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ABSTRACT. We prove that mild-solutions of the degenerate parabolic equa- 
tion ut -AT(u) = 0 defined in I• N x (0, oo), stabilize as t --• oo by 
converging to an equilibrium in an appropriated weighted Ll-space. Here 
•o is a nondecreasing continuous function from I• into I•, or more generally, 
a maximal monotone graph in I• x I• with N _• 3. It is also proved that 
the mild-solution u(t) has compact support for every t if the initial datum 
has compact support. Previous stabilization results for this equation re- 
quired more conditions on •o. Our approach uses methods developed by Ph. 
B•nilan and M.G. Crandall in non-linear semigroup theory. 

Introduction. 

We study the long-time behaviour of solutions of the degenerate par- 
abolic equation 

ut - A•(u) = 0 in 11• N x (0, u(x, O)= Uo(X) in 11• N 

where • is a maximal monotone graph in 1• x 1• with 0 E •(0). 
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Equation (I), usually called the filtration equation, is very general. 
Different choices of 99's arise in applications. One of the more important 
cases is 99(r) - r I • sign(r), i.e., the equation 

(ZZ) { u, - •(lu •signu) = 0 in ll• N x (0, oo) u(x, O) = no(x) in ll• N . 

There is an extensive literature dealing with equation (II); see e.g., the 
expository papers of D. G. Aronson [1], L. Peletier [21] and J. L. Vazquez 
[23]. The case 0 < ra < I corresponds to a "fast diffusion process"; equa- 
tions of this type appear in plasma problems ([10]); ra = I is the classical 
equation of heat conduction and for ra > I the equation is called the porous 
medium equation since it first arose in the study of gas flows in homoge- 
neous porous media ([20]). 

For exponents ra > (N - 2)+/N, there exists a family of special so- 
lutions of equation (II) which plays the role of the fundamental solution of 
the heat equation. Such special solutions were described by G. I. Baren- 
blatt [2] with the name of source-type solutions, and can be characterized as 
the unique weak solutions of the corresponding equation with initial data 
a Dirac mass, - 

u0½)=•*(•), •>0. 

Various authors ( see, S. Kamin [18], A. Friedmann and S. Kamin [16] 
and S. Kamin and J. L. Vazquez [19] ) have used the class of source-type 
solutions to describe the large time behaviour of equation (II) when ra > 
(N- 2)+/N. When 0 < ra _< (N- 2)+/N it is not possible to use these 
source-type solutions of Barenblatt since in this case no solution of equation 
(II) exists for u0 = 5 ( see [9]). Now, Ph. B•nilan and M. G. Crandall 
showed in [6, Proposition 10] that when 0 < ra < (N- 2)+/N (N > 2) 
there is extinction in finite time for initial data in LP(• N) F1Li(• N) with 
p = N(1 - ra)/2. Consequently, the asymptotic behaviour of the solutions 
of equation (II) is known when the exponent ra is not the critical exponent 
m•i,=(N-2)+/N. 

The uniform bounds given by Ph. B•nilan and J. Berger in [4] provide 
information on asymptotic behaviour of solutions of problem (I) (see also 
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1. Preliminaries. 

In this section we will define some of our notation. A weight in 1• •½ 
is a positive continuous function p ß ]R •½ -• ]R such that limlx[-•o• p(x) - O. 
We denote by lP the set of all these weights. Important weights include are 
the following: The weight p, given by 

p.(x) :: (1 + Ila) > o. 

Given a weight p C lP, L•(p) denotes the weighted L•-space determined 
by the norm 

u p - f•Np(x)lu(x ) dx. 
We will use some terminology and notations from classical topology 

dynamics. Let (T(t))t_>o be a continuous semigroup on a metric space X. 
The orbit or trajectory of u C X (respect to (T(t))t>_o) is the set 

,(u): {T(t)u .t _> 0}, 

and the co-limit set of u is 

co(u) = {v • X ' v = lim T(tn)u for some sequence tn 
n->o<) 

This set may be empty. Now, it is well-known that if 7(u) is relatively 
compact, then co(u) is a nonempty, compact and connected subset of X. 
Furthermore, co(u)is positive invariant under T(t), i.e., T(t)co(u) C co(u) 
for any t >_ 0. An equilibrium or stationary point u • X is a point such 
that 7(u) = co(u) = {u}, or equivalently, T(t)u = u for all t _> 0. 

Our abstract framework is the theory of non-linear semigroups. We 
refer the reader to [8], [11] and [13] for background material on non-linear 
contraction semigroups. 

In order to discuss ut - Ap(u) = 0 within the nonlinear semigroup 
theory, Ph. B•nilan and M. G. Crandall ([6]) associate an m-T-accretive 
operator A• in LI(IR •½) with the formal expression A• = -A92(u), (i.e. 
(I + ,kAy) -• is an order preserving contraction in L•(]It N ) and R(1 + ,kAy) = 
LI(IR N) for all ,k > 0). This is done via the results of [5]. More concretely, 
they obtain the following result. 
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Theorem 1.1. Let 99 be a maximal monotone graph in IRxi{ with 0 
and 0 • intD(99) if N - I or 2. Then the operator A• on Lx([{ N) defined 
by 

A•u = {-Aw ß w • Lk•(I•N),--Aw • Lx(I• N) and w(x) • •o(u(x)) a.e. } 

for u • L•(I• N) is m-T-accretive on L•(I•N). 
Suppose N _• 3 and O < c• _• (N-2)/2. Then the operator B• on 

L l (p• ) defined by 

Bv, u = {-Aw ß w • Ll(p,+x),-Aw • LI(p,) and w(x) • 99(u(x))a.e.} 

for u • L•(p.) is m- T-accretive on L•(p.). 

As a consequence of the Crandall-Liggett Theorem and the above 
theorem we have that for every initial data uo • LI(IRN)(uo • LI(p,)) the 
problem (I) has a mild-solution given by u(x,t) - (S(t)uo)(x). 
(S(t))t> o being the order-preserving contraction semigroup generated by 
A•, (B•,), i.e., 

S(t)uo = lim J•}nUO, n--• oo 

with Jx = (I + AA•)-x(Jx = (I + ABe) -1) the resolvent of A•, (B•,). 

2. The asymptotic behaviour. 
We need the orbits to be relatively compact to ensure that the or-limit 

set is nonempty. 

Lemma 2.1. Let 99 a maximal monotone graph in IR x [{ with 0 
and 0 G intD(99) if N = 1 or 2. If uo e Li(]i• N) and p e IP, then the orbit 
7(u0) = { S(t)uo ' t >_ 0} is a relatively compact subset of Ll(p). 

For N _> 3, 0 < • _< (N- 2)/2 and uo G LX(p,), the orbit v(uo) = 
{s(t)uo . t >_ 0} is a relatively compact subset of LX(p,). 
Proof. By Riesz Theorem [12, Theorem IV.8.21], we must prove that 7(u0) 
is a bounded subset of Ll(p) satisfying: 

(1) lim ryS(t)uo - s(t)uollp -- o uniformly for t >_ 0 
y--•0 
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where •'yu(x) '= u(x d- y) and 

(2) lim f{ p(x) $(t)uo(x)l dx = 0 uniformly for t • 0. n-•oo i•l_>n ) - 

In fact: since $(t)O - 0 and $(t) is an L•(•N)-contraction, we have 
$(t)uollp _• IIP[[ool $(t)uo - $(t)01[• -•IP Ioo In0 •, for t _> 0. 

Hence, 7(u0)is bounded in L•(p). Moreover, 

•'y$(t)uo - $(t)uo Ip -• I P oo[ $(t)(7yuo) - $(t)uoll• _• lip Ioo •'yuo - no •, 
from where it follows (1). 

On the other hand, 

f( p(x) S(t)uo[ dx _< sup p(x) fs [S(t)uo dx _• sup p(x) Uo 1, 
so (2) follows. Thus 7(u0) is a precompact subset of L•(p). 

Since the semigroup generated by B• is an extension of the one gen- 
erated by A•, each $(t) is a contraction in L•(p,). From the density of 
L•(• •v) in L•(p,), it follows that 7(u0) is a precompact subset 6f•L•(p,) 
for any uo e L•(p,). 

To obtain our stabilization results it is convenient to introduce the 

concept of concentration relation [22]' for locally integrable, radially-symme 
tric and nonnegative functions f, g defined in •v we say that f is more 
concentrated than g, and represent this relation as f •- g or g -4 f, if for 
every r > 0, 

/•3•(o) f(x) dx -> /•3•(o) g(x) dx 
or equivalently, 

f0 T f0 T /(t)t ;v-1 dt _> O(t)t •v-x dt 

where f(t):-- f(x) with t= [x. 

We denote by 77•(R •v) the set of all functions in L•(• •v) which are 
radially-symmetric and decreasing. 

In order to show that the mild-solutions of (i) are nondecreasing func- 
tions in t respect to the order •- we first prove an elliptic version. 
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Lemma 2.2 (Monotonicity Lemma; Elliptic Version). Let 99 be a 
maximal monotone graph in l• x l• with 0 E 99(0) and 0 • intD(99) if N - 1 
or 2. Let J• := (I + AA•) -1 be the resolvent of A• and 0 < f • T•(RN). 
Then JAr is radially-symmetric and f >- JAr for all A • O. 

Prooff For simplicity of the proof we suppose that • is univalued. Since f 
is radially-symmetric and the problem 

(•) u- •(u)= f 
is invariant under rotations (see [5]) J•f is radially-symmetric. Set 

V(r) := J•f = • J•f(t) t •-• dt and 
•(o) 

F(r) '= f = wN f(t) t N-1 dr. 
•(o) 

If v• := •(J•f), integrating in (3) we obtain 

/B•(0) 

Consequently, 

(4) V(r) - F(r) -- •o3N r N-1 d•A dr (r). 
Assume that f >- J•f does not hold so that G :- (r _> 0 ß V(r) > 

F(r)} is a nonempty open set of R+. Then, there exist disjoint open inter- 
vals Is such that G = [_J•=•I•. 

By (4) ifr • Gwehave a•( • , ar •r• > 0, from where it follows that J•-• 
is nondecreasing in G since 99 is nondecreasing. Hence V - F is a convex 
function in each I•. On the other hand, by [5], V(oo) _< F(cx:), then since 
F(0) - V(0) - 0 there exists r• e I• such that 

V(r,•) - F(r,•) = max(V(r) - F(r) ' r • 
which is a contradiction. Therefore, G is empty and the proof concludes. 

We derive via the Crandall-Liggett exponential formula the following 
evolution version of the above result. 
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Lemma 2.3 (Monotonicity Lemma; Parabolic Version). Let • a 
maximal monotone graph in • x • with 0 E •(0) and 0 • intD(•) if 
N = 1 or 2. Let 0 _< uo • 7•(]1{ N). If u(x, t) is the mild-solution of problem 
(•) t• u(., t) • •(., •) • uo fo• t _y • _y o. 

Lemma 2.4. Let • ß • -• • a nondecreasing continuous function such that 
•(0)=0 and Oe intD(•) if N= I or2. LetO_• no e LI(]•N)v•L•(]• N) 
a•d u(t, .) = $(t)uo the mild-solution of problem (I) with irafiat data uo. •f 
there exists w = L•o • - limt_• u(t, .), then A•(w) = 0 in •D•(R•v). 

Proof. Let •b • •D(• N). Consider 

•(•) := f• u(•, •)•(•) •. 
Since u(t,x) is a weak solution of ut = A•(u) ( see [7] ), one has 

•(•) = f• •(u(•, •))/x•(•) •. 
Hence, •b is absolutely continuous, and consequently, for every t > 0 

1• [u(2t, x)-u(t,x)]cfi(x)dx--1/2t d • u(s,x)cfi(x)dx) ds 
I •t 

Now, since u(s, .) -• w in L•o•(R •v), the left hand side of the above expres- 
sion goes to zero when t -• cx•. Therefore, 

(5) lim li2t yf• •-• 7 (•(u(•,•))/x4(•) a•) a• = 0. 

On the other hand, since u e C([0,•[;Li(]I{•V)), Ilu(t,.)l • _< Ilu01 • •nd 
• is continuous, by the dominated convergence theorem we have that the 
mapping 

• -• f• •(u(•,•))/x4(•) • N 



190 J.M. MAZ6N AND J. TOLEDO 

is continuous. Hence, there exists st with t _< st _< 2t such that 

(6) • (•(u(•,•))•(•) •) • = •(u(•,•))•(•) •. 
Applying the dominated convergence theorem, using (5) and (6) 

• T(w(x))A•(x) dx = 0. N 

Therefore, AT(w ) = 0 in 7)'(JR N). 

Given p ß I• we denote by a•p(Uo) the w-limit set of uo respect to the 
. p-norm, i.e., 

•p(uo) '= •w ß Ll(p) ß tv = I.I p-•li_moo $(t71)uo for some sequence t71 -• oo}. 

Also define Wtoc(Uo) := 

{w ß Lkc(RN) ' w -- Lkc - lim $(t71)uo for some sequence t71 -• oo}. 
7l---.OO 

Evidently, wp(uo) C Wloc(Uo), so, by Lemma 2.1, Wlo•(Uo) • 0. 
In the next theorem we show that the dynamical system ($(t))t> o 

is gradient-like in the sense of [17]. More concretely we have: 

Theorem 2.5. Let T ' ]R -• ]Ra nondecreasing continuous function such 
that T(O) = 0 and 0 ß intD(T) if N -- I or 2. Let uo ß L•(R N) and 
u(t, .) - $(t)uo the mild-solution of problem (I) with initial data no. Then, 
•o•(Uo) c (•v ß L•(•) ß T(•v) = o}. 

Proof. Firsfly, we suppose that 0 _< uo ß 7•(1• •v ) rq L• (1• •v ). Define 

V(r,t) :=/B•(o) 
then from Lemma 2.3 

0 5 v(r,t) 5 v(r, •) 5 go(r) 

u(•,t) - • •(•,t)• •-• d•-, 

uo(•) d•, 
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for all r >0, t > s>0. Define Vet(r):=limt_•ecV(r,t) for r >0. 
On the other hand, by Lemma 2.1, the •v-limit set •V,oc(Uo) is nonempty. 

Let Wl, W2 E CC•loc(UO), then there exist t• -• c• and s• -4 cx• such that 

W 1 --- •li•m• u(.,t•)in L•oc(]• •v) and w2 = •li•in• u(.,s•) in 
Hence, for every r > 0 we have 

/B•(o) 
/B.(o) 

W 1(2) dx - lim /• •"• ,•(o) 

w2(x) dx- lim /• •-• •(o) 

u(x,t•) dx = •li•nao• V(r,t•)= Vo•(r) and 

u(x,s•) dx = lim V(r,s•)= V•(r). 

Thus, lB,(o)Wl(3•) d3• --- lBs(O)W2(3•) d3•, from where it follows, having 
in mind that Wl and w2 are radially-symmetric, Wl = w2. Therefore, 
CVlo•(Uo) = {w} and consequently 

lim u(., t) = w in L•o•(]• N). 

Then, for every r > 0 we have 

/• w(x) dx- lim /B u(x,t) dx_< /• uo(x) dx. •(o) t-• r(o) •(0) 

Hence, w • Li(• N ). 
By Lemma 2.4, A;o(w) = 0 in •)'(]•N). Moreover, since $(t)uo • _< 

uo I•, ;o(w) is bounded and consequently constant. Hence, since w • 
Li(]• N), it follows that ;o(w) = 0. 

In the following step we suppose that 0 _< uo • •)(]•v). Then, there 
exists vo G T•(]• N) •q L•(]• N), such that 0 _< uo _< vo. Since every $(t) is 
order-preserving, 0 _< $(t)uo _< $(t)vo. Thus, if v • CVto•(Uo), by the first 
step of the proof we have 0 _< v _< w with CVtoc(Vo) = {w}. This shows that 
v E Li(• N) and q•(v)= O. 

In the following step we suppose that 0 _< uo ½ Ll(•v). For every 
__ 1 Given n e N let 0 < uo= e V(]• •v) be such that [[uo - uo= [1 <_ •. 

W e CVlo•(Uo)there exist tk -4 c• such that $(tk)uo -4 w in L•oc(I•N). Now, 
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f•,.(o) 
+/•,. (o) 
< f•,•(o) 
+/•,.(o) 

by Lemma 2.1 and the above step, for every n E N, there exists t• -• oo with 
{t•+•}k a subsequence of {t•}k such that w• = lim•_•o• $(t•)uo• • L•(It• •v) 
and 99(w•) = 0. Now, for every r > 0 we have 

Iw(/)- w•(/)l dx </• Iw(/)- S(t•)uo(x)] dx •(o) 

S(t•)uo(x) - S(t•)uo•(x)l dx +/, IS(t•)uo•(x) - w•(x)l dx •(o) 

Iw(/)- s(t)uo(/)l dx + fB luo(/)- uo(/)l dx •(o) 

IS(t)uo(x) - w(x)l dx. 

This shows that w• -• w a.e. in 11• •v and consequently, 99(w) = 0. On the 
other hand, since nos -• no in L1(11• •v) there exists h • L•(11• •v) such that 
0 < Uo• < h a.e. in 11• •v . Then, 

N N N 

Hence, by Fatou's Lemma we have 

• w,•_</• hforall n•N. N N 

Again applying Fatou's Lemma it follows that w • L•(ll•V). The order 
preseving property of every $(t) now yields the general theorem when uo • 
L1 (]i•N). 
Corollary 2.6. Let 99 ' lt• -• lt• a nondecreasing continuous function such 
that g-•(0): {0} and 0 • intD(g) if N - 1 or 2. Let no • L•(It• •v) and 
u(t, .) -- $(t)uo the mild-solution of problem (I) with initial data uo. Then, 

lim u(t,.)=OinL•(p) for all p•?. 

Proof. As consequence of the above Theorem Wp(Uo) = {0). Then, by the 
compactness of the orbits in L l(p), the result follows. 

When N >_ 3, the convergence of the orbits without the assumptions 
= {0} and • continuous can be obtained by using the fact that the 

solutions form a contraction semigroup in L•(p,) (Theorem 1.1). 
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Theorem 2.7. Suppose N _> 3 and let 0 < • _< (N-2)/2. Let qo be a 
maximal monotone graph in • x • with 0 ß qo(O). Let no ß Ll(pc•) arid 
u(t,.) = S(t)uo the mild-solution of problem (I) with initial data no. Then, 

lim u(t, .) - w in L•(p,) with qo(w): 0. 

Proof. Firsfly, we suppose that 0 < u0 ß 7Z(R ;q)FqL•(R ;q). With the same 
proof as in the first part of Theorem 2.5 we obtain that cap.(no) = {w}. 
Now, since (S(t))t> o is a contraction semigroup in L•(p,) it follows that 

-- 

w is an equilibrium point. Consequently, qo(w) - 0. 
Suppose now that 0 < u0 ß •D(R ;q). Then, there exists v0 ß 7g(R;q) rq 

Lø•(R N) such that 0 _< u0 _< v0. Since every S(t) is order-preserving, 
0 < S(t)uo < S(t)vo. Thus, if v ß cap.(u0), by the first step of the proof 
we have 0 _< v _< w with cap.(vo) = {w}. Hence, 0 _< qo(v) _< qo(w) and 
consequently qo(v) - 0. Therefore, cap. (u0) = {v} with qo(v) = 0 

From here, since •D(R N) is dense in L•(p,) and every S(t) is an order- 
preserving contraction in L•(p,), it is easy to finish the proof. 
Remark 2.8. As we said in the introduction the uniform bounds obtained in 

[4] are interesting in the study of the asymptotic behaviour of solutions of 
problem (I). In fact, as consequence of these bounds and our compactness 
result ( Lemma 2.1 ) it is possible to obtain the above theorem for the case 
in which qo is a nondecreasing continuous function. 

We do not know if this theorem is true when N - i or 2. 

As consequence of the above theorem we obtain the following inho- 
mogeneous version. 

Corollary 2.9. Suppose N _> 3 and 0 < • _< (N- 2)/2. Let qo be a maxi- 
mal monotone graph in • x • with 0 ß (/9--1(0) and f ß Ll(O, cx>;Ll(pa)). 
If u(x, t) is the mild-solution of the problem 

{ u• -- Aqo(u) q- f in ll• N x (0, o) = uo½) 
with no ß L•(p,), then there exists w E L•(p,) such that 

lim u(.,t) = w in L•(p,). 
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Proof. For every n C N, set 

f(t) ift_<n f•(t) -- 0 if t > n. 

Then, if u•(t) is the mild-solution of 

(' u• + A•un • f• 
u•(o) = •o 

and v• is the mild-solution of 

{ v'• + A•v• • 0 •(0): •(•), 

it follows from the translation property of the mild-solutions that v•(t) = 
u• (t + n). Now, by the above theorem 

lim v•(t) = w• in L•(p,), with •(Wn) = O. 

Hence, limt• u•(t) = w• in L•(p,), with •(w•) = 0. 
Let h,g e Wp•(Uo)with h = lim•u(t•)and g = lim•u(s•). 

Then, 

n-gll,• 5 Iln- •(t•)l .• + [u(t•)-u•(t•)llp• + IlUn(t•)- w•[lp•+ 

On the other hand, since u and u• are integral solutions we have that 

]o t ]u(t)-un(t) p• _< uo-u•(O) p•+ f(r)-f•(r) p• dr _< f(r) p•dr. 

Then, given e > O, let n C N such that 

f• f(r)ll.• dr _< •/6. 
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For n fixed, there exists k0 • N such that for every k _> k0 we have 

Hence, lib - gll• < •. Consequently, Wp,,(uo) = {w) and by the compact- 
ness of the orbits we obtain 

lim u(.,t) = w in L•(p,). 

Remark 2.10. The simplest heat transfer phenomenon involving phase change 
can be modelled by the equation (I) with •o a nondecreasing continuos func- 
tion, whose graph has a fiat part. For instance, in the classical two-phase 
Stefan problem ( see [15] ), •o is given by 

qo(r)= { r if r_•0 (r-a) + if r_•0. 

Suppose we have a function •o of the above type, i.e., •o ß • -• • a nonde- 
creasing continuous function such that sup(s ( • ß •o(s) = 0) = a > 0. 
Let 0 _< u0 • L•(•/v) and u(t,.) -- $(t)uo the mild-solution of problem 
(I) with initial data u0. Then, by Theorem 2.5, if w • W•oc(Uo) we have 
that w • L•(• N) and 0 _< w _< a. Moreover, since 0 _< inf(u0,a} = 
$(t)(inf(uo,a)) _< $(t)uo, it-follows that inf(u0, a) _< w _< a. Conse- 
quently, the functions in the w-limit set of u0 develops "mesas" on the set 
where u0 is greater than a. For the porous medium equation this phenom- 
ena was noticed in [14] 

To finish we are going to see that for •o's as before the solutions 
of problem (I) have compact support when the initial data has compact 
support. More concretely we have the following result. 

Theorem 2.11. Let •o ß 1• -• • a nondecreasing continuous function such 
thatsup{s • • ß •o(s) = 0) = a > 0 andO • intD(•o) ifN = 1 or 2. 
Let 0 < uo • L•(• •v) n L•(• •v) and u(t, .) = $(t)uo the mild-solution of 
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problem (I) with initial data uo. Then, u(t, .) has compact support when uo 
has compact support. 

Proof. Obviously, it is enough to prove the theorem in the case u0 - 

b rt'B•o(0 ) where b > a and rt'B•o(0 ) is the characteristic function of the 
ball B•o(0 ). Let • = ro •/•-/a. We are going to prove that u(t,.) -- 0 in 
E '= It •v -• B, (0). First we claim 

(7) J•uo_<a inE for all n•bl, 

Let v(r) :- 92(J•uo)(x) with [/[ = r. In the proof of Lemma 2.2 we saw 
that 

dv /B J• uo _ /B j•_ luo • O. dr (r) - •(o) •(o) - 
Hence, v is nondecreasing. Thus, if (7) is false, there exists/• > a such that 
v(r) > v(/•) > 0 for 0 _< r _</•, from where it follows that J•uo(x) > a if 
x[ _</•. Consequently, 

•(0) •(0) 

which is a contradiction. Therefore the claim is true. 

From (7) and the Crandall-Liggett exponential formula we obtain 

(8) u(t,.)_<a inE for all t>0. 

Having in mind that u(t, .) is a weak solution of ut - AT(u) ( see [7] ), by 
(8) it is easy to see that 

u(t,x)=c(x) a.e. in E for all t>0. 

Then, since there exist t,• • 0 such that u(t,•, .) -• uo a.e. in It •v, it follows 
that u(t,x) = uo(x) a.e. in E for all t > 0. Consequently u(t,x) = 0 a.e. 
in E for all t > 0. 
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