x)− ρ(x)) dx.

Using the same change of variable that we used above and taking limits, on account
of (2.10) and (2.13), we obtain, for every smooth ρ,

∫
RN

∫
Ω

CJ,p
2
J(z)|z · ∇ρ(x)|p−2z · ∇ρ(x) z · (∇v(x)−∇ρ(x)) dx dz

≤
∫
RN

∫
Ω

CJ,p
2
J(z)χ(x, z) z · (∇v(x)−∇ρ(x)) dx dz,

and then for every ρ ∈ W 1,p(Ω).
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Taking ρ = v ± λξ, λ > 0 and ξ ∈ W 1,p(Ω), and letting λ→ 0, we get∫
RN

∫
Ω

CJ,p
2
J(z)χ(x, z)z · ∇ξ(x) dx dz

=

∫
RN

CJ,p
2
J(z)

∫
Ω

|z · ∇v(x)|p−2 (z · ∇v(x)) (z · ∇ξ(x)) dx dz.

Consequently,∫
RN

∫
Ω

CJ,p
2
J(z)χ(x, z)z · ∇ξ(x) dx dz =

∫
Ω

a(∇v) · ∇ξ for every ξ ∈ W 1,p(Ω),

where

aj(ξ) = CJ,p

∫
RN

1

2
J(z) |z · ξ|p−2 z · ξ zj dz.

Then, since

(2.14) a(ξ) = |ξ|p−2ξ,

we obtain that (2.12) is true and

v = (I + Bp)
−1 φ.

And the proof finishes using Theorem 2.9, 2. �

The proof of (2.14) is an exercise: Use that a is positively homogeneous of degree
p− 1, that J is a radial function, and an adequate change of variables.
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From the above theorem, and Theorem 1.12 we obtain:

Theorem 2.11. Assume that J(x) ≥ J(y) if |x| ≤ |y|. Let T > 0 and u0 ∈
Lq(Ω), p ≤ q < +∞. Let uε be the unique solution of (2.1) with J replaced by
Jp,ε and v the unique solution of (2.4). Then

(2.15) lim
ε→0

sup
t∈[0,T ]

‖uε(·, t)− v(·, t)‖Lq(Ω) = 0.

Moreover, if 1 < p ≤ 2, (2.15) holds for any u0 ∈ Lq(Ω), 1 ≤ q < +∞.

Proof. Since BJ
p is completely accretive and satisfies the range condition (2.2), to

get (2.15) it is enough to see that(
I + B

Jp,ε
p

)−1

φ→ (I + Bp)
−1 φ in Lq(Ω) as ε→ 0

for any φ ∈ L∞(Ω) (see Theorem 1.12). Taking into account that(
I + B

Jp,ε
p

)−1

φ� φ,

the above convergence follows by (2.7). �
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Proof of the precompactness Theorem 2.9. From (2.6),

(2.16)

∫
RN

∫
D

ρ(z)χD

(
x +

1

n
z

) ∣∣∣∣∣fn
(
x + 1

nz
)
− fn (x)

1/n

∣∣∣∣∣
q

dx dz

=

∫
D

∫
D

nNρ(n(x− y))

∣∣∣∣fn(y)− fn(x)

1/n

∣∣∣∣q dx dy ≤M.

On the other hand, if ϕ ∈ D(D) and ψ ∈ D(RN), for n large enough,

(2.17)

∫
RN

(ρ(z))1/q

∫
D

χD

(
x +

1

n
z

)
fn
(
x + 1

nz
)
− fn(x)

1/n
ϕ(x) dxψ(z) dz

= −
∫
RN

(ρ(z))1/q

∫
D

fn(x)
ϕ(x)− ϕ

(
x− 1

nz
)

1/n
dxψ(z) dz.

Let us start with the case 1(i): suppose fn → f weakly in Lq(D). By (2.16), up to
a subsequence,

(ρ(z))1/q χD

(
x +

1

n
z

)
fn
(
x + 1

nz
)
− fn(x)

1/n
⇀ (ρ(z))1/q g(x, z) weak–Lq(D)×Lq(RN).
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Therefore, passing to the limit in (2.17), we get∫
RN

(ρ(z))1/q

∫
D

g(x, z)ϕ(x) dxψ(z) dz

= −
∫
RN

(ρ(z))1/q

∫
D

f (x) z · ∇ϕ(x) dxψ(z) dz.

Consequently,∫
D

g(x, z)ϕ(x) dx = −
∫
D

f (x) z · ∇ϕ(x) dx, ∀ z ∈ int(supp(ρ)).

This implies f ∈ W 1,q(D) and

(ρ(z))1/q g(x, z) = (ρ(z))1/q z · ∇f (x) in D × RN .

Let us now prove 1(ii). By (2.16), there exists a bounded Radon measure µ ∈
M(D × RN) such that, up to a subsequence,

ρ(z)χD

(
x +

1

n
z

)
fn
(
x + 1

nz
)
− fn(x)

1/n
⇀ µ(x, z) weakly inM(D × RN).
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Hence, passing to the limit in (2.17), we get∫
D×RN

ϕ(x)ψ(z)dµ(x, z) = −
∫
D×RN

ρ(z)f (x) z · ∇ϕ(x)ψ(z) dx dz.

Now, applying the disintegration theorem to the measure µ, we get that:

f ∈ BV (D)

and

µ(x, z) =

N∑
i=1

∂f

∂xi
(x)ρ(z)ziLN(z).

The proof of 2 follows the same steps of the proof of [23, Theorem 4].

�
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2.2. The Neumann problem for the nonlocal total variation flow for
non–degenerate kernels

Motivated by problems in image processing, the Neumann problem for the total
variation flow is studied in [3] (see also [4]):

(2.18)


vt = div

(
Dv

|Dv|

)
in Ω× (0, T ),

Dv

|Dv|
· η = 0 on ∂Ω× (0, T ),

v(·, 0) = u0 in Ω.

The operator div

(
Dv

|Dv|

)
is also known as 1-Laplacian: ∆1v.

The aim of this section is to study the nonlocal version of problem (2.18), which
can be written formally as

(2.19)

 ut(x, t) =

∫
Ω

J(x− y)
u(y, t)− u(x, t)

|u(y, t)− u(x, t)|
dy, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

Here, again, J : RN → R is a nonnegative continuous radial function with compact
support, J(0) > 0 and

∫
RN J(x)dx = 1.
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2.2.1. Existence and uniqueness.

Definition 2.12. A solution of (2.19) in [0, T ] is a function

u ∈ W 1,1(0, T ;L1(Ω))

which satisfies u(x, 0) = u0(x) a.e. x ∈ Ω and

ut(x, t) =

∫
Ω

J(x− y)g(x, y, t) dy a.e. in Ω× (0, T ),

for some g ∈ L∞(Ω × Ω × (0, T )) with ‖g‖∞ ≤ 1 such that g(x, y, t) = −g(y, x, t)
and

J(x− y)g(x, y, t) ∈ J(x− y)sgn(u(y, t)− u(x, t)),

where sgn is the multivalued sign function.

To prove the existence and uniqueness of this kind of solutions, the idea is to take
the limit as p↘ 1 to the solutions of (2.1) studied previously, and use again Nonlinear
Semigroup Theory.

So, we begin by introducing an operator in L1(Ω) associated to our problem.
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Definition 2.13. We define the operator BJ
1 in L1(Ω) × L1(Ω) by û ∈ BJ

1 u if
and only if u, û ∈ L1(Ω), and there exists g ∈ L∞(Ω × Ω), g(x, y) = −g(y, x) for
almost all (x, y) ∈ Ω× Ω, ‖g‖∞ ≤ 1, such that

(2.20) J(x− y)g(x, y) ∈ J(x− y) sgn(u(y)− u(x)) a.e. (x, y) ∈ Ω× Ω

and

û(x) = −
∫

Ω

J(x− y)g(x, y) dy a.e. x ∈ Ω.

It is not difficult to see that:

- (2.20) is equivalent to

−
∫

Ω

∫
Ω

J(x− y)g(x, y) dy u(x) dx =
1

2

∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)| dy dx;

- L1(Ω) = D(BJ
1 );

- BJ
1 is closed in L1(Ω)× L1(Ω);

- and BJ
1 is positively homogeneous of degree zero.
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Theorem 2.14. The operator BJ
1 is completely accretive and satisfies the range

condition
L∞(Ω) ⊂ R(I + BJ

1 ).

Proof. Let ûi ∈ BJ
1 ui, i = 1, 2. Then there exists gi ∈ L∞(Ω × Ω), ‖gi‖∞ ≤ 1,

gi(x, y) = −gi(y, x), J(x − y)gi(x, y) ∈ J(x − y)sgn(ui(y) − ui(x)) for almost all
(x, y) ∈ Ω× Ω, such that

ûi(x) = −
∫

Ω

J(x− y)gi(x, y) dy a.e. x ∈ Ω, i = 1, 2.

Let q ∈ P0. We have ∫
Ω

(û1(x)− û2(x))q(u1(x)− u2(x)) dx

=
1

2

∫
Ω

∫
Ω

J(x− y)(g1(x, y)− g2(x, y)) (q(u1(y)− u2(y))− q(u1(x)− u2(x))) dx dy.
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Therefore,∫
Ω

(û1(x)− û2(x))q(u1(x)− u2(x)) dx

=
1

2

∫ ∫
{(x,y):u1(y)6=u1(x),u2(y)=u2(x)}

J(x− y)(g1(x, y)− g2(x, y))

× (q(u1(y)− u2(y))− q(u1(x)− u2(x))) dx dy

+
1

2

∫ ∫
{(x,y):u1(y)=u1(x),u2(y)6=u2(x)}

J(x− y)(g1(x, y)− g2(x, y))

× (q(u1(y)− u2(y))− q(u1(x)− u2(x))) dx dy

+
1

2

∫ ∫
{(x,y):u1(y)6=u1(x),u2(y)6=u2(x)}

J(x− y)(g1(x, y)− g2(x, y))

× (q(u1(y)− u2(y))− q(u1(x)− u2(x))) dx dy,

≥ 0.

Hence, BJ
1 is a completely accretive operator.
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Let us prove not that BJ
1 satisfies the range condition.

We will see that for any φ ∈ L∞(Ω),

lim
p→1+

(I + BJ
p )−1φ = (I + BJ

1 )−1φ weakly in L1(Ω).

Write up :=
(
I + BJ

p

)−1
φ for 1 < p < +∞. Then

up(x)−
∫

Ω

J (x− y) |up(y)− up(x)|p−2(up(y)− up(x)) dy = φ(x) a.e. x ∈ Ω.

Thus, for every ξ ∈ L∞(Ω), we can write

(2.21)

∫
Ω

upξ −
∫

Ω

∫
Ω

J (x− y) |up(y)− up(x)|p−2(up(y)− up(x)) dy ξ(x) dx

=

∫
Ω

φξ.

We have up � φ. Hence, by Proposition 1.16, there exists a sequence pn → 1 such
that

upn ⇀ u weakly in L1(Ω), u� φ.

Consequently, we also have ‖upn‖L∞(Ω), ‖u‖L∞(Ω) ≤ ‖φ‖L∞(Ω).
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Now, since ∣∣|upn(y)− upn(x)|pn−2 (upn(y)− upn(x))
∣∣ ≤ (2‖φ‖∞)pn−1 ,

there exists g(x, y) such that

|upn(y)− upn(x)|pn−2 (upn(y)− upn(x)) ⇀ g(x, y)

weakly in L1(Ω×Ω), g(x, y) = −g(y, x) for almost all (x, y) ∈ Ω×Ω, and ‖g‖∞ ≤ 1.

Passing to the limit in (2.21) for p = pn, we get

(2.22)

∫
Ω

uξ −
∫

Ω

∫
Ω

J(x− y)g(x, y) dy ξ(x) dx =

∫
Ω

φξ

for every ξ ∈ L∞(Ω), and consequently

u(x)−
∫

Ω

J(x− y)g(x, y) dy = φ(x) a.e. in Ω.

Then, to finish the proof we have to show that

(2.23) −
∫

Ω

∫
Ω

J(x− y)g(x, y) dy u(x) dx =
1

2

∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)| dy dx.
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In fact, by (2.21) with p = pn, ξ = upn, and (2.22) with ξ = u,

1

2

∫
Ω

∫
Ω

J(x− y) |upn(y)− upn(x)|pn dy dx

=

∫
Ω

φupn −
∫

Ω

upnupn =

∫
Ω

φu−
∫

Ω

uu−
∫

Ω

φ(u− upn)

+

∫
Ω

2u(u− upn)−
∫

Ω

(u− upn)(u− upn)

≤ −
∫

Ω

∫
Ω

J(x− y)g(x, y) dy u(x) dx−
∫

Ω

φ(u− upn) +

∫
Ω

2u(u− upn),

and so,

lim sup
n→+∞

1

2

∫
Ω

∫
Ω

J(x− y) |upn(y)− upn(x)|pn dy dx

≤ −
∫

Ω

∫
Ω

J(x− y)g(x, y) dy u(x) dx.



J. JULIÁN TOLEDO 2.31

By the monotonicity Lemma 2.3,

−
∫

Ω

∫
Ω

J(x− y)|ρ(y)− ρ(x)|pn−2(ρ(y)− ρ(x)) dy (upn(x)− ρ(x)) dx

≤ −
∫

Ω

∫
Ω

J(x− y)|upn(y)− upn(x)|pn−2(upn(y)− upn(x)) dy (upn(x)− ρ(x))dx.

Therefore, taking limits in n,

−
∫

Ω

∫
Ω

J(x− y) sgn0(ρ(y)− ρ(x)) dy (u(x)− ρ(x)) dx

≤ −
∫

Ω

∫
Ω

J(x− y)g(x, y) dy (u(x)− ρ(x)) dx.

Taking ρ = u ± λu, λ > 0, and letting λ → 0, we get (2.23), and the proof is
finished.

�
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Theorem 2.15. Let u0 ∈ L1(Ω). Then there exists a unique solution of (2.19).

Moreover, if ui is a solution in [0, T ] of (2.19) with initial data ui0 ∈ L1(Ω),
i = 1, 2, then∫

Ω

(u1(t)− u2(t))+ ≤
∫

Ω

(u10 − u20)+ for every t ∈ [0, T ].

Proof. As a consequence of the above results, by Theorem 1.7, we have that the
abstract Cauchy problem

(2.24)

 u′(t) + BJ
1 u(t) 3 0, t ∈ (0, T ),

u(0) = u0,

has a unique mild solution u for every initial datum u0 ∈ L1(Ω) and T > 0. Moreover,
due to the complete accretivity of the operator BJ

1,ψ, the mild solution of (2.24) is a
strong solution and a solution in the sense of Definition 2.12.

�
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2.2.2. Rescaling the kernel. Convergence to the total variation
flow.

Let Ω be a smooth bounded domain in RN . We will see that the solutions of
problem (2.19):

ut(x, t) =

∫
Ω

J(x− y)
u(y, t)− u(x, t)

|u(y, t)− u(x, t)|
dy, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

with the kernel J rescaled in a suitable way, converge, as the scaling parameter goes
to zero, to the solutions of the Neumann problem for the total variation flow (2.18):

vt = div

(
Dv

|Dv|

)
in Ω× (0, T ),

Dv

|Dv|
· η = 0 on ∂Ω× (0, T ),

v(·, 0) = u0 in Ω.

Solution to (2.18) were also obtained in [3] using the techniques of completely
accretive operators and the Crandall-Liggett semigroup generation theorem. To this
end, the following operator in L1(Ω) was defined:
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The 1–Laplacian operator with Dirichlet boundary conditions.

(v, v̂) ∈ B1 if and only if v, v̂ ∈ L1(Ω), Tk(v) ∈ BV (Ω) for all k > 0 and there
exists ζ ∈ L∞(Ω,RN) with ‖ζ‖∞ ≤ 1 such that

v̂ = −div(ζ) in D′(Ω)

and ∫
Ω

(ξ − Tk(v))v̂ dx ≤
∫

Ω

ζ · ∇ξ dx− |DTk(v)|(Ω),

∀ ξ ∈ W 1,1(Ω) ∩ L∞(Ω), ∀ k > 0.

And it was proved:

Theorem 2.16. The operator B1 is m-completely accretive in L1(Ω) with dense
domain. For any u0 ∈ L1(Ω) the semigroup solution v(t) = e−tB1u0 is a strong
solution of problem (2.18).
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Now we return to the analysis of the nonlocal problem and set

J1,ε(x) :=
CJ,1
ε1+N

J
(x
ε

)
,

with CJ,1
−1 := 1

2

∫
RN J(z)|zN | dz being a normalizing constant.

Let uε be the solution of problem (2.19) with J replaced by J1,ε and the same initial
condition u0. The main result now states that these functions uε converge strongly
to the solution of the local problem (2.18).

Theorem 2.17. Suppose J(x) ≥ J(y) if |x| ≤ |y|. Let T > 0 and u0 ∈ L1(Ω).
Let uε be the unique solution in [0, T ] of (2.19) with J replaced by J1,ε and v the
unique solution of (2.18). Then

lim
ε→0

sup
t∈[0,T ]

‖uε(·, t)− v(·, t)‖L1(Ω) = 0.

Arguing as in the proof of Theorem 2.11, since the solutions of the above theorem
coincide with the semigroup solutions, by Theorem 1.12, to prove Theorem 2.17 it is
enough to obtain the following result:

Theorem 2.18. Suppose J(x) ≥ J(y) if |x| ≤ |y|. Then, for any φ ∈ L∞(Ω),(
I + B

J1,ε
1

)−1

φ→ (I + B1)−1 φ in L1(Ω) as ε→ 0.
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Proof. Given ε > 0, we set uε :=
(
I + B

J1,ε
1

)−1

φ. Then there exists gε ∈
L∞(Ω× Ω), gε(x, y) = −gε(y, x) for almost all x, y ∈ Ω, ‖gε‖∞ ≤ 1, such that

J

(
x− y
ε

)
gε(x, y) ∈ J

(
x− y
ε

)
sgn(uε(y)− uε(x)) for a.e. x, y ∈ Ω

and

(2.25) − CJ,1
ε1+N

∫
Ω

J

(
x− y
ε

)
gε(x, y)dy = φ(x)− uε(x) for a.e. x ∈ Ω.

Moreover uε � φ. Hence, by Proposition 1.16, there exists a sequence εn → 0 such
that

uεn ⇀ v weakly in L1(Ω), u� φ.

Consequently, ‖uεn‖L∞(Ω), ‖v‖L∞(Ω) ≤ ‖φ‖L∞(Ω).

Observe that
(2.26)

−
∫

Ω

∫
Ω

J

(
x− y
εn

)
gεn(x, y)dy uεn(x) dx =

1

2

∫
Ω

∫
Ω

J

(
x− y
εn

)
|uεn(y)− uεn(x)| dy dx.
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Changing variables and having in mind (2.26), we get∫
RN

∫
Ω

CJ,1
2
J(z)χΩ(x + εnz)

∣∣∣∣uεn(x + εnz)− uεn(x)

εn

∣∣∣∣ dx dz
=

∫
Ω

∫
Ω

1

2

CJ,1
εnN

J

(
x− y
εn

) ∣∣∣∣uεn(y)− uεn(x)

εn

∣∣∣∣ dx dy
=

∫
Ω

(φ(x)− uεn(x))uεn(x) dx ≤M, ∀n ∈ N.

Therefore, by Theorem 2.9, v ∈ BV (Ω),

CJ,1
2
J(z)χΩ(x + εnz)

uεn(x + εnz)− uεn(x)

εn
⇀

CJ,1
2
J(z)z ·Dv

weakly as measures and

uεn → v strongly in L1(Ω).

Moreover, we also can assume that

J(z)χΩ(x + εnz)gεn(x, x + εnz) ⇀ Λ(x, z)

weakly∗ in L∞(Ω)× L∞(RN), with Λ(x, z) ≤ J(z) almost everywhere in Ω× RN .
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From (2.25) we have

CJ,1
2

∫
RN

∫
Ω

J(z)χΩ(x + εnz)gεn(x, x + εnz) dz
ξ(x + εnz)− ξ(x)

εn
dx

=

∫
Ω

(φ(x)− uεn(x))ξ(x) dx, ∀ ξ ∈ L∞(Ω).

And passing to the limit we get

(2.27)
CJ,1

2

∫
RN

∫
Ω

Λ(x, z)z · ∇ξ(x) dx dz =

∫
Ω

(φ(x)− v(x))ξ(x) dx

for all smooth ξ and, by approximation, for all ξ ∈ L∞(Ω) ∩W 1,1(Ω).

We denote by ζ = (ζ1, . . . , ζN) the vector field defined by

ζi(x) :=
CJ,1

2

∫
RN

Λ(x, z)zi dz, i = 1, . . . , N.

Then ζ ∈ L∞(Ω,RN), and from (2.27),

−div(ζ) = φ− v in D′(Ω).

Let us show that

(2.28) ‖ζ‖∞ ≤ 1.
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Given ξ ∈ RN \ {0}, consider Rξ the rotation such that Rt
ξ(ξ) = e1|ξ|. Then, if we

make the change of variables z = Rξ(y), we obtain

ζ(x) · ξ =
CJ,1

2

∫
RN

Λ(x, z)z · ξ dz =
CJ,1

2

∫
RN

Λ(x,Rξ(y))Rξ(y) · ξ dy

=
CJ,1

2

∫
RN

Λ(x,Rξ(y))y1|ξ| dy.

On the other hand, since J is a radial function and Λ(x, z) ≤ J(z) almost everywhere,

C−1
J,1 =

1

2

∫
RN
J(z)|z1| dz

and

|ζ(x) · ξ| ≤ CJ,1
2

∫
RN
J(y)|y1| dy|ξ| = |ξ| a.e. x ∈ Ω.

Therefore, (2.28) holds.

Since v ∈ L∞(Ω), to finish the proof we only need to show that∫
Ω

(ξ − v)(φ− v) dx ≤
∫

Ω

ζ · ∇ξ dx− |Dv|(Ω) ∀ ξ ∈ W 1,1(Ω) ∩ L∞(Ω).
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For w smooth we have that∫
Ω

(φ(x)− uεn(x))(w(x)− uεn(x)) dx

=
CJ,1

2

∫
RN

∫
Ω

J(z)χΩ(x + εnz)gεn(x, x + εnz) dz
w(x + εnz)− w(x)

εn
dx

−CJ,1
2

∫
RN

∫
Ω

J(z)χΩ(x + εnz)

∣∣∣∣uεn(x + εnz)− uεn(x)

εn

∣∣∣∣ dx.
Then, taking limits as n→∞, we get∫

Ω

(w − v)(φ− v) dx

≤ CJ,1
2

∫
Ω

∫
RN

Λ(x, z)z · ∇w(x) dx dz − CJ,1
2

∫
Ω

∫
RN
|J(z)z ·Dv|

=

∫
Ω

ζ · ∇w dx− CJ,1
2

∫
Ω

∫
RN
|J(z)z ·Dv| =

∫
Ω

ζ · ∇w dx−
∫

Ω

|Dv|,

for all smooth w and, by approximation, for all w ∈ W 1,1(Ω) ∩ L∞(Ω). �
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2.3. The Dirichlet problem for fractional 1–Lapacian evolution

Our aim here is to study the evolution equation associated to a nonlinear ver-
sion of the fractional Laplacian, the fractional 1–Laplacian with Dirichlet boundary
conditions, that formally we write as

(2.29)


ut(x, t) =

∫
RN

1

|x− y|N+s

u(y, t)− u(x, t)

|u(y, t)− u(x, t)|
dy, x ∈ Ω, t > 0.

u(x, t) = 0, x ∈ RN \ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where 0 < s < 1 and Ω is a bounded smooth domain in RN .

Changing the ambient space. We have to change the underlying space, now Lp is
not adequate for these kind of nonlocal problems but they will be fractional Sobolev
spaces. Let the (s, p)–Gagliardo seminorm of a measurable function u in Ω be

[u]W s,p(Ω) :=

(∫
Ω

∫
Ω

|u(y)− u(x)|p

|x− y|N+sp
dxdy

)1
p

.

We consider the fractional Sobolev space

W s,p(Ω) = {u ∈ Lp(Ω) : [u]W s,p(Ω) < +∞},
which is a Banach space respect to the norm ‖u‖W s,p(Ω) := [u]W s,p(Ω) + ‖u‖Lp(Ω).
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We also consider by W̃ s,p
0 (Ω) the closure of C∞0 (Ω) in the norm

u 7→ [u]W s,p(RN ) + ‖u‖Lp(Ω).

Functions in the space W̃ s,p
0 (Ω) can be defined in the whole space W s,p(RN) by

extending then by zero outside Ω, as we will consider.

See [32] and [24] for a good overview of fractional Sobolev spaces.

For 1 < p < ∞, we can define the fractional p–Laplacian ∆s
pu trough the Euler-

Lagrange associated to the minimization of [u]p
W s,p(RN )

:

∆s
pu(x) := P.V.

∫
RN

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x)) dy, x ∈ RN .

Proposition 2.19 ([48]). For any f ∈ L2(Ω), there exists a unique u ∈
W̃ s,p

0 (Ω) ∩ L2(Ω) solving the Dirichlet problem{
u(x)−∆s

pu(x) = f (x) in Ω,

u(x) = 0 in RN \ Ω,

in the following sense:

1

2

∫
RN

∫
RN

1

|x− y|N+sp
|u(y)− u(x)|p−2(u(y)− u(x))(ϕ(y)− ϕ(x)) dydx =

∫
Ω

(f − u)ϕ,

for all ϕ ∈ W̃ s,p
0 (Ω) ∩ L2(Ω).
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We now define formally the fractional 1–Laplacian operator of order s of a func-
tion u ∈ W s,1(RN):

∆s
1u(x) =

∫
RN

1

|x− y|N+s

u(y)− u(x)

|u(y)− u(x)|
dy, x ∈ RN .

Solutions to the Dirichlet problem associated with this operator ∆s
1 will be in a

larger space than W̃ s,1
0 (Ω), they live in the space

Ws,1
0 (Ω) := {u ∈ L1(Ω) : [u]W s,1(RN ) <∞ and u = 0 a.e. in RN \ Ω}.

Definition 2.20. Given v ∈ L2(Ω), we say that u ∈ Ws,1
0 (Ω) is a weak solution

to the Dirichlet problem

(2.30)

{
−∆s

1u(x) = v(x) in Ω

u(x) = 0 in RN \ Ω.

if there exists η ∈ L∞(RN×RN), η(x, y) = −η(y, x) for almost all (x, y) ∈ RN×RN ,
‖η‖L∞(RN×RN ) ≤ 1, such that

η(x, y) ∈ sign(u(y)− u(x)) a.e. (x, y) ∈ RN × RN , and

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x)) dydx =

∫
Ω

v(x)ϕ(x) dx

for all ϕ ∈ Ws,1
0 (Ω) ∩ L2(Ω).
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Definition 2.21. Given u0 ∈ L2(Ω), we say that u is a solution of the Dirichlet
problem (2.29) in [0, T ], if u ∈ W 1,1(0, T ;L2(Ω)), u(0, ·) = u0, and, for almost all
t ∈ (0, T ),  ut(t, ·) = ∆s

1u(t, ·) in Ω,

u(t, ·) = 0 in RN \ Ω,

in the sense of Definition 2.20; that is, if there exists η(t, ·, ·) ∈ L∞(RN × RN) such
that

η(t, x, y) = −η(t, y, x) for almost all (x, y) ∈ RN × RN ,

‖η(t, ·, ·)‖L∞(RN×RN ) ≤ 1,

η(t, x, y) ∈ sign(u(t, y)− u(t, x)) for a.e. (t, x, y) ∈ R+ × RN × RN ,

and

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(t, x, y)(ϕ(y)− ϕ(x)) dydx = −

∫
Ω

ut(t, x)ϕ(x) dx

for all ϕ ∈ Ws,1
0 (Ω) ∩ L2(Ω).
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2.3.1. Existence and uniqueness. To study the Dirichlet problem (2.29) we
consider the energy functional:

Ds1(u) :=


1

2

∫
RN

∫
RN

1

|x− y|N+s
|u(y)− u(x)| dxdy if u ∈ Ws,1

0 (Ω) ∩ L2(Ω),

+∞ if u ∈ L2(Ω) \Ws,1
0 (Ω).

Ds1 is convex and lower semi-continuous in L2(Ω). Then, the subdifferential ∂Ds1 is
a maximal monotone operator in L2(Ω). We characterize the subdifferential ∂Ds1 in
the following way.

Definition 2.22. We define in L2(Ω)× L2(Ω) the operator D1,s as:

(u, v) ∈ D1,s ⇐⇒ u, v ∈ L2(Ω) and u is a weak solution to problem (2.30).

Theorem 2.23. The operator D1,s is m–completely accretive in L2(Ω) with
dense domain. Moreover,

D1,s = ∂Ds1.

Proof. The proof of the complete accretiveness is similar to the one in the previous
section. So, let us see that the operator D1,s satisfies the range condition

(2.31) L2(Ω) ⊂ R(I + D1,s).
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In what follows, C will denote a constant independent of p that may change from
one line to another.

Set p? := Np
N−sp for the fractional critical exponent for 1 ≤ p < N

s .

For 1 < p < N
s , take sp := N

(p?s)
′ . We have 0 < sp < 1 for all 1 < p < (N ?)′ =

N
N+s−1 ≤

N
s .

Then, given f ∈ L2(Ω), for 1 < p < (N ?)′, applying Proposition 2.19, there exists

up ∈ W̃
sp,p
0 (Ω) ∩ L2(Ω) such that (since N + spp = (N + s)p)

(2.32)
1

2

∫
RN

∫
RN

1

|x− y|(N+s)p
|up(y)−up(x)|p−2(up(y)−up(x))(ϕ(y)−ϕ(x)) dydx =

∫
Ω

(f−up)ϕ,

for all ϕ ∈ W̃ sp,p
0 (Ω) ∩ L2(Ω). Moreover, up � f and, hence,

(2.33) ‖up‖Lq(Ω) ≤ ‖f‖Lq(Ω) ∀1 < p < (N ?)′, for any 1 ≤ q ≤ 2.

By (2.33), there exists a sequence pn ↓ 1, such that

upn ⇀ u weakly in L2(Ω), and ‖u‖L2(Ω) ≤ ‖f‖L2(Ω).

On the other hand, taking ϕ = up in (2.32) we have
(2.34)
1

2

∫
RN

∫
RN

1

|x− y|(N+s)p
|up(y)−up(x)|p dydx =

∫
Ω

(f−up)up ≤ C ∀1 < p < (N ?)′.
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Now, since∫
Ω

∫
Ω

1

|x− y|N+s
|up(y)− up(x)| dydx

≤
(∫

Ω

∫
Ω

1

|x− y|(N+s)p
|up(y)− up(x)|p dydx

)1/p

|Ω× Ω|1/p′,

from (2.34) we get
‖up‖W s,1(Ω) ≤ C ∀1 < p < (N ?)′.

Hence, by the compact embedding Theorem 2.7 in [24], we have that for a subsequence
of {pn}, denoted equal,

upn → u strongly in L1(Ω) and u ∈ Ws,1
0 (Ω).

For k > 0 we set

Cp,k :=

{
(x, y) ∈ RN × RN :

∣∣∣∣up(y)− up(x)

|x− y|N+s

∣∣∣∣ > k

}
.

Then, by (2.34),

(2.35) |Cp,k| ≤
C

kp
.
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On the other hand,∣∣∣∣∣
∣∣∣∣up(y)− up(x)

|x− y|N+s

∣∣∣∣p−2
up(y)− up(x)

|x− y|N+s
χRN×RN\Cp,k(x, y)

∣∣∣∣∣ ≤ kp−1 ∀(x, y) ∈ RN×RN .

Therefore, for any k ∈ N there exists a subsequence of {pn}n, denoted by {pnkj}j,
such that∣∣∣∣∣∣

up
nkj

(y)− up
nkj

(x)

|x− y|N+s

∣∣∣∣∣∣
p
nkj
−2 up

nkj

(y)− up
nkj

(x)

|x− y|N+s
χRN×RN\Cp

nkj
,k

(x, y)
j→∞
⇀ ηk(x, y),

weakly∗ in L∞(RN × RN), with ηk antisymmetric such that ‖ηk‖L∞(RN×RN ) ≤ 1.

Now there exist a subsequence of {ηk}k, {ηkj}j such that,

ηkj
j→∞
⇀ η weakly∗ in L∞(RN × RN),

with η antisymmetric and
‖η‖L∞(RN×RN ) ≤ 1.

Let us finally pass to the limit in (2.32).



J. JULIÁN TOLEDO 2.49

Let us first take ϕ ∈ D(Ω). For a fixed 1 < q0 <
N

N+s−1, we can extend ϕ as 0 outside

Ω, and then ϕ ∈ W r0,q0(RN) with r0 = (N+s)q0−N
q0

< 1. Fix k ∈ N. From (2.32):
(2.36)∫

RN×RN

∣∣∣∣∣∣
up

nkj

(y)− up
nkj

(x)

|x− y|N+s

∣∣∣∣∣∣
p
nkj
−2 up

nkj

(y)− up
nkj

(x)

|x− y|N+s
χRN×RN\Cp

nkj
,k

(x, y)
ϕ(y)− ϕ(x)

|x− y|N+s
dydx

−
∫

Ω

(f − up
nkj

)ϕ

= −1

2

∫
RN×RN

∣∣∣∣∣∣
up

nkj

(y)− up
nkj

(x)

|x− y|N+s

∣∣∣∣∣∣
p
nkj
−2 up

nkj

(y)− up
nkj

(x)

|x− y|N+s
χCp

nkj
,k

(x, y)
ϕ(y)− ϕ(x)

|x− y|N+s
dydx,

Now, for pnkj
< q0, using Hölder’s inequality, (2.34) and (2.35),∣∣∣∣∣∣∣

∫
RN×RN

∣∣∣∣∣∣
up

nkj

(y)− up
nkj

(x)

|x− y|N+s

∣∣∣∣∣∣
p
nkj
−2 up

nkj

(y)− up
nkj

(x)

|x− y|N+s
χCp

nkj
,k

(x, y)
ϕ(y)− ϕ(x)

|x− y|N+s
dydx

∣∣∣∣∣∣∣
=

∫
RN×RN

∣∣∣∣∣∣
up

nkj

(y)− up
nkj

(x)

|x− y|N+s

∣∣∣∣∣∣
p
nkj

dydx

(p
nkj
−1)/p

nkj (∫
RN×RN

|ϕ(y)− ϕ(x)|q0

|x− y|N+r0q0
dydx

)1/q0

|Cp
nkj
,k|

q0−pnkj
p
nkj

q0

≤ Cϕ

k
1−p

nkj
/q0
.
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Therefore, taking limits as j →∞ in (2.36), we get∣∣∣∣12
∫
RN

∫
RN

1

|x− y|N+s
ηk(x, y)(ϕ(y)− ϕ(x)) dydx−

∫
Ω

(f − u)ϕ

∣∣∣∣ ≤ Cϕ
k
.

In particular,∣∣∣∣12
∫
RN

∫
RN

1

|x− y|N+s
ηkj(x, y)(ϕ(y)− ϕ(x)) dydx−

∫
Ω

(f − u)ϕ

∣∣∣∣ ≤ Cϕ
kj
.

Therefore, taking now the limit as j →∞, we obtain that

(2.37)
1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x)) dydx−

∫
Ω

(f − u)ϕ = 0.

Suppose now that ϕ ∈ Ws,1
0 (Ω) ∩ L2(Ω). As in [24, Lemma 2.3], there exists

ϕn ∈ D(Ω) such that

ϕn → ϕ in L2(Ω) as n→ +∞,

and

[ϕn]W s,1(RN ) → [ϕ]W s,1(RN ) as n→ +∞.
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By Fatou’s Lemma and (2.37), we have

1

2

∫
RN

∫
RN

(
1

|x− y|N+s
|ϕ(y)− ϕ(x)| − 1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x))

)
dydx

≤ lim inf
n→∞

1

2

∫
RN

∫
RN

(
1

|x− y|N+s
|ϕn(y)− ϕn(x)| − 1

|x− y|N+s
η(x, y)(ϕn(y)− ϕn(x))

)
dydx

=
1

2

∫
RN

∫
RN

1

|x− y|N+s
|ϕ(y)− ϕ(x)|dydx−

∫
Ω

(f − u)ϕ,

which implies

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x)) dydx ≥

∫
Ω

(f − u)ϕ

for all ϕ ∈ Ws,1
0 (Ω)∩L2(Ω). But we obtain an equality, since the above inequality is

also true for −ϕ.

To finish the proof of (2.31), we only need to show that

(2.38) η(x, y) ∈ sign(u(y)− u(x)) a.e. (x, y) ∈ RN × RN .
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By (2.34) for pn, and taking ϕ = u in (2.37), we have

1

2

∫
RN

∫
RN

1

|x− y|(N+s)pn
|upn(y)− upn(x)|pn dydx =

∫
Ω

(f (x)− upn(x))upn(x)dx

=

∫
Ω

(f (x)− u(x))u(x)dx−
∫

Ω

f (x)(u(x)− upn(x))dx

+2

∫
Ω

u(x)((u(x)− upn(x))dx−
∫

Ω

(u(x)− upn(x))2dx

≤ 1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(u(y)− u(x)) dydx−

∫
Ω

f (x)(u(x)− upn(x))dx

+2

∫
Ω

u(x)((u(x)− upn(x))dx.

Then, taking limit as n→∞, we get

lim sup
n→∞

1

2

∫
RN

∫
RN

1

|x− y|(N+s)pn
|upn(y)− upn(x)|pn dydx

≤ 1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(u(y)− u(x)) dydx.
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On the other hand, given ε > 0 we can find A ⊃ Ω with |A| < +∞ such that∫
RN\A

1

|x− y|N+s
dy ≤ ε

‖f‖L1(Ω)

∀x ∈ Ω.

Then,

1

2

∫
RN

∫
RN

1

|x− y|N+s
|upn(y)− upn(x)| dydx

=

∫
Ω

∫
RN\A

1

|x− y|N+s
|upn(y)− upn(x)| dydx

+
1

2

∫
A

∫
A

1

|x− y|N+s
|upn(y)− upn(x)| dydx

=

∫
Ω

|up(x)|
(∫

RN\A

1

|x− y|N+s
dy

)
dx

+
1

2

∫
A

∫
A

1

|x− y|N+s
|upn(y)− upn(x)| dydx

≤ ε +
1

2

∫
A

∫
A

1

|x− y|N+s
|upn(y)− upn(x)| dydx.
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By the lower semi-continuity in L1(RN) of [ · ]W s,1(Ω), we have

1

2

∫
RN

∫
RN

1

|x− y|N+s
|u(y)− u(x)| dydx

≤ lim inf
n→∞

1

2

∫
RN

∫
RN

1

|x− y|N+s
|upn(y)− upn(x)| dydx

≤ ε + lim inf
n→∞

1

2

∫
A

∫
A

1

|x− y|N+s
|upn(y)− upn(x)| dydx

≤ ε + lim inf
n→∞

1

2

(∫
RN

∫
RN

1

|x− y|(N+s)pn
|upn(y)− upn(x)|pn dydx

)1/pn

|A× A|1/pn′

≤ ε +
1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(u(y)− u(x)) dydx.

Therefore,
1

2

∫
RN

∫
RN

1

|x− y|N+s
|u(y)− u(x)| dydx

≤ ε +
1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(u(y)− u(x)) dydx,

from where it follows (2.38), since ε was arbitrary.



J. JULIÁN TOLEDO 2.55

Finally, let us see that D1,s = ∂Ds1.

Given (u, v) ∈ D1,s, there exists η ∈ L∞(RN ×RN), η(x, y) = −η(y, x) for almost
all (x, y) ∈ RN × RN , ‖η‖L∞(RN×RN ) ≤ 1, such that

1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y)(ϕ(y)− ϕ(x)) dydx

=

∫
Ω

v(x)ϕ(x) dx for all ϕ ∈ Ws,1
0 (Ω) ∩ L2(Ω),

and

1

2

∫
RN

∫
RN

1

|x− y|N+s
|u(y)− u(x)| dydx =

∫
Ω

v(x)u(x) dx.

Then, given w ∈ Ws,1
0 (Ω) ∩ L2(Ω), we have∫

Ω

v(x)(w(x)− u(x)) dx =
1

2

∫
RN

∫
RN

1

|x− y|N+s
η(x, y) (w(y)− w(x)) dydx−Ds1(u)

≤ Ds1(w)−Ds1(u).

Therefore, (u, v) ∈ ∂Ds1, and consequently D1,s ⊂ ∂Ds1. Then, since D1,s is m–
accretive in L2(Ω), we have ∂Ds1 = D1,s. �
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Theorem 2.24. For every u0 ∈ L2(Ω) there exists a unique solution of the
Dirichlet problem (2.29) in (0, T ) for any T > 0. Moreover, if ui,0 ∈ L2(Ω) and
ui are solutions of the Dirichlet problem (2.29) in (0, T ) with initial data ui,0,
i = 1, 2, respectively, then∫

Ω

(u1(t)− u2(t))+ ≤
∫

Ω

(u1,0 − u2,0)+ for every t ∈ (0, T ).

2.3.2. Rescaling.

We now study the limit as s→ 1 in the nonlocal fractional 1−Laplacian evolution
problem

(2.39)


ut(t, x) = L1,s∆

s
1u(t, x) in (0, T )× Ω,

u(t, x) = 0 in (0, T )× (RN \ Ω),

u(0, x) = u0(x) in Ω,

where the scale factor is L1,s = 2
K1,N

(1− s), K1,N = 1
|SN−1|

∫
SN−1 |e1 · σ|dHN−1(σ).
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Theorem 2.25. Given sn → 1−, let un be the solution of (2.39) for s = sn.
Then, if u is the solution of the Dirichlet 1–Laplacian problem

ut(t, x) = ∆1u(t, x), in (0, T )× Ω,

u(t, x) = 0, on (0, T )× ∂Ω,

u(0, x) = u0(x), in Ω,

we have limn→∞ supt∈[0,T ] ‖un(t)− u(t)‖L2(Ω) = 0.

We have full convergence as s→ 1 (without the need of considering subsequences)
since the solution to the limit problem is unique.

Results in this direction have been obtained in [41] in the stationary case (see also
[22] and [24]).

Proof. Consider the energy functionals

Φsn(u) =


1− sn
K1,N

∫
RN

∫
RN

|u(y)− u(x)|
|x− y|N+sn

dxdy if u ∈ Wsn,1
0 (Ω) ∩ L2(Ω),

+∞ if u ∈ L2(Ω) \Wsn,1
0 (Ω),

and

Φ(u) :=

 |Du|(Ω) +

∫
∂Ω

|u| if u ∈ BV (Ω) ∩ L2(Ω),

+∞ if u ∈ L2(Ω) \BV (Ω).
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Then, un is the strong solution of the abstract Cauchy problem{
u′n(t) + ∂Φsn(un(t)) 3 0, a.e. t ∈ (0, T ),

un(0) = u0,

and also (see [4]) u is the strong solution of the abstract Cauchy problem{
u′(t) + ∂Φ(u(t)) 3 0, a.e. t ∈ (0, T ),

u(0) = u0.

Let us now check the Mosco convergence of the functionals Φsn to Φ, that is,

∀u ∈ Dom(Φ) ∃un ∈ Dom(Φsn) : un → u and Φ(u) ≥ lim sup
n→∞

Φsn(un);

and

(2.40) if un ⇀ u then Φ(u) ≤ lim inf
n→∞

Φsn(un).

Set Ω̃ := Ω + B(0, 1). Observe that

(2.41) Φsn(u) = Ψsn(u) +
2(1− sn)

K1,N

∫
Ω

(∫
RN\Ω̃

1

|x− y|N+sn
dy

)
|u(x)|dx,

where

Ψsn(u) =
1− sn
K1,N

∫
Ω̃

∫
Ω̃

|u(y)− u(x)|
|x− y|N+sn

dxdy.
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Observe also that

(2.42) lim
n→∞

2(1− sn)

K1,N

∫
Ω

(∫
RN\Ω̃

1

|x− y|N+sn
dy

)
|u(x)|dx = 0.

Given u ∈ Dom(ΦΩ,1) = BV (Ω) ∩ L2(Ω), we consider un = uχΩ; we have un ∈
Wsn,1

0 (Ω) ∩ L2(Ω). Now, in [31] (see also [23]) J. Dávila proves that

lim
n→∞

Ψsn(un) = |Du|(Ω̃).

But |Du|(Ω̃) = |Du|(Ω) +
∫
∂Ω |u|dH

N−1, hence

lim
n→∞

Φsn(un) = Φ(u).

To prove (2.40) we can suppose that {Φsn(un) : n ∈ N} is bounded. Therefore,
{Ψsn(un) : n ∈ N} is also bounded and consequently, from [23] and [51],

un → u strongly in L1(Ω̃)

and

|Du|(Ω̃) ≤ lim inf
n

ΨΩ̃,1
sn

(un).

Now, since |Du|(Ω̃) = |Du|(Ω) +
∫
∂Ω |u|, from (2.41) and (2.42), we get (2.40). �
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2.4. Poincaré type inequalities

For several classical partial differential equations the solutions belong to appro-
priate Sobolev spaces. Hence, Poincaré type inequalities play a key role in their
analysis. When considering nonlocal problems with non–degenerate kernels, we look
for solutions in Lp spaces; however, we can prove nonlocal analogs of Poincaré type
inequalities that also play a role for these problems.

Let J : RN → R be a nonnegative continuous radial function with compact support,
J(0) > 0 and

∫
RN J(x)dx = 1.

Proposition 2.26. Let q ≥ 1 and Ω a bounded domain in RN .

1. Let ψ ∈ Lq(ΩJ \ Ω). There exists λ(J,Ω, q) > 0 such that

λ

∫
Ω

|u(x)|q dx ≤
∫

Ω

∫
ΩJ

J(x− y)|uψ(y)− u(x)|q dy dx +

∫
ΩJ\Ω
|ψ(y)|q dy

for all u ∈ Lq(Ω).

2. There exists β(J,Ω, q) > 0 such that

β

∫
Ω

∣∣∣∣u− 1

|Ω|

∫
Ω

u

∣∣∣∣q ≤ 1

2

∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)|q dy dx,

for every u ∈ Lq(Ω).
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Proof.

Proof of the first inequality. Take r, α > 0 such that J(x) ≥ α in B(0, r). Let

B0 = {x ∈ ΩJ \ Ω : d(x,Ω) ≤ r/2},

B1 = {x ∈ Ω : d(x,B0) ≤ r/2},

and

Bj =

{
x ∈ Ω \

j−1⋃
k=1

Bk : d(x,Bj−1) ≤ r/2

}
, j = 2, 3, . . . .

Observe that we can cover Ω by a finite number of nonnull sets {Bj}lrj=1.

Now, for j = 1, . . . , lr,∫
Ω

∫
ΩJ

J(x− y)|uψ(y)− u(x)|q dy dx ≥
∫
Bj

∫
Bj−1

J(x− y)|uψ(y)− u(x)|q dy dx,
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and∫
Bj

∫
Bj−1

J(x− y)|uψ(y)− u(x)|q dy dx

≥ 1

2q

∫
Bj

∫
Bj−1

J(x− y)|u(x)|q dy dx−
∫
Bj

∫
Bj−1

J(x− y)|uψ(y)|q dy dx

=
1

2q

∫
Bj

(∫
Bj−1

J(x− y) dy

)
|u(x)|q dx−

∫
Bj−1

(∫
Bj

J(x− y) dx

)
|uψ(y)|q dy

≥ αj

∫
Bj

|u(x)|q dx− β
∫
Bj−1

|uψ(y)|q dy,

where

αj =
1

2q
min
x∈Bj

∫
Bj−1

J(x− y) dy > 0

(since J(x) ≥ α in B(0, r)) and

β =

∫
RN
J(x) dx.
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Hence∫
Ω

∫
ΩJ

J(x− y)|uψ(y)− u(x)|q dy dx ≥ αj

∫
Bj

|u(x)|q dx− β
∫
Bj−1

|uψ(y)|q dy.

Therefore, since uψ(y) = ψ(y) if y ∈ B0, uψ(y) = u(y) if y ∈ Bj, j = 1, . . . , lr,

Bj ∩ Bi = ∅, for all i 6= j and |Ω \
⋃jr
j=1Bj| = 0, it is easy to see, by cancelation,

that there exists λ = λ(J,Ω, q) > 0 such that

λ

∫
Ω

|u|q ≤
∫

Ω

∫
ΩJ

J(x− y)|uψ(y)− u(x)|q dy dx +

∫
B0

|ψ|q.

Proof of the second inequality. It is enough to prove that there exists a constant
c such that
(2.43)

‖u‖q ≤ c

((∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)|qdydx
)1/q

+

∣∣∣∣∫
Ω

u

∣∣∣∣
)
∀u ∈ Lq(Ω).

Let r > 0 be such that J(x) ≥ α > 0 in B(0, r). There exists {xi}mi=1 ⊂ Ω
such that Ω ⊂

⋃m
i=1B(xi, r/2). Take 0 < δ < r/2 such that B(xi, δ) ⊂ Ω for all

i = 1, . . . ,m. Then, for any x̂i ∈ B(xi, δ), i = 1, . . . ,m,

(2.44) Ω =

m⋃
i=1

(B(x̂i, r) ∩ Ω).
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Let us argue by contradiction. Suppose that (2.43) is false. Then there exists
un ∈ Lq(Ω), with ‖un‖Lq(Ω) = 1, satisfying

1 ≥ n

((∫
Ω

∫
Ω

J(x− y)|un(y)− un(x)|qdydx
)1/q

+

∣∣∣∣∫
Ω

un

∣∣∣∣
)
∀n ∈ N.

Consequently,

(2.45) lim
n

∫
Ω

∫
Ω

J(x− y)|un(y)− un(x)|q dy dx = 0

and

lim
n

∫
Ω

un = 0.

Let

Fn(x, y) = J(x− y)1/q|un(y)− un(x)|
and

fn(x) =

∫
Ω

J(x− y)|un(y)− un(x)|q dy.

From (2.45), it follows that

fn → 0 in L1(Ω).
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Passing to a subsequence if necessary, we can assume that

(2.46) fn(x)→ 0 ∀x ∈ Ω \B1, B1 null.

On the other hand, by (2.45), we also have that

Fn → 0 in Lq(Ω× Ω).

So we can assume that, up to a subsequence,

(2.47) Fn(x, y)→ 0 ∀ (x, y) ∈ Ω× Ω \ C, C null.

Take B2 ⊂ Ω the null set satisfying

(2.48) for all x ∈ Ω \B2, the section Cx of C is null.

Let x̂1 ∈ B(x1, δ) \ (B1 ∪ B2); then there exists a subsequence such that, in the
same notation,

un(x̂1)→ λ1 ∈ [−∞,+∞].

Consider now x̂2 ∈ B(x2, δ) \ (B1 ∪ B2); then, up to a subsequence, we can assume
that

un(x̂2)→ λ2 ∈ [−∞,+∞].

So, successively, for x̂m ∈ B(xm, δ) \ (B1 ∪ B2), there exists a subsequence, again
denoted the same way, such that

un(x̂m)→ λm ∈ [−∞,+∞].
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By (2.47) and (2.48),

un(y)→ λi ∀ y ∈ (B(x̂i, r) ∩ Ω) \ Cx̂i.
Now, by (2.44),

Ω = (B(x̂1, r) ∩ Ω) ∪

(
m⋃
i=2

(B(x̂i, r) ∩ Ω)

)
.

Hence, since Ω is a bounded domain, there exists i2 ∈ {2, . . . ,m} such that

(B(x̂1, r) ∩ Ω) ∩ (B(x̂i2, r) ∩ Ω) 6= ∅.
Therefore, λ1 = λi2. Let us call i1 := 1. Again, since

Ω = ((B(x̂i1, r) ∩ Ω) ∪ ((B(x̂i1, r) ∩ Ω)) ∪

 ⋃
i∈{1,...,m}\{i1,i2}

(B(x̂i, r) ∩ Ω)

 ,

there exists i3 ∈ {1, . . . ,m} \ {i1, i2} such that

((B(x̂i1, r) ∩ Ω) ∪ (B(x̂i1, r) ∩ Ω)) ∩ (B(x̂i3, r) ∩ Ω) 6= ∅.
Consequently, λi1 = λi2 = λi3. And using the same argument we get

λ1 = λ2 = · · · = λm = λ.

If |λ| = +∞, we have shown that

|un(y)|q → +∞ for almost every y ∈ Ω,
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which contradicts ‖un‖Lq(Ω) = 1 for all n ∈ N. Hence λ is finite.

On the other hand, by (2.46), fn(x̂i)→ 0, i = 1, . . . ,m. Hence,

Fn(x̂1, ·)→ 0 in Lq(Ω).

Since un(x̂1)→ λ, from the above we conclude that

un → λ in Lq(B(x̂i, r) ∩ Ω).

Using again a compactness argument we get

un → λ in Lq(Ω).

By (2.4), λ = 0, so
un → 0 in Lq(Ω),

which contradicts ‖un‖Lq(Ω) = 1. �

Last page





THEME 3

Some applications

3.1. A nonlocal version of the Aronsson-Evans-Wu model for
sandpiles

The continuous models for the dynamics of a sandpile introduced by G. Aronsson,
L. C. Evans and Y. Wu in [15] (see also ([53]) is a model in the form of a variational
inequality based on the requirement that the slope of sandpile is at most one.

However, a “more realistic model” would require the slope constraint only on a
larger scale. This is grosso modo the case for the nonlocal model presented here.

This nonlocal model is the counterpart of the local Aronsson-Evans-Wu model
obtained as the limit as p→∞ of Cauchy problems for the p–Laplacian evolution.

By reescaling, the local sandpile model can be recovered from the nonlocal one.

3.1
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3.1.1. The Aronsson-Evans-Wu model for sandpiles.

Assume that u0 (the initial state of the sandpile) is a Lipschitz function with com-
pact support such that

‖∇u0‖∞ ≤ 1,

and f (the source of sand) is a smooth nonnegative function with compact support
in RN × (0, T ). Set v∞(x, t) to describe the amount of the sand at the point x at
time t, the main assumption being that the sandpile is stable when the slope is less
than or equal to one and unstable if not. This model states that v∞ satisfies

(3.1)

{
f (·, t)− (v∞)t(., t) ∈ ∂F∞(v∞(·, t)) a.e. t ∈ (0, T ),

v∞(x, 0) = u0(x) in RN

where

F∞(v) =

{
0 if v ∈ L2(RN) ∩W 1,∞(RN), |∇v| ≤ 1,

+∞ otherwise

that is, {
f (·, t)− (v∞)t(·, t) ∈ ∂IK0(v∞(·, t)) a.e. t ∈ (0, T ),

v∞(x, 0) = u0(x) in RN ,

where
K0 :=

{
u ∈ L2(RN) ∩W 1,∞(RN) : |∇u| ≤ 1

}
.
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Problem (3.1) is obtained by taking limits, as p→∞, to

(3.2)

{
(vp)t −∆pvp = f in RN × (0, T ),

vp(x, 0) = u0(x) in RN ,

where f is adding material to an evolving system, where mass particles are continually
rearranged by the p–Laplacian diffusion.

Let us define for 1 < p <∞ the functional

Fp(v) =


1

p

∫
RN
|∇v(y)|p dy if v ∈ L2(RN) ∩W 1,p(RN),

+∞ if v ∈ L2(RN) \W 1,p(RN).

The PDE problem (3.2) is the abstract Cauchy problem associated to ∂Fp:{
f (·, t)− (vp)t(·, t) ∈ ∂Fp(vp(·, t)) a.e. t ∈ (0, T ),

vp(x, 0) = u0(x) in RN .

They prove the existence of a sequence pi → +∞ and a limit function v∞ such
that, for each T > 0,

vpi → v∞ in L2(RN × (0, T )) and a.e.,

∇vpi ⇀ ∇v∞, (vpi)t ⇀ (v∞)t weakly in L2(RN × (0, T )),

and v∞ satisfies (3.1).
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3.1.2. Limit as p→∞ in a nonlocal p–Laplacian Cauchy problem.

Let J : RN → R be a nonnegative continuous radial function with support B(0, 1),
J(0) > 0 and

∫
RN J(x) dx = 1.

In [11] we study the existence and uniqueness of solutions of the following nonlocal
p–Laplacian Cauchy problem
(3.3)

(up)t(x, t) =

∫
RN
J(x− y)|up(y, t)− up(x, t)|p−2(up(y, t)− up(x, t))dy + f (x, t),

x ∈ RN , t > 0,

up(0) = u0 ∈ Lp(RN) ∩ L2(RN).

If we set

GJ
p (u) =

1

2p

∫
RN

∫
RN
J(x− y)|u(y)− u(x)|p dy dx,

then problem (3.3) is the abstract Cauchy problem associated to ∂GJ
p : f (·, t)− (up)t(·, t) ∈ ∂GJ

p (up(·, t)) a.e. t ∈ (0, T ),

up(x, 0) = u0(x) in RN .
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Formally, taking limits to

GJ
p (u) =

1

2p

∫
RN

∫
RN
J(x− y)|u(y)− u(x)|p dy dx,

we get the functional

G1
∞(u) =

 0 if |u(x)− u(y)| ≤ 1, for |x− y| ≤ 1,

+∞ otherwise,

that can be seen as the indicatrice of

K1 :=
{
u ∈ L2(RN) : |u(x)− u(y)| ≤ 1 for |x− y| ≤ 1

}
.

Then the nonlocal limit problem should be

(3.4)

 f (·, t)− ut(·, t) ∈ ∂IK1(u(·, t)) a.e. t ∈ (0, T ),

u(x, 0) = u0(x).
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Lemma 3.1. Given u ∈ L1(Ω) such that

{(x, y) ∈ Ω× Ω : |u(x)− u(y)| > 1, |x− y| ≤ 1}
is a null set of Ω× Ω, there exists û ∈ Kd1(Ω) such that u = û a.e. in Ω.

Theorem 3.2. Let T > 0, f ∈ L2(0, T ;L2(RN) ∩ L∞(RN)), u0 ∈ L2(RN) ∩
L∞(RN) such that |u0(x) − u0(y)| ≤ 1 for |x − y| ≤ 1, and let up be the unique
solution of (3.3), p ≥ 2. Then,

lim
p→∞

sup
t∈[0,T ]

‖up(·, t)− u∞(·, t)‖L2(RN ) = 0,

where u∞ is the unique solution of (3.4).

Proof. To prove the result it is enough to show that the functionals

GJ
p (u) =

1

2p

∫
RN

∫
RN
J(x− y)|u(y)− u(x)|p dy dx

converge to

G1
∞(u) =

{
0 if |u(x)− u(y)| ≤ 1 for |x− y| ≤ 1,

+∞ otherwise,

as p→∞, in the sense of Mosco.

First, let us check that

(3.5) Epi(G1
∞) ⊂ s-lim inf

p→∞
Epi(GJ

p ).
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To this end let (u, λ) ∈ Epi(G1
∞). We can assume that u ∈ K1 and λ ≥ 0 (since

G1
∞(u) = 0). Now for R(p) > 0 take

vp = uχB(0,R(p)) and λp = GJ
p (vp) + λ.

Then, as λ ≥ 0, we have (vp, λp) ∈ Epi(GJ
p ). It is obvious that if R(p) → +∞ as

p→ +∞, we have

vp → u in L2(RN),

and, if we choose R(p) = p
1

4N ,

GJ
p (vp) =

1

2p

∫
RN

∫
RN
J (x− y) |vp(y)− vp(x)|p dy dx ≤ C

R(p)2N

p
→ 0

as p→∞, and (3.5) holds.

Finally, let us prove that

w-lim sup
p→∞

Epi(GJ
p ) ⊂ Epi(G1

∞).

To this end, consider a sequence (upj, λpj) ∈ Epi(GJ
pj

) (pj →∞), that is,

GJ
pj

(upj) ≤ λpj,

with upj ⇀ u and λpj → λ. Therefore we obtain that 0 ≤ λ, since

0 ≤ GJ
pj

(upj) ≤ λpj → λ.
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On the other hand, we have that(∫
RN

∫
RN
J (x− y)

∣∣upj(y)− upj(x)
∣∣pj dy dx)1/pj

≤ (Cpj)
1/pj.

Now, fix a bounded domain Ω ⊂ RN and q < pj. Then, by the above inequality,(∫
Ω

∫
Ω

J (x− y)
∣∣upj(y)− upj(x)

∣∣q dy dx)1/q

≤
(∫

Ω

∫
Ω

J (x− y) dy dx

)(pj−q)/pjq(∫
RN

∫
RN
J (x− y)

∣∣upj(y)− upj(x)
∣∣pj dy dx)1/pj

≤
(∫

Ω

∫
Ω

J (x− y) dy dx

)(pj−q)/pjq
(Cpj)

1/pj .

Hence, we can extract a subsequence, if necessary, and consider pj →∞ to obtain(∫
Ω

∫
Ω

J (x− y) |u(y)− u(x)|q dy dx
)1/q

≤
(∫

Ω

∫
Ω

J (x− y) dy dx

)1/q

.

Now, just letting q →∞, we get

|u(x)− u(y)| ≤ 1 a.e. (x, y) ∈ Ω× Ω, x− y ∈ supp(J).

As Ω was arbitrary, we can conclude that

u ∈ K1. �
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3.1.3. A nonlocal sandpile problem.

For ε > 0 we rescale the functional G1
∞ as follows:

Gε
∞(u) =

{
0 if |u(x)− u(y)| ≤ ε, for |x− y| ≤ ε,

+∞ otherwise.

In other words, Gε
∞ = IKε, where

Kε := {u ∈ L2(RN) : |u(x)− u(y)| ≤ ε, for |x− y| ≤ ε}.
Consider the gradient flow associated to the functional Gε

∞ with a source term f

(3.6)

{
f (·, t)− ut(·, t) ∈ ∂IKε(u(·, t)) a.e. t ∈ (0, T ),

u(x, 0) = u0(x) in RN ,

and the problem

(3.7)

{
f (·, t)− (v∞)t(·, t) ∈ ∂IK0(v∞(·, t)) a.e. t ∈ (0, T ),

v∞(x, 0) = u0(x) in RN ,

where

K0 :=
{
u ∈ L2(RN) ∩W 1,∞(RN) : |∇u| ≤ 1

}
.

Observe that if u ∈ K0, then |∇u| ≤ 1. Hence, |u(x)− u(y)| ≤ |x− y|, and then
u ∈ Kε. That is, K0 ⊂ Kε. We have the following theorem.
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Theorem 3.3. Let T > 0, f ∈ L2(0, T ;L2(RN)), u0 ∈ L2(RN) ∩ W 1,∞(RN)
such that ‖∇u0‖∞ ≤ 1 and consider u∞,ε the unique solution of (3.6). Then, if
v∞ is the unique solution of (3.7), we have

lim
ε→0

sup
t∈[0,T ]

‖u∞,ε(·, t)− v∞(·, t)‖L2(RN ) = 0.

Consequently, we are approximating the sandpile model described in Subsection 3.1.1
by a nonlocal model.

In this nonlocal approximation a configuration of sand is stable when its height u
satisfies |u(x)− u(y)| ≤ ε if |x− y| ≤ ε.

This is a sort of measure of how large is the size of irregularities of the sand; the sand
can be completely irregular for sizes smaller than ε but it has to be arranged for sizes
greater than ε.

The nonlocal version of the Aronsson-Evans-Wu model for sandpiles has been char-
acterized by N. Igbida in [39], where, moreover, the connection with the stochastic
process introduced in [36] is shown, see also [38].

For a model under homogeneous Dirichet boundary condtions see [12].
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Proof of Theorem 3.3. Since u0 ∈ K0, we have that u0 ∈ Kε for all ε > 0,
and consequently the existence of u∞,ε is guaranteed.

By Theorem 1.13, to prove the result it is enough to show that IKε converges to IK0

in the sense of Mosco. It is easy to see that

(3.8) Kε1 ⊂ Kε2 if ε1 ≤ ε2.

Since K0 ⊂ Kε for all ε > 0, we have

K0 ⊂
⋂
ε>0

Kε.

On the other hand, if

u ∈
⋂
ε>0

Kε,

we have

|u(y)− u(x)| ≤ |y − x|, a.e x, y ∈ RN ,

from which it follows that u ∈ K0. Therefore,

(3.9) K0 =
⋂
ε>0

Kε.

Note that

(3.10) Epi(IK0) = K0 × [0,∞), Epi(IKε) = Kε × [0,∞) ∀ ε > 0.
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By (3.9) and (3.10), we obtain

Epi(IK0) ⊂ s-lim inf
ε→0

Epi(IKε).

On the other hand, given (u, λ) ∈ w-lim supε→0 Epi(IKε) there exists (uεk, λk) ∈
Kεk × [0,∞) such that εk → 0 and

uεk ⇀ u in L2(RN), λk → λ in R.
By (3.8), given ε > 0, there exists k0, such that uεk ∈ Kε for all k ≥ k0. Then, since
Kε is a closed convex set, we get u ∈ Kε, and, by (3.9), we obtain that u ∈ K0.
Consequently,

w-lim sup
ε→0

Epi(IKε) ⊂ Epi(IK0).

�
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Explicit solutions.

Figure 1. Source and five time steps.

Figure 2. Letting ε→ 0.
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3.2. A Monge-Kantorovich mass transport problem for a discrete
distance

3.2.1. A mass transport interpretation of the sandpile model.

The Monge mass transport problem, as proposed by Monge in 1781, deals with
the optimal way of moving points from one mass distribution to another so that a
total work done is minimized. In the classical Monge problem the cost function used
to define the work for transport one unit of mass from a point x to a point y is
the Euclidean distance de(x, y), and this problem has been intensively studied and
generalized in different directions that correspond to different classes of cost functions,
specially convex cost functions.

Here we deal with a cost that lacks of convexity. The purpose is to transport an
amount of sand located somewhere to a hole at other place taking into account the
number of steps needed to move each part of sand to its final destination, and trying
to do it making as less as possible steps, that is, we will define the work using:

d1(x, y) =


0 if x = y,
1 if 0 < |x− y| ≤ 1,
2 if 1 < |x− y| ≤ 2,
...

that count the number of steps.
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Monge problem.

Given two measures (for simplicity, take them absolutely continuous with respect
to Lebesgue measure in RN) f+, f− in RN , and supposing the overall condition of
mass balance ∫

RN
f+ dx =

∫
RN
f− dy,

the Monge problem associated to a distance d is given by

minimize

∫
d(x, s(x)) f+(x)dx

among the set of maps s that transport f+ into f−, that is, among s such that∫
RN
h(s(x))f+(x) dx =

∫
RN
h(y)f−(y) dy

for each continuous function h : RN → R.

In general, the Monge problem is ill-posed. In 1942, L. V. Kantorovich ([44])
proposed to study a relaxed version of the Monge problem and, what is more relevant
here, introduced a dual variational principle:
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Monge–Kantorovich problem.

Let π(f+, f−) the set of transport plans between f+ and f−, that is the set of non-
negative Radon measures µ in Ω×Ω such that projx(µ) = f+(x) dx and projy(µ) =
f−(y) dy. The Monge-Kantorovich problem looks for a measure (optimal transport
plan) µ∗ ∈ π(f+, f−) which minimizes the cost functional

Kd(µ) :=

∫
Ω×Ω

d(x, y) dµ(x, y),

in the set π(f+, f−).

In general, inf{Kd(µ) : µ ∈ π(f+, f−)} ≤ inf{Fd(T ) : T ∈ A(f+, f−)}.
On the other hand, if d is a lower semicontinuous cost function, we have existence of

an optimal transport plan µ∗ ∈ π(f+, f−) solving the Monge-Kantorovich problem,
and we have following dual formulation of this minimization problem:

(3.11) min{Kd(µ) : µ ∈ π(f+, f−)} = max
u∈Kd

∫
RN
u(x)(f+(x)− f−(x))dx,

where

Kd(Ω) :=
{
u ∈ L2(Ω) : |u(x)− u(y)| ≤ d(x, y) for all x, y ∈ Ω

}
.

The maximizers u∗ of the right-hand side of (3.11) are called Kantorovich poten-
tials.
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For IKd(Ω) the indicator function ofKd(Ω) we have that the Euler-Lagrange equation
associated with the variational problem

sup
{
Pf+,f−(u) : u ∈ Kd1(Ω)

}
is the equation

(3.12) f+ − f− ∈ ∂IKd(Ω)(u).

That is, the Kantorovich potentials of (3.11) are solutions of (3.12).

For the distance d1, Kd1 is given by

Kd1 :=
{
u ∈ L2(RN) : |u(x)− u(y)| ≤ 1 for |x− y| ≤ 1

}
,

thast is just K1 given in the nonlocal model for sandpiles studied above.

So we can interprete that nonlocal model for sandpiles using these new terminology
(as for the local problem). Remember that the height u of the sandpile evolves
following {

f (t, ·)− ut(t, ·) ∈ ∂IK1(u(t, ·)) a.e. t ∈ (0, T ),
u(x, 0) = u0(x),

where f is a source. Then, at each moment of time t, the height function u(t, ·) of
the sandpile is deemed also to be the potential generating the Monge-Kantorovich
reallocation of f (t, ·) to ut(t, ·) when the cost distance considered is d1.
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The Evans and Gangbo approach.

For the Euclidean distance de Evans and Gangbo ([34]) found a solution of

(3.13) f+ − f− ∈ ∂IKde(Ω)(u)

as a limit, as p → ∞, of solutions to the following local p−Laplacian problem with
Dirichlet boundary conditions in a sufficiently large ball BR(0):{

−∆pup = f+ − f− BR(0),
up = 0, ∂BR(0).

Moreover, they characterized the solutions to (3.13) by means of a PDE:

Theorem 3.4. (Evans-Gangbo Theorem). There exists u∗ ∈ Lip1(Ω, de)
such that∫

Ω

u∗(x)(f+(x)−f−(x)) dx = max

{∫
Ω

u(x)(f+(x)− f−(x)) dx : u ∈ Lip1(Ω, de)

}
;

and there exists 0 ≤ a ∈ L∞(Ω) such that

(3.14) f+ − f− = −div(a∇u∗) in D′(Ω).

Furthermore |∇u∗| = 1 a.e. on the set {a > 0}.

The function a that appear in the previous result is the Lagrange multiplier corre-
sponding to the constraint |∇u∗| ≤ 1; it is called the transport density.
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Moreover, Evans and Gangbo use this PDE to find a proof of existence of an
optimal transport map for the classical Monge problem, different to the first one
given by Sudakov in 1979 by means of probability methods.

Our main aim is to perform such program for the discrete distance, but now the
potentials cannot be characterized with standard differentiation. We give an Euler-
Lagrange equation for the Kantorovich potentials obtained as a limit of nonlocal
p−Laplacian problems. In [40] we show how this result allows to construct optimal
transport plans .

3.2.2. A nonlocal version of the Evans-Gangbo approach to optimal
mass transport.

Let J : RN → R be a non-negative continuous radial function with supp(J) =
B1(0), J(0) > 0 and

∫
RN J(x) dx = 1.

Proposition 3.5 ([40]). Let f ∈ L2(Ω) and p > 2. Then the functional

Fp(u) =
1

2p

∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)|p dy dx−
∫

Ω

f (x)u(x) dx

has a unique minimizer up in Sp :=
{
u ∈ Lp(Ω) :

∫
Ω u(x) dx = 0

}
.
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Theorem 3.6. Let f+, f− ∈ L2(Ω) be two non-negative Borel functions satis-
fying the mass balance condition. Let up be the minimizer in Proposition 3.5 for
f = f+ − f−, p > 2. Then, there exists a subsequence {upn}n∈N having as weak
limit a Kantorovich potential u for f± and the metric cost function d1, that is,∫

Ω

u(x)(f+(x)− f−(x)) dx = max
v∈K1

∫
Ω

v(x)(f+(x)− f−(x)) dx.

Proof. For q ≥ 1, we set

|||u|||q :=

(∫
Ω

∫
Ω

J(x− y)|u(y)− u(x)|q dxdy
)1

q

.

By Hölder’s inequality, for r ≥ q :

|||u|||q ≤
(∫

Ω

∫
Ω

J(x− y)|u(y)− u(x)|r dxdy
)1

r
(∫

Ω

∫
Ω

J(x− y) dxdy

)r−q
rq

,

that is,

(3.15) |||u|||q ≤ |||u|||r
(∫

Ω

∫
Ω

J(x− y) dxdy

)r−q
rq

for (r, q), r ≥ q.

Using that Fp(up) ≤ Fp(0) = 0 and the Poincaré’s inequality (2.26).2 we get

|||up|||pp ≤ 2p

∫
Ω

f (x)up(x) dx ≤ 2p ‖f‖2||up||2 ≤
2p‖f‖2

(2β2)1/2
|||up|||2.
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Then, for 2 ≤ q < p, using (3.15) twice (for (p, q) and for (q, 2)),

|||up|||pq ≤ |||up|||pp
(∫

Ω

∫
Ω

J(x− y) dxdy

)p−q
q

≤ 2p‖f‖2

(2β2)1/2
|||up|||2

(∫
Ω

∫
Ω

J(x− y) dxdy

)p−q
q

≤ 2p‖f‖2

(2β2)1/2
|||up|||q

(∫
Ω

∫
Ω

J(x− y) dxdy

)p−q
q +q−2

2q

.

Consequently,

(3.16) |||up|||q ≤
(

2p‖f‖2

(2β2)1/2

) 1
p−1
(∫

Ω

∫
Ω

J(x− y) dxdy

)1
q−

1
2(p−1)

.

Then, {|||up|||q : p > q} is bounded. Hence, by Poincaré’s inequality (2.26).2, we
have that {up : p > q} is bounded in Lq(Ω). Therefore, we can assume that up ⇀ u
weakly in Lq(Ω). By a diagonal process, we have that there is a sequence pn → ∞,
such that upn ⇀ u weakly in Lm(Ω), as n→ +∞, for all m ∈ N. Thus, u ∈ L∞(Ω).
Since the functional v 7→|||v|||q is weakly lower semi-continuous, having in mind
(3.16), we have

|||u|||q ≤
(∫

Ω

∫
Ω

J(x− y) dxdy

)1
q

.
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Therefore, limq→+∞ |||u|||q ≤ 1, from where it follows that |u(x)− u(y)| ≤ d1(x, y)
a.e. in Ω× Ω. Now, thanks to Lemma 3.1 we can suppose, that u ∈ Kd1(Ω).

Let us now see that u is a Kantorovich potential associated with the metric d1. Fix
v ∈ Kd1(Ω). Then,

−
∫

Ω

fup ≤
1

2p

∫
Ω

∫
Ω

J(x− y)|up(y)− up(x)|p dxdy −
∫

Ω

f (x)up(x) dx = Fp(up)

≤ Fp

(
v − 1

|Ω|

∫
Ω

v

)
=

1

2p

∫
Ω

∫
Ω

J(x− y)|v(y)− v(x)|pdxdy −
∫

Ω

f (x)v(x) dx

≤ 1

2p

∫
Ω

∫
Ω

J(x− y)dxdy −
∫

Ω

f (x)v(x) dx,

where we have used
∫

Ω f = 0 for the second equality and the fact that v ∈ Kd1(Ω)
for the last inequality. Hence, taking limit as p→∞, we obtain that∫

Ω

u(x)(f+(x)− f−(x)) dx ≥
∫

Ω

v(x)(f+(x)− f−(x)) dx. �

We will now characterize the Euler-Lagrange equation associated with the varia-
tional problem sup

{
Pf+,f−(u) : u ∈ Kd1(Ω)

}
, that is, we characterize f+ − f− ∈

∂IKd1
(Ω)(u).
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Let Ma
b(Ω × Ω) be the set of bounded antisymmetric Radon measures in Ω × Ω.

And define the multivalued operator B1 in L2(Ω) as follows: (u, v) ∈ B1 if and only
if u ∈ K1, v ∈ L2(Ω), and there exists σ ∈Ma

b(Ω× Ω) such that

σ = σ {(x, y) ∈ Ω× Ω : |x− y| ≤ 1},

∫
Ω×Ω

ξ(x) dσ(x, y) =

∫
Ω

ξ(x)v(x) dx, ∀ ξ ∈ Cc(Ω),

and

|σ|(Ω× Ω) ≤ 2

∫
Ω

v(x)u(x) dx.

Theorem 3.7. The following characterization holds: ∂IKd1
(Ω) = B1.

Proof. Let us first see that B1 ⊂ ∂IKd1
(Ω). Let (u, v) ∈ B1, to see that (u, v) ∈

∂IKd1
(Ω) we need to prove that

0 ≤
∫

Ω

v(x)(u(x)− ξ(x)) dx ∀ ξ ∈ Kd1(Ω).
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By approximation we can assume that ξ ∈ Kd1(Ω) is continuous. Then,∫
Ω

v(x)(u(x)− ξ(x)) dx ≥ 1

2
|σ|(Ω× Ω)−

∫
Ω

v(x)ξ(x) dx

=
1

2
|σ|(Ω× Ω)−

∫
Ω×Ω

ξ(x) dσ(x, y)

=
1

2
|σ|(Ω× Ω)− 1

2

∫
Ω×Ω

(ξ(x)− ξ(y)) dσ(x, y) ≥ 0,

where in the last equality we have used the antisymmetry of σ. Therefore, we have
B1 ⊂ ∂IKd1

(Ω). Since ∂IKd1
(Ω) is a maximal monotone operator, to see that the

operators are equal we only need to show that for every f ∈ L2(Ω) there exists
u ∈ Kd1(Ω) such that

u + B1(u) 3 f.

Given p > N and f ∈ L2(Ω), there exists a unique solution up ∈ L∞(Ω) of the
nonlocal p-Laplacian problem
(3.17)

up(x)−
∫

Ω

J(x− y) |up(y)− up(x)|p−2 (up(y)− up(x)) dy = Tp(f )(x) ∀x ∈ Ω,
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where Tk(r) := max{min{k, r},−r}. We get u ∈ Kd1(Ω) such that

(3.18) up → u in L2(Ω) as p→ +∞,

with u + ∂IKd1
(Ω)(u) 3 f.

Observe that∫
Ω

(f (x)− u(x))(w(x)− u(x)) dx ≤ 0 ∀w ∈ K1,

and consequently u = PKd1
(Ω)(f ).

Multiplying (3.17) by up and integrating, we get

(3.19)

∫
Ω

(Tp(f )(x)− up(x))up(x) dx =
1

2

∫
Ω×Ω

J(x− y) |up(y)− up(x)|p dxdy,

from where it follows that

(3.20)

∫
Ω×Ω

J(x− y) |up(y)− up(x)|p dxdy +

∫
Ω

|up(x)|2 dx ≤ ‖f‖2
L2(Ω).
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If we set σp(x, y) := J(x−y) |up(y)− up(x)|p−2 (up(y)−up(x)), by Hölder’s inequal-
ity, ∫

Ω×Ω

|σp(x, y)| dxdy =

∫
Ω×Ω

J(x− y) |up(y)− up(x)|p−1 dxdy

≤
(∫

Ω×Ω

J(x− y) |up(y)− up(x)|p dxdy
)p−1

p
(∫

Ω×Ω

J(x− y) dxdy

)1
p

=

(∫
Ω×Ω

J(x− y) |up(y)− up(x)|p dxdy
)p−1

p

.

Now, by (3.20), we have∫
Ω×Ω

|σp(x, y)| dxdy ≤
(
‖f‖2

L2(Ω)

)p−1
p
.

Hence, {σp : p ≥ 2} is bounded in L1(Ω×Ω), and consequently we can assume that

(3.21) σp(., .) ⇀ σ weakly∗ inMb(Ω× Ω).

Obviously, since each σp is antisymmetric, σ ∈ Ma
b(Ω × Ω). And, moreover, since

supp(J) = B1(0), we have σ = σ {(x, y) ∈ Ω× Ω : |x− y| ≤ 1}.
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On the other hand, given ξ ∈ Cc(Ω), by (3.17), (3.18) and (3.21), we get∫
Ω×Ω

ξ(x) dσ(x, y) = lim
p→+∞

∫
Ω×Ω

ξ(x)σp(x, y) dx dy

= lim
p→+∞

∫
Ω×Ω

J(x− y) |up(y)− up(x)|p−2 (up(y)− up(x))ξ(x) dx dy

= lim
p→+∞

∫
Ω

(Tp(f )(x)− up(x))ξ(x) dx =

∫
Ω

(f (x)− u(x))ξ(x) dx.

Then, to finish, we only need to show that |σ|(Ω× Ω) ≤ 2
∫

Ω(f (x)− u(x))u(x) dx.
In fact, by (3.21), we have

|σ|(Ω× Ω) ≤ lim inf
p→+∞

∫
Ω

∫
Ω

|σp(x, y)| dx dy.

Now, by (3.19),∫
Ω×Ω

|σp(x, y)| dx dy ≤
(∫

Ω×Ω

J(x− y) |up(y)− up(x)|p dxdy
)p−1

p

=

(
2

∫
Ω

(Tp(f )(x)− up(x))up(x) dx

)p−1
p

= 2
p−1
p

(∫
Ω

(Tp(f )(x)− up(x))up(x) dx

)p−1
p

.

Therefore

|σ|(Ω× Ω) ≤ 2

∫
Ω

(f (x)− u(x))u(x) dx. �
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As consequence of the above result, we have that u∗ ∈ Kd1(Ω) is a Kantorovich
potential for d1, f+, f−, if and only if

f+ − f− ∈ B1(u∗).

that is, if u∗ ∈ K1 and there exists σ∗ ∈Ma
b(Ω× Ω), such that

[σ∗]+ = [σ∗]+ {(x, y) ∈ Ω× Ω : u∗(x)− u∗(y) = 1, |x− y| ≤ 1},

[σ∗]− = [σ∗]− {(x, y) ∈ Ω× Ω : u∗(y)− u∗(x) = 1, |x− y| ≤ 1},∫
Ω×Ω

ξ(x)dσ∗(x, y) =

∫
Ω

ξ(x)(f+(x)− f−(x)) dx ∀ξ ∈ Cc(Ω),

and

1

2
|σ∗|(Ω× Ω) =

∫
Ω

(f+(x)− f−(x))u∗(x) dx.

We want to highlight that the above equations plays the role of (3.14). Moreover,
the potential u∗1 and the measure σ∗1 encode all the information that is needed to
construct an optimal transport plan associated with the problem (see [40]).
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Of course all these developments can be done in the same way for the discrete
distance with steps of size ε,

dε(x, y) =


0 if x = y,
ε if 0 < |x− y| ≤ ε,
2ε if ε < |x− y| ≤ 2ε,
...

In [40] we give the connection between the Monge-Kantorovich problem with the dis-
crete distance dε and the classical Monge-Kantorovich problem with the Euclidean dis-
tance, proving that, when the length of the step tends to zero, these discrete/nonlocal
problems give an approximation to the classical one; in particular, we recover the
PDE formulation given by Evans-Gangbo.
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3.3. From the Dirichlet problem for the nonlocal p–Laplacian to . . .

Let J : RN → R be a nonnegative continuous radial function with compact support,
J(0) > 0 and

∫
RN J(x) dx = 1.

Theorem 3.8. Given ψ ∈ L∞(ΩJ \Ω)and p > 1, there exists a solution to the
homogeneous nonlocal p-Laplacian Dirichlet problem:
(3.22) −

∫
ΩJ

J(x− y)|(up)ψ(y)− up(x)|p−2((up)ψ(y)− up(x))dy = 0, x ∈ Ω,

up = ψ, x ∈ ΩJ \ Ω.

Proof. Let us consider the functional

Fp(u) :=
1

2p

∫
ΩJ

∫
ΩJ

J(x− y)|uψ(y)− uψ(x)|pdydx, u ∈ Lp(Ω).

Set

θ := inf
u∈Lp(Ω)

Fp(u),

and let {un} be a minimizing sequence. Then,

θ = lim
n→∞
Fp(un) and K := sup

n∈N
Fp(un) < +∞ .
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The Poincarév inequality 2.26.1 yields

λ

∫
Ω

|un(x)|p dx ≤
∫

Ω

∫
ΩJ

J(x− y)|(un)ψ(y)− un(x)|p dy dx +

∫
ΩJ\Ω
|ψ(y)|p dy

= 2pFp(un) +

∫
ΩJ\Ω
|ψ(y)|p dy ≤ 2pK +

∫
ΩJ\Ω
|ψ(y)|p dy.

Therefore, we obtain that ∫
Ω

|un(x)|p dx ≤ C ∀n ∈ N.

Hence, up to a subsequence, we have

un ⇀ up in Lp(Ω).

Furthermore, using the weak lower semi-continuity of the functional Fp, we get

Fp(up) = inf
u∈Lp(Ω)

Fp(u).

Thus, given λ > 0 and w ∈ Lp(Ω) (we extend it to ΩJ \ Ω by zero), we have

0 ≤ Fp(up + λw)−Fp(up)
λ

,
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or equivalently,

0 =
1

2

∫
ΩJ

∫
ΩJ

J(x−y)

[
|(up)ψ(y) + λwψ(y)− ((up)ψ(x) + λwψ(x))|p − |(up)ψ(y)− (up)ψ(x)|p

pλ

]
dydx.

Now, since p > 1, we pass to the limit as λ ↓ 0 to deduce

0 ≤ 1

2

∫
ΩJ

∫
ΩJ

J(x− y)|(up)ψ(y)− (up)ψ(x)|p−2((up)ψ(y)− (up)ψ(x))((w)ψ(y)− (w)ψ(x))dydx.

Taking λ < 0 and proceeding as above we obtain the reverse inequality. Consequently,
we conclude that

0 =
1

2

∫
ΩJ

∫
ΩJ

J(x− y)|(up)ψ(y)− (up)ψ(x)|p−2((up)ψ(y)− (up)ψ(x))((w)ψ(y)− (w)ψ(x))dydx

= −
∫

ΩJ

∫
ΩJ

J(x− y)|(up)ψ(y)− (up)ψ(x)|p−2((up)ψ(y)− (up)ψ(x))dy(w)ψ(x)dx.

In particular, since w = 0 in ΩJ \ Ω, it follows that

0 = −
∫

Ω

∫
ΩJ

J(x− y)|(up)ψ(y)− up(x)|p−2((up)ψ(y)− up(x))dyw(x)dx,

which shows that up is a solution of (3.22). �

Moreover, for up, the solution to (3.22) for ψ ∈ L∞(ΩJ \ Ω), we have that

‖up‖∞ ≤ ‖ψ‖∞.



3.3.1. (p → +∞) A best Lipschitz extension problem for a discrete
distance.

3.3.1.1. From the Dirichlet nonlocal problem to a discrete infinity Laplace prob-
lem. Let Ωε := Ω + Bε(0), ψ ∈ Lp(Ω1 \ Ω) and

BJε
p,ψ(u)(x) := −

∫
Ω

Jε(x− y)|u(y)− u(x)|p−2(u(y)− u(x)) dy

−
∫

Ωε\Ω
Jε(x− y)|ψ(y)− u(x)|p−2(ψ(y)− u(x)) dy, x ∈ Ω,

We have:

• There exists a unique uεp ∈ Lp(Ω) such that

BJε
p,ψ(uεp) = 0.

• uεp → uε ∈ L∞(Ω) strongly in any Lq(Ω) as p→ +∞.
• (uε)ψ := uεχΩ + fχΩε\Ω is the unique solution of{

−∆ε
∞u = 0 in Ω,

u = ψ on Ωε \ Ω,

where ∆ε
∞u(x) := supy∈Bε(x) u(y) + infy∈Bε(x) u(y) − 2u(x) is the discrete infinity

Laplace operator. This is in fact the value function of a TUG-OF-WAR game.
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TUG-OF-WAR GAME.

• There are two players moving a token inside Ωε. The token is placed at an initial
position x0 ∈ Ω.

• At the kth stage of the game, player I and player II select points xIk and xIIk
respectively, both belonging to B(xk−1, ε).

• The token is then moved to xk, where xk is chosen randomly between xIk or xIIk
with equal probability.

• After the kth stage of the game, if xk ∈ Ω then the game continues to stage k+1.

• Otherwise, if xk ∈ Ωε \Ω, the game ends and player II pays player I the amount
ψ(xk), where ψ : Ωε \ Ω→ R is the final payoff function of the game.

Dynamic Programming Principle. The value of the game is the minimum (max.)
amount that player I (II) expects to win (lose):

uε(x) =
1

2
sup

y∈Bε(x)

uε(y) +
1

2
inf

y∈Bε(x)
uε(y).
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Peres, Schramm, Sheffield and Wilson ([50]) prove that

lim
ε→0

uε = h,

where h is the absolutely minimizing Lispchitz extension (AMLE) of ψ to Ω,

that is (G. Aronsson [14]):

• h|∂Ω = ψ and Ld(h,Ω) = Ld(ψ, ∂Ω) (h is a minimal Lipschitz extension),

• for every open set D ⊂⊂ Ω,

Ld(h,D) ≤ Ld(v,D) ∀v : h|∂D = v|∂D,

where Ld stands for the Lipschitz constant respect to d.

To obtain this AMLE extension of a datum f , Aronsson proposed to take the limit
as p→∞ in {

−∆pup = 0 in Ω,
up = ψ on ∂Ω.

That is, to obtain (Bhattacharya, DiBenedetto and Manfredi [21]) the unique (Jensen [42])
viscosity solution to {

−∆∞u∞ = 0 in Ω,
u∞ = ψ on ∂Ω,

where ∆∞u :=
∑N

i,j=1 uxiuxjuxixj is the infinity Laplace operator.

Is (uε)ψ the best Lipschitz extension with respect to some distance?
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The distance to be considered is the discrete distance

dε(x, y) =


0 if x = y,
ε if 0 < |x− y| ≤ ε,
2ε if ε < |x− y| ≤ 2ε,
...

We see that (uε)ψ is the best Lipschitz extension to Ωε of the function ψ, defined
on the strip Ωε \ Ω, w.r.t. this distance, but not in the usual sense.

Given u : Ωε → R and D ⊂ Ω, we define

Lε(u,D) := sup
x ∈ D, y ∈ Dε

|x− y| ≤ ε

|u(x)− u(y)|
ε

(D convex) = sup
x∈D, y∈Dε, x6=y

|u(x)− u(y)|
dε(x, y)

≥ Ldε(u,D)
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3.3.1.2. ε–Absolutely minimizing Lispchitz extensions.

Definition 3.9. Let ψ defined on Ωε \ Ω. A function h : Ωε → R is an AMLEε

of ψ to Ωε if

(i) h = ψ in Ωε \ Ω,
(ii) ∀ D ⊂ X and v such that v = h in Ωε \D, then Lε(h,D) ≤ Lε(v,D).

For convex Ω, h ∈ AMLEε(ψ,Ωε) iff

(i) h ∈ MLEdε(ψ,Ωε),
(ii) ∀ D ⊂ X and v such that v = h in Ωε \D, then Lε(h,D) ≤ Lε(v,D).

Theorem 3.10. Let ψ : Ωε \ Ω→ R be bounded. Then, u is a solution of

(3.23)

{
−∆ε

∞u = 0 in Ω,

u = ψ on Ωε \ Ω,

if and only if

u : Ωε → R is AMLEε(ψ,Ω).

Proof. Without loss of generality we will take ε = 1 along the proof. Let us first
take u a solution of (3.23) and suppose that u is not AMLE1(f,Ω). Then, there exists
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D ⊂ Ω and v : Ω1 → R, v = u in Ω1 \ D, such that L1(v,D) < L1(u,D). Set
δ := L1(u,D)− L1(v,D) > 0, and let n ∈ N, n > 3, such that

(3.24) sup
D
u− inf

D
u ≤ (n− 1)L1(u,D).

Take (x0, y0) ∈ D × Ω1, |x0 − y0| ≤ 1, such that

L1(u,D)− δ

n
≤ |u(x0)− u(y0)| ≤ L1(u,D).

We have that ∆1
∞u(x0) = 0 and ∆1

∞u(y0) = 0 if y0 ∈ Ω. Let us suppose that
u(y0) ≥ u(x0) (the other case being similar), which implies

(3.25) L1(u,D)− δ

n
≤ u(y0)− u(x0) ≤ L1(u,D).

If y0 /∈ D, set y1 = y0. If y0 ∈ D, since ∆1
∞u(y0) = 0 and x0 ∈ B1(y0), we have

sup
y∈B1(y0)

u(y)− u(y0) = u(y0)− inf
y∈B1(y0)

u(y) ≥ u(y0)− u(x0) ≥ L1(u,D)− δ

n
.

Hence, there exists y1 ∈ B1(y0) such that

u(y1)− u(y0) ≥ L1(u,D)− 2δ

n
.
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Also, since ∆1
∞u(x0) = 0, we have

u(x0)− inf
x∈B1(x0)

u(x) = sup
x∈B1(x0)

u(x)− u(x0) ≥ u(y0)− u(x0) ≥ L1(u,D)− δ

n
,

and consequently, there exists x1 ∈ B1(x0) such that

u(x0)− u(x1) ≥ L1(u,D)− 2δ

n
.

Following this construction, and with the rule that in the case xj /∈ D or yj /∈ D,
then xi = xj or yi = yj for all i ≥ j, we claim that there exists m ≤ n for
which xm /∈ D and ym /∈ D. In fact, if not, then either {xi}i=1,...,n ⊂ D, either
{yi}i=1,...,n ⊂ D, with {xi}i=1,...,n and {yi}i=1,...,n satisfying

u(yi)− u(yi−1) ≥ L1(u,D)− 2δ

n
, yi ∈ B1(yi−1), i = 1, . . . , n,

and

(3.26) u(xi)− u(xi−1) ≥ L1(u,D)− 2δ

n
, xi ∈ B1(xi−1), i = 1, . . . , n.
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Let us suppose the first of these two possibilities, that is, {xi}i=1,...,n ⊂ D. Then,
having in mind (3.24), (3.25) and (3.26), we get

(n− 1)L1(u,D) ≥ u(y0)− u(xn)

= u(y0)− u(x0) + u(x0)− u(x1) + · · · + u(xn−1)− u(xn)

≥ L1(u,D)− δ
n + (n + 1)(L1(u,D)− 2δ

n ),

from where it follows that
2n + 3

n
δ ≥ 3L1(u,D) ≥ 3δ,

which is a contradiction since n > 3. Now, for {xi, yi}i=1,...,m, we have

v(ym)− v(xm) = u(ym)− u(xm) ≥ 2m

(
L1(u,D)− 2δ

n

)
+ L1(u,D)− δ

n
,

v(ym)− v(xm) ≤ (2m + 1)L1(v,D),

and therefore,

(2m + 1)L1(u,D)− (4m + 1)
δ

n
≤ (2m + 1)L1(v,D),

that is

δ = L1(u,D)− L1(v,D) ≤ 4m + 1

2m + 1

δ

n
,

which implies n ≤ 4m+1
2m+1 ≤ 2, which is a contradiction since n > 3.
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Let us now consider u an AMLE1(f,Ω) and suppose that u is not a solution of
(3.23). Then, {x ∈ Ω : ∆1

∞u(x) 6= 0} 6= ∅. Let us suppose without loss of generality,
that, {

x ∈ Ω : sup
y∈B1(x)

u(y)− u(x) > u(x)− inf
y∈B1(x)

u(y)
}
6= ∅.

Then, there exists δ > 0 and a nonempty set D ⊂ Ω such that

(3.27) sup
y∈B1(x)

u(y)− u(x) > u(x)− inf
y∈B1(x)

u(y) + δ for all x ∈ D.

Consider the function v : Ω1 → R defined by

v(x) =

{
u(x) if x ∈ Ω1 \D,
u(x) + δ

2 if x ∈ D.

Then, since u is an AMLE1(f,Ω), we have L1(u,D) ≤ L1(v,D). Now, there exists
x0 ∈ D and y0 ∈ B1(x0) such that

L1(v,D) ≤ δ

4
+ |v(x0)− v(y0)|.
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Therefore, if v(x0) ≥ v(y0), by (3.27),

L1(v,D) ≤ δ

4
+ v(x0)− v(y0) ≤ 3δ

4
+ u(x0)− u(y0)

≤ 3δ

4
+ u(x0)− inf

x∈B1(x0)
u(x) < −δ

4
+ sup

x∈B1(x0)

u(x)− u(x0) < L1(u,D),

which is a contradiction, and, if v(x0) < v(y0),

L1(v,D) ≤ δ

4
+ v(y0)− v(x0) = −δ

4
+ v(y0)− u(x0),

so, if y0 /∈ D,

L1(v,D) ≤ −δ
4

+ u(y0)− u(x0) < L1(u,D),

also a contradiction, and if y0 ∈ D, since also x0 ∈ B1(y0), by (3.27),

L1(v,D) ≤ δ

4
+ u(y0)− u(x0) ≤ δ

4
+ u(y0)− inf

y∈B1(y0)
u(y)

< −3δ

4
+ sup

y∈B1(y0)

u(y)− u(y0) < L1(u,D),

again a contradiction. Then, in any case we arrive to a contradiction and consequently
u is a solution of (3.23). �
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3.3.2. (p→ 1+) Median values and least gradient functions.

It is a well known fact that solutions to some partial differential equations are
related to mean value properties. As a classical example we have that u is harmonic
in a domain Ω ⊂ RN (that is, u verifies ∆u = 0 in Ω) if and only if it verifies the
mean value property

u(x) =
1

|Bε(x)|

∫
Bε(x)

u(y) dy,

for all ε > 0 such that Bε(x) ⊂ Ω; if and only if

u(x) =
1

|Bε(x)|

∫
Bε(x)

u(y) dy + o(ε2), as ε→ 0.

In [37], solutions to

(3.28) ∆H

1u := |Du| div

(
Du

|Du|

)
= 0

are characterized, in dimension 2, in terms of another asymptotic geometric property.
It is proved that

u(x)−medians∈∂Bε(x)u(s) = −ε
2

2
∆H

1u(x) + o(ε2);
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here, the median of a continuous function over a measurable set A,

medians∈Au(s) = m,

is defined as the unique valuem such that, for µ the 1–dimensional Hausdorff measure,

µ({x ∈ A : u(x) ≥ m}) ≥ µ(A)

2
and µ({x ∈ A : u(x) ≤ m}) ≥ µ(A)

2
.

Uniqueness of the value m holds for continuous functions.

On the other hand, in [46] it is proved that the Dirichlet problem for the 1–Laplacian
operator

(3.29)

 −div
( Du
|Du|

)
= 0 , in Ω ,

u = h , on ∂Ω ,

has a solution u ∈ BV (Ω) for every h ∈ L1(∂Ω). The relaxed energy functional

associated to problem (3.29) is the functional Φh : L
N
N−1(Ω) → (−∞,+∞] defined

by

(3.30) Φh(u) =


∫

Ω

|Du| +
∫
∂Ω

|u− h| dHN−1 if u ∈ BV (Ω),

+∞ if u ∈ L
N
N−1(Ω) \BV (Ω).

And these solutions are characterized as the functions of least gradient that appear
in the theory of parametric minimal surfaces.
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This problem is quite different from (3.28) since it involves giving a meaning to ∇u
|∇u|

when the gradient vanishes. These difficulties were tackled in [2] (see also [46]) by
means of a bounded vector field z which plays the role of Du

|Du|. Moreover there are

extra difficulties for the Dirichlet boundary condition, which has to be considered in
a weak sense.

Our aim here is to study solutions to the nonlocal 1-Laplacian with Dirichlet
boundary condition ψ:

(3.31)

 −
∫

ΩJ

J(x− y)
uψ(y)− u(x)

|uψ(y)− u(x)|
dy = 0, x ∈ Ω,

u(x) = ψ(x), x ∈ ΩJ \ Ω,

and to relate them with a nonlocal median value property and with a kind of
nonlocal least gradient functions. Hereafter, Ω ⊂ RN is a bounded and smooth
domain. And J : RN → R is a continuous nonnegative radial function, compactly
supported in B1(0) with J(0) > 0, verifying

∫
RN J(z)dz = 1.

Let us define the following measure of a set E ⊂ B1(0):

µ0
J(E) :=

∫
E

J(z) dz.
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For f : RN → R a measurable function (not necessarily continuous), we say that
m is a median value of f with respect to µ0

J (m ∈ medianµ0
J
f ) if

µ0
J({y ∈ B1(0) : f (y) ≥ m}) ≥ 1

2
and µ0

J({y ∈ B1(0) : f (y) ≤ m}) ≥ 1

2
.

We also define a weak solution to (3.31) as follows:

Definition 3.11. Let ψ ∈ L1(ΩJ \Ω). We say that u ∈ L1(Ω) is a weak solution
to (3.31) if there exists g : ΩJ×ΩJ → R such that g ∈ L∞(ΩJ×ΩJ) with ‖g‖∞ ≤ 1,

(3.32) J(x− y)g(x, y) ∈ J(x− y)sign(uψ(y)− uψ(x)) a.e (x, y) ∈ ΩJ × ΩJ ,

and

(3.33) −
∫

ΩJ

J(x− y)g(x, y) dy = 0 a.e x ∈ Ω.

We have the following characterization of weak solutions of the nonlocal 1-Laplacian
with Dirichlet boundary condition in terms of a nonlocal median value property.
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Theorem 3.12. Given ψ ∈ L1(ΩJ \ Ω), we have that u is a weak solution to
(3.31) with Dirichlet datum ψ if and only if, u verifies the following nonlocal
median value property:

(3.34) u(x) ∈ medianµ0
J
uψ(x− ·), x ∈ Ω,

that is, for x ∈ Ω,

µxJ({y ∈ B1(x) : uψ(y) ≥ u(x)}) ≥ 1

2
and µxJ({y ∈ B1(x) : uψ(y) ≤ u(x)}) ≥ 1

2
,

where µxJ(E) :=
∫
E J(x− y)dy for E ⊂ B1(x).

If we assume in Definition 3.11 that the function g is antisymmetric, we get a
more restrictive concept of solution, which we call variational solution. It can be
characterized as a minimizer of the functional Jψ : L1(Ω)→ [0,+∞[ given by

(3.35) Jψ(u) :=
1

2

∫
ΩJ

∫
ΩJ

J(x− y)|uψ(y)− uψ(x)| dxdy.

This functional Jψ is the nonlocal version of the energy functional Φh defined by (3.30)

Obviously any variational solution is a weak solution for the nonlocal 1–Laplacian,
and the class of variational solutions is strictly smaller than the class of weak solutions.
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Example 3.13. Let Ω =]− 2, 2[×]− 2, 2[, and choose J supported in B1(0) and
ψ(x) = 1 if x ∈]−2, 2[×(]2, 3[∪]−3,−2[), ψ(x) = 1 if x ∈ (]2, 3[∪]−3,−2[)×]−2, 2[
and ψ(x) = 0 otherwise. In this case the constant function u(x) = 0 in Ω is a
weak solution to the nonlocal 1–Laplacian (any constant function between 0 and
1 is also a solution, though any constant function above 1 or below 0 is not).
However, u = 0 is not a variational solution by a similar argument to the above
one. The function u(x) = 1 is a variational solution.

Theorem 3.14. Let ψ ∈ L1(ΩJ \Ω). Then u ∈ L1(Ω) is a variational solution
to (3.31) if and only if it is a minimizer of the functional Jψ given in (3.35).

Moreover there is a link between nonlocal and local problems:

Theorem 3.15 ([45]). Let Ω be a smooth bounded domain in RN and ψ̃ ∈
L∞(∂Ω). Take a function ψ ∈ W 1,1(ΩJ \ Ω) ∩ L∞(ΩJ \ Ω) such that ψ|∂Ω = ψ̃.
Assume also J(x) ≥ J(y) if |x| ≤ |y|. Let uε be a variational solution to (3.31)
for Jε(x) := 1

εN+1J
(
x
ε

)
. Then, up to a subsequence,

uε → u in L1(Ω),

being u a solution to (3.29) with h = ψ̃.
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3.3.2.1. Existence of variational solutions.

Theorem 3.16. Given ψ ∈ L∞(ΩJ \ Ω) there exists a variational solution,
hence a weak solution, to problem (3.31).

Proof. The previous result ensures that there exists a subsequence pn → 1, de-
noted by p, such that

up → u weakly in L1(Ω)

and

|(up)ψ(y)− (up)ψ(x)|p−2((up)ψ(y)− (up)ψ(x))→ g(x, y) weakly in L1(ΩJ × ΩJ).

The function g is L∞-bounded by 1, satisfies

−
∫

ΩJ

J(x− y)g(x, y) dy = 0 a.e x ∈ Ω,

and, moreover, it is antisymmetric.

In order to see that

J(x− y)g(x, y) ∈ J(x− y)sign(uψ(y)− uψ(x)) a.e (x, y) ∈ ΩJ × ΩJ ,

we need to prove that
(3.36)

−
∫

ΩJ

∫
ΩJ

J(x− y)g(x, y) dyuψ(x) dx =
1

2

∫
ΩJ

∫
ΩJ

J(x− y)|uψ(y)− uψ(x)| dydx.
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In fact, it holds that

1

2

∫
ΩJ

∫
ΩJ

J(x− y)|(up)ψ(y)− (up)ψ(x)|p dydx

= −
∫

ΩJ

∫
ΩJ

J(x− y)|(up)ψ(y)− (up)ψ(x)|p−2((up)ψ(y)− (up)ψ(x)) dy(up)ψ(x)dx

= −
∫

ΩJ\Ω

∫
ΩJ

J(x− y)|up(y)− up(x)|p−2(up(y)− up(x)) dyψ(x) dx.

Therefore,
(3.37)

lim
p

1

2

∫
ΩJ

∫
ΩJ

J(x− y)|up(y)− up(x)|p dydx = −
∫

ΩJ\Ω

∫
ΩJ

J(x− y)g(x, y) dyψ(x) dx

= −
∫

ΩJ

∫
ΩJ

J(x− y)g(x, y) dyuψ(x) dx.

Now, for all ρ ∈ L∞(Ω) we have that

−
∫

ΩJ

∫
ΩJ

J(x− y)|ρψ(y)− ρψ(x)|p−2(ρψ(y)− ρψ(x)) dy ((up)ψ(x)− ρψ(x)) dx

≤ −
∫

ΩJ

∫
ΩJ

J(x− y)|(up)ψ(y)− (up)ψ(x)|p−2((up)ψ(y)− (up)ψ(x))dy((up)ψ(x)− ρψ(x))dx.



J. JULIÁN TOLEDO 3.51

Taking limits as p→ 1 and using (3.37) we get

−
∫

ΩJ

∫
ΩJ

J(x− y) sign0(ρψ(y)− ρψ(x)) dy (uψ(x)− ρψ(x)) dx

≤ −
∫

ΩJ

∫
ΩJ

J(x− y)g(x, y) dy (uψ(x)− ρψ(x)) dx.

Taking now ρ = u± λu, λ > 0, dividing by λ, and letting λ→ 0, we obtain (3.36),
which finishes the proof. �

3.3.2.2. Characterization of weak solutions using a median value property.

We will use the following notation: given x ∈ Ω we decompose B1(x) as

B1(x) = Ex
+ ∪ Ex

− ∪ Ex
0

where

Ex
+ := {y ∈ B1(x) : uψ(y) > u(x)}

Ex
− := {y ∈ B1(x) : uψ(y) < u(x)},

and

Ex
0 := {y ∈ B1(x) : uψ(y) = u(x)}.
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Hence
1 = µxJ(Ex

+) + µxJ(Ex
−) + µxJ(Ex

0 ),

and therefore

(3.38) −µxJ(Ex
0 ) ≤ µxJ(Ex

−)− µxJ(Ex
+) ≤ µxJ(Ex

0 ),

is equivalent to

1 ≤ 2(µxJ(Ex
+) + µxJ(Ex

0 )) and 1 ≤ 2(µxJ(Ex
−) + µxJ(Ex

0 )).

That is,

(3.39)

(3.38) is equivalent to µxJ({y ∈ B1(x) : uψ(y) ≥ u(x)}) ≥ 1
2

and µxJ({y ∈ B1(x) : uψ(y) ≤ u(x)}) ≥ 1
2.
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Proof of Theorem 3.12. Let u be a weak solution to (3.31) with Dirichlet
datum ψ ∈ L1(ΩJ \ Ω), and take g as in Definition 3.11. By (3.33) we have

−
∫
B1(x)

J(x− y)g(x, y) dy = 0.

Thus,

0 =

∫
Ex+

J(x− y)g(x, y) dy +

∫
Ex−

J(x− y)g(x, y) dy +

∫
Ex0

J(x− y)g(x, y) dy

= µxJ(Ex
+)− µxJ(Ex

−) +

∫
Ex0

J(x− y)g(x, y) dy.

Since g ∈ [−1, 1] in Ex
0 , it holds that

µxJ(Ex
−) = µxJ(Ex

+) +

∫
Ex0

J(x− y)g(x, y) dy ≤ µxJ(Ex
+) + µxJ(Ex

0 )

and

µxJ(Ex
+) = µxJ(Ex

−)−
∫
Ex0

J(x− y)g(x, y) dy ≤ µxJ(Ex
−) + µxJ(Ex

0 ),

that is
−µxJ(Ex

0 ) ≤ µxJ(Ex
−)− µxJ(Ex

+) ≤ µxJ(Ex
0 ).

This proves, on account of (3.39), that u satisfies the nonlocal median value property
(3.34).
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Let us show now that the converse is also true.

Let u be satisfying the nonlocal median value property (3.34), that is (on account
of (3.39) again),

−µxJ(Ex
0 ) ≤ µxJ(Ex

−)− µxJ(Ex
+) ≤ µxJ(Ex

0 ).

We want to find a function g(x, y) verifying the conditions of Definition 3.11. For
x such that µxJ(Ex

0 ) = 0 let us define

g(x, y) :=


1 if uψ(y) > uψ(x),

0 if uψ(y) = uψ(x),

−1 if uψ(y) < uψ(x),

and if µxJ(Ex
0 ) > 0,

g(x, y) :=


1 if uψ(y) > uψ(x),
µxJ(Ex−)−µxJ(Ex+)

µxJ(Ex0 ) if uψ(y) = uψ(x),

−1 if uψ(y) < uψ(x).

This function g belongs to L∞ and obviously ‖g‖∞ ≤ 1. In addition, it verifies (3.32),
that is,

J(x− y)g(x, y) ∈ J(x− y)sign(uψ(y)− uψ(x)) a.e (x, y) ∈ ΩJ × ΩJ .
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Now, we have to check equation (3.33). In the case µxJ(Ex
0 ) = 0,

µxJ(Ex
+) = µxJ(Ex

−) =
1

2
,

and we conclude that∫
B1(x)

J(x− y)g(x, y) dy

=

∫
Ex+

J(x− y)g(x, y) dy +

∫
Ex−

J(x− y)g(x, y) dy +

∫
Ex0

J(x− y)g(x, y) dy

=

∫
Ex+

J(x− y) dy −
∫
Ex−

J(x− y) dy = µxJ(Ex
+)− µxJ(Ex

−) =
1

2
− 1

2
= 0.

In the case µxJ(Ex
0 ) > 0,∫

B1(x)

J(x− y)g(x, y) dy

=

∫
Ex+

J(x− y)g(x, y) dy +

∫
Ex−

J(x− y)g(x, y) dy +

∫
Ex0

J(x− y)g(x, y) dy

=

∫
Ex+

J(x− y) dy −
∫
Ex−

J(x− y) dy +
µxJ(Ex

−)− µxJ(Ex
+)

µxJ(Ex
0 )

∫
Ex0

J(x− y) dy

= µxJ(Ex
+)− µxJ(Ex

−) + (µxJ(Ex
−)− µxJ(Ex

+)) = 0.

This completes the proof. �
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3.3.2.3. Characterization of variational solutions as minimizers of Jψ.

Proof of Theorem 3.14. Let u be a variational solution of problem (3.31).
Then, there exists g ∈ L∞(ΩJ × ΩJ) antisymmetric, with ‖g‖∞ ≤ 1 verifying (3.32)
and (3.33).

Given w ∈ L1(Ω), multiplying (3.33) by w(x) − u(x), integrating, and having in
mind (3.32) and the antisymmetry of g, we get

0 = −
∫

ΩJ

∫
ΩJ

J(x− y)g(x, y)dy(wψ(x)− uψ(x))dx

=
1

2

∫
ΩJ

∫
ΩJ

J(x− y)g(x, y)[(wψ(y)− wψ(x))− (uψ(y)− uψ(x))]dydx

≤ 1

2

∫
ΩJ

∫
ΩJ

J(x− y)|wψ(y)− wψ(x)|dydx− 1

2

∫
ΩJ

∫
ΩJ

J(x− y)|uψ(y)− uψ(x)|dydx

= Jψ(w)− Jψ(u).

Therefore, u is a minimizer of Jψ.

Assume now that u minimizes the functional Jψ. Theorem 3.16 shows the existence
of a variational solution u of (3.31). Namely, there exists g : ΩJ ×ΩJ → R such that
g ∈ L∞(ΩJ × ΩJ), ‖g‖∞ ≤ 1, g(x, y) = −g(y, x) for (x, y) a.e in ΩJ × ΩJ ,

(3.40) J(x− y)g(x, y) ∈ J(x− y)sign(uψ(y)− uψ(x)) a.e (x, y) ∈ Ω× ΩJ ,
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and

(3.41) −
∫

ΩJ

J(x− y)g(x, y) dy = 0 a.e x ∈ Ω.

Since u is a minimizer of Jψ, Jψ(u)− Jψ(u) = 0.

On the other hand, arguing as in the other implication, we obtain that

0 = −
∫

ΩJ

∫
ΩJ

J(x− y)g(x, y) dy(uψ(x)− uψ(x))dx

=
1

2

∫
ΩJ

∫
ΩJ

J(x− y)g(x, y)[(uψ(y)− uψ(x))− (uψ(y)− uψ(x))]dydx

=
1

2

∫
ΩJ

∫
ΩJ

J(x− y)|uψ(y)− uψ(x)|dydx−1

2

∫
ΩJ

∫
ΩJ

J(x− y)g(x, y)(uψ(y)− uψ(x))dydx

= Jψ(u)− 1

2

∫
ΩJ

∫
ΩJ

J(x− y)g(x, y)(uψ(y)− uψ(x))dydx.

Therefore,
1

2

∫
ΩJ

∫
ΩJ

J(x−y)g(x, y)(uψ(y)−uψ(x))dydx =
1

2

∫
ΩJ

∫
ΩJ

J(x−y)|uψ(y)−uψ(x)|dydx.

Hence, J(x− y)g(x, y) ∈ J(x− y)sign(uψ(y)− uψ(x)) a.e (x, y) ∈ ΩJ × ΩJ , which
finishes the proof. �



Last page



References

[1] L. Ambrosio. Lecture notes on optimal transport problems. Mathematical aspects of evolving interfaces (Fun-
chal, 2000), 1–52, Lecture Notes in Math., 1812, Springer, Berlin, 2003.

[2] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The Dirichlet Problem for the Total Variational Flow,
J. Funct. Anal. 180, (2001), 347–403.

[3] F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, Minimizing total variation flow. Differential Integral
Equations 14 (2001), 321–360.

[4] F. Andreu, V. Caselles, and J.M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Func-
tionals. Progress in Mathematics, vol. 223, Birkhäuser, 2004.
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