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Abstract. This paper is concerned with a Monge-Kantorovich mass transport problem in which
in the transport cost we replace the Euclidean distance with a discrete distance. We fix the length
of a step and the distance that measures the cost of the transport depends of the number of steps
that is needed to transport the involved mass from its origin to its destination. For this problem
we construct special Kantorovich potentials, and optimal transport plans via a nonlocal version
of the PDE formulation given by Evans and Gangbo for the classical case with the Euclidean
distance. We also study how these problems, when rescaling the step distance, approximate the
classical problem. In particular we obtain, taking limits in the rescaled nonlocal formulation, the
PDE formulation given by Evans-Gangbo for the classical problem.

To the memory of Fuensanta Andreu, our friend and colleague.

1. Introduction and preliminaries

The Monge mass transport problem, as proposed by Monge in 1781, deals with the optimal way
of moving points from one mass distribution to another so that the total work done is minimized.
In general, the total work is proportional to some cost function. In the classical Monge problem
the cost function is the Euclidean distance, and this problem has been intensively studied and
generalized in different directions that correspond to different classes of cost functions. We refer
to the surveys and books [1], [3], [10], [17], [19], [20] for further discussion of Monge’s problem,
its history, and applications.

However, even being the case of discontinuous cost functions very interesting for concrete
situations and applications, it seems not to be well covered in the literature, maybe for the lack
of convexity of the associated cost functions, which, nevertheless, enhance the interest of the
problem. For instance, assume that you want to transport an amount of sand located somewhere
to a hole at other place, then you count the number of steps that you have to move each part
of sand to its final destination in the hole and try to move the total amount of sand making as
less as possible steps. This amounts to the classical Monge-Kantorovich problem for the discrete
distance:

𝑑1(𝑥, 𝑦) =

⎧⎨⎩
0 if 𝑥 = 𝑦,
1 if 0 < ∣𝑥− 𝑦∣ ≤ 1,
2 if 1 < ∣𝑥− 𝑦∣ ≤ 2,
...

that count the number of steps. This transport problem also appears naturally when one con-
siders, in a simplified way, a transport problem between cities in which the cost is measured
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by the toll in the road (that is a discrete function of the number of kilometers). We want to
mention that our first motivation for the study of this problem comes from an interpretation of a
nonlocal model for sandpiles studied in [5] (which is a nonlocal version of the sandpile model of
Aronsson-Evans-Wu [6], see also [14]); in this model the height 𝑢 of a sandpile evolves following
the equation: {

𝑓(𝑡, ⋅)− 𝑢𝑡(𝑡, ⋅) ∈ ∂𝕀𝐾𝑑1
(ℝ𝑁 )(𝑢(𝑡, ⋅)) a.e. 𝑡 ∈ (0, 𝑇 ),

𝑢(𝑥, 0) = 𝑢0(𝑥),

where 𝐾𝑑1(ℝ𝑁 ) is the set of 1-Lipschitz 𝐿2-functions w.r.t. 𝑑1 and 𝑓 is a source. The interpre-
tation reads as follows (it is similar to the one given in [10] for the sandpile model of Aronsson-
Evans-Wu with the Euclidean distance): at each moment of time, the height function 𝑢(𝑡, ⋅) of
the sandpile is deemed also to be the potential generating the Monge-Kantorovich reallocation
of 𝜇+ = 𝑓(𝑡, ⋅) 𝑑𝑥 to 𝜇− = 𝑢𝑡(𝑡, ⋅) 𝑑𝑦 when the cost distance considered is 𝑑1. In other words, the
mass 𝜇+ is instantly and optimally transported downhill by the potential 𝑢(𝑡, ⋅) into the mass 𝜇−.

The aim of this paper is a detailed study of the mass transport problem for the discrete cost
function 𝑑1. It is clear that our problem falls into the scope of lower semi-continuous metric cost
functions, so that standard results, like the existence of a solution for the relaxed problem, the so
called Monge-Kantorovich problem, or the Kantorovich duality, stated in terms of the Kantorovich
potentials, remain true for 𝑑1. Nevertheless the above standard results rely on a general theory and
our interest resides in giving concrete characterizations: since 𝑑1 is discrete, the characterization
of the potentials, the Evans-Gangbo approach [11], as well as concrete computations of optimal
transport plans and/or maps are not covered in the literature; in particular, the potentials cannot
be characterized in a standard way, i.e., by using standard differentiation. It is also worth to
mention that, adapting an example of [16], it is easy to see that the Monge infimum and the
Monge-Kantorovich minimum does not coincide in general.

We find a special class of Kantorovich potentials and perform a detailed study of the one-
dimensional case with concrete examples that illustrate the obstructions to the existence of opti-
mal transport maps; we show that the Monge problem is, in fact, ill-posed. In any dimension, we
give an equation for the Kantorovich potentials, in the way of Evans-Gangbo, obtained as a limit
of nonlocal 𝑝−Laplacian problems, and, what is quite important, we use it to construct optimal
transport plans. We want to remark that all these developments can be done in the same way
for the discrete distance with steps of size 𝜀,

𝑑𝜀(𝑥, 𝑦) =

⎧⎨⎩
0 if 𝑥 = 𝑦,
𝜀 if 0 < ∣𝑥− 𝑦∣ ≤ 𝜀,
2𝜀 if 𝜀 < ∣𝑥− 𝑦∣ ≤ 2𝜀,
...

Then, finally, we give the connection between the Monge-Kantorovich problem with the discrete
distance 𝑑𝜀 and the classical Monge-Kantorovich problem with the Euclidean distance, proving
that, when the length of the step tends to zero, these discrete/nonlocal problems give an approxi-
mation to the classical one; in particular, we recover the PDE formulation given by Evans-Gangbo
in [11].

Whenever 𝑇 is a map from a measure space (𝑋,𝜇) to an arbitrary space 𝑌 , we denote by
𝑇#𝜇 the pushforward measure of 𝜇 by 𝑇 . Explicitly, (𝑇#𝜇)[𝐵] = 𝜇[𝑇−1(𝐵)]. When we write
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𝑇#𝑓 = 𝑔, where 𝑓 and 𝑔 are non-negative functions, this means that the measure having density
𝑓 is pushed-forward to the measure having density 𝑔.

The general framework in which we will move is in a bounded convex domain Ω in ℝ𝑁 .

The Monge problem for the cost function 𝑑1. Take two non-negative Borel function
𝑓+, 𝑓− ∈ 𝐿1(Ω) satisfying the mass balance condition

(1.1)

∫
Ω
𝑓+(𝑥) 𝑑𝑥 =

∫
Ω
𝑓−(𝑦) 𝑑𝑦.

Let 𝒜(𝑓+, 𝑓−) be the set of transport maps pushing 𝑓+ to 𝑓−, that is, the set of Borel maps
𝑇 : Ω → Ω such that 𝑇#𝑓+ = 𝑓−. The Monge problem consists in finding a map 𝑇 ∗ ∈ 𝒜(𝑓+, 𝑓−)
which minimizes the cost functional

ℱ𝑑1(𝑇 ) :=

∫
Ω
𝑑1(𝑥, 𝑇 (𝑥))𝑓

+(𝑥) 𝑑𝑥

in the set 𝒜(𝑓+, 𝑓−). 𝑇 ∗ is called an optimal transport map pushing 𝑓+ to 𝑓−.
The original problem studied by Monge corresponds to the cost function 𝑑∣⋅∣(𝑥, 𝑦) := ∣𝑥 − 𝑦∣

the Euclidean distance. In general, the Monge problem is ill-posed. To overcome the difficulties
of the Monge problem, in 1942 L. V. Kantorovich, [15], proposed to study a relaxed version of
the Monge problem and, what is more relevant here, introduced a dual variational principle.

We will use the usual convention of denoting by 𝜋𝑖 : ℝ𝑁 × ℝ𝑁 the projections, 𝜋1(𝑥, 𝑦) := 𝑥,
𝜋2(𝑥, 𝑦) := 𝑦. Given a Radon measure 𝜇 in Ω×Ω, its marginals are defined by 𝑝𝑟𝑜𝑗𝑥(𝜇) := 𝜋1#𝜇,
𝑝𝑟𝑜𝑗𝑦(𝜇) := 𝜋2#𝜇.

The Monge-Kantorovich relaxed problem for 𝑑1. Fix 𝑓+ and 𝑓− satisfying (1.1). Let
𝜋(𝑓+, 𝑓−) the set of transport plans between 𝑓+ and 𝑓−, that is the set of non-negative Radon
measures 𝜇 in Ω × Ω such that proj𝑥(𝜇) = 𝑓+(𝑥) 𝑑𝑥 and proj𝑦(𝜇) = 𝑓−(𝑦) 𝑑𝑦. The Monge-

Kantorovich problem is to find a measure 𝜇∗ ∈ 𝜋(𝑓+, 𝑓−) which minimizes the cost functional

𝒦𝑑1(𝜇) :=

∫
Ω×Ω

𝑑1(𝑥, 𝑦) 𝑑𝜇(𝑥, 𝑦),

in the set 𝜋(𝑓+, 𝑓−). A minimizer 𝜇∗ is called an optimal transport plan between 𝑓+ and 𝑓−.
Remark that we say plans between 𝑓+ and 𝑓− since this problem is reversible, which is not true
in general for the Monge problem.

As a consequence of [1, Propostion 2.1], we have

inf{𝒦𝑑1(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)} ≤ inf{ℱ𝑑1(𝑇 ) : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)}.
On the other hand, since 𝑑1 is a lower semi-continuous cost function, it is well known the

existence of an optimal transport plan (see [1, 16] and the references therein). Therefore we have
the following result.

Proposition 1.1. Let 𝑓+, 𝑓− ∈ 𝐿1(Ω) be two non-negative Borel functions satisfying the mass
balance condition (1.1). Then, there exists an optimal transport plan 𝜇∗ ∈ 𝜋(𝑓+, 𝑓−) solving the
Monge-Kantorovich problem, 𝒦𝑑1(𝜇

∗) = min{𝒦𝑑1(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)}.
The Kantorovich dual problem for 𝑑1. Since the cost function 𝑑1 is a lower semi-continuous

metric, we have the following result (see for instance [19, Theorem 1.14]).
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Theorem 1.2. (Kantorovich-Rubinstein Theorem). Let 𝑓+, 𝑓− ∈ 𝐿1(Ω) be two non-
negative Borel functions satisfying the mass balance condition (1.1). Then,

(1.2) min{𝒦𝑑1(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)} = sup
{𝒫𝑓+,𝑓−(𝑢) : 𝑢 ∈ 𝐾𝑑1(Ω)

}
,

where

𝒫𝑓+,𝑓−(𝑢) :=

∫
Ω
𝑢(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥,

and 𝐾𝑑1(Ω) is the set of 1-Lipschitz functions w.r.t. 𝑑1,

𝐾𝑑1(Ω) :=
{
𝑢 ∈ 𝐿2(Ω) : ∣𝑢(𝑥)− 𝑢(𝑦)∣ ≤ 𝑑1(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ Ω

}
.

The maximizers 𝑢∗ of the right-hand side of (1.2) are called Kantorovich (transport) potentials.

The Kantorovich dual problem consists in finding this Kantorovich potentials. Although it
can be studied for masses being Borel measures, we will restrict ourselves to Lebesgue integrable
functions in order to avoid more technicalities.

If we denote by 𝕀𝐾𝑑1
(Ω) to the indicator function of 𝐾𝑑1(Ω),

𝕀𝐾𝑑1
(Ω)(𝑢) :=

{
0 if 𝑢 ∈ 𝐾𝑑1(Ω),
+∞ if 𝑢 ∕∈ 𝐾𝑑1(Ω),

we have that the Euler-Lagrange equation associated with the variational problem

sup
{𝒫𝑓+,𝑓−(𝑢) : 𝑢 ∈ 𝐾𝑑1(Ω)

}
is the equation

(1.3) 𝑓+ − 𝑓− ∈ ∂𝕀𝐾𝑑1
(Ω)(𝑢).

That is, the Kantorovich potentials of (1.2) are solutions of (1.3).
In the particular case of the Euclidean distance 𝑑∣⋅∣(𝑥, 𝑦) and for adequate masses 𝑓+ and 𝑓−,

Evans and Gangbo in [11] find a solution of the related equation (1.3) as a limit, as 𝑝 → ∞,
of solutions to the local 𝑝−Laplace equation with Dirichlet boundary conditions in a sufficiently
large ball 𝐵𝑅(0): { −Δ𝑝𝑢𝑝 = 𝑓+ − 𝑓− 𝐵𝑅(0),

𝑢𝑝 = 0, ∂𝐵𝑅(0).

Moreover, they characterize the solutions to the limit equation (1.3) by means of a PDE.

Theorem 1.3. (Evans-Gangbo Theorem). Let 𝑓+, 𝑓− ∈ 𝐿1(Ω) be two non-negative Borel
functions satisfying the mass balance condition (1.1). Assume additionally that 𝑓+ and 𝑓− are
Lipschitz continuous functions with compact support such that supp(𝑓+) ∩ supp(𝑓−) = ∅. Then,
there exists 𝑢∗ ∈ Lip1(Ω, 𝑑∣.∣) such that∫

Ω
𝑢∗(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 = max

{∫
Ω
𝑢(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 : 𝑢 ∈ Lip1(Ω, 𝑑∣⋅∣)

}
;

and there exists 0 ≤ 𝑎 ∈ 𝐿∞(Ω) (the transport density) such that

(1.4) 𝑓+ − 𝑓− = −div(𝑎∇𝑢∗) in 𝒟′(Ω).

Furthermore ∣∇𝑢∗∣ = 1 a.e. on the set {𝑎 > 0}.
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The function 𝑎 that appear in the previous result is the Lagrange multiplier corresponding to
the constraint ∣∇𝑢∗∣ ≤ 1, and it is called the transport density. Moreover, what is very important
from the point of view of mass transport, Evans and Gangbo use this PDE to find a proof of the
existence of an optimal transport map for the classical Monge problem, different to the first one
given by Sudakov in 1979 by means of probability methods ([18], see also [1] and [3]).

One of our main aims will be to perform such program for the discrete distance. Before starting
with it, we want to remark that, as it is known (see [16]), the equality between Monge’s infimum
and Kantorovich’s minimum is not true in general if the cost function is not continuous. The
example given by Pratelli in [16] can be adapted to get a counterexample also for the case of the
cost function given by the metric 𝑑1.

Example 1.4. Consider 𝑅, 𝑆 and 𝑇 the parallel segments in ℝ2 given by 𝑅 := {(−1, 𝑦) : 𝑦 ∈
[−1, 1]}, 𝑆 := {(0, 𝑦) : 𝑦 ∈ [−1, 1]} and 𝑄 := {(1, 𝑦) : 𝑦 ∈ [−1, 1]}. Let 𝑓+ := 2ℋ1 𝑆 and
𝑓− := ℋ1 𝑅 + ℋ1 𝑄. It is not difficult to see that min{𝒦𝑑1(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)} = 2 and
the minimum is achieved by the transport plan splitting the central segment 𝑆 in two parts and
translating them on the left and on the right. On the other hand, we claim that

(1.5) inf
{ℱ𝑑1(𝑇 ) : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)

} ≥ 4.

To prove (1.5), fix 𝑇 ∈ 𝒜(𝑓+, 𝑓−) and consider 𝐼(𝑇 ) := {𝑥 ∈ 𝑆 : 𝑑1(𝑥, 𝑇 (𝑥)) = 1}. If we see
that

(1.6) 𝑓+(𝐼(𝑇 )) = 0,

then

ℱ𝑑1(𝑇 ) =

∫
𝑆
𝑑1(𝑥, 𝑇 (𝑥)) 𝑑𝑓

+(𝑥) ≥ 2

∫
𝑆∖𝐼(𝑇 )

𝑑ℋ1(𝑥) = 4,

and (1.5) follows. Finally, let us see that (1.6) holds. If we define

𝐼(𝑇 )𝑅 := {𝑥 ∈ 𝐼(𝑇 ) : 𝑇 (𝑥) ∈ 𝑅} and 𝐼(𝑇 )𝑄 := {𝑥 ∈ 𝐼(𝑇 ) : 𝑇 (𝑥) ∈ 𝑄},
we have 𝐼(𝑇 ) = 𝐼(𝑇 )𝑅 ∪ 𝐼(𝑇 )𝑄 and 𝐼(𝑇 )𝑅 ∩ 𝐼(𝑇 )𝑄 = ∅, and by the definition of 𝐼(𝑇 ), if 𝐸 =
𝑇 (𝐼(𝑇 )), it is easy to see that

ℋ1(𝐸) = ℋ1(𝐸 ∩𝑅) +ℋ1(𝐸 ∩𝑄) = ℋ1(𝐼(𝑇 )𝑅) +ℋ1(𝐼(𝑇 )𝑅) = ℋ1(𝐼(𝑇 )).

Therefore, 𝑓+(𝐼(𝑇 )) = 2𝑓−(𝐸). But since 𝑇 ∈ 𝒜(𝑓+, 𝑓−) one has 𝑓−(𝐸) = 𝑓+(𝑇−1(𝐸)) ≥
𝑓+(𝐼(𝑇 )) = 2𝑓−(𝐸), that implies 𝑓+(𝐼(𝑇 )) = 0 and (1.6) is proved.

2. Kantorovich potentials

The aim of this section is the study of the Kantorovich potentials that maximize

sup
{𝒫𝑓+,𝑓−(𝑢) : 𝑢 ∈ 𝐾1

}
,

where 𝐾1 := 𝐾𝑑1(Ω) for shortness.
Following ideas from [11], we first show that it is possible to construct Kantorovich potentials

for the cost function 𝑑1 taking limit, as 𝑝 goes to ∞, in some 𝑝–Laplacian problems but of
nonlocal nature. Afterwards, we prove the existence of Kantorovich potentials with a finite
number of jumps of size one (a specially interesting result for searching/constructing optimal
transport maps and plans).
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Let

(2.1)

{
𝐽 : ℝ𝑁 → ℝ be a non-negative continuous radial function with

supp(𝐽) = 𝐵1(0), 𝐽(0) > 0 and
∫
ℝ𝑁 𝐽(𝑥) 𝑑𝑥 = 1.

We will use the following Poincaré type inequality from [4].

Proposition 2.1 ([4]). Given 𝑝 ≥ 1, 𝐽 and Ω, there exists 𝛽𝑝 = 𝛽(𝐽,Ω, 𝑝) > 0 such that

(2.2) 𝛽𝑝

∫
Ω

∣∣∣∣𝑢− 1

∣Ω∣
∫
Ω
𝑢

∣∣∣∣𝑝 ≤ 1

2

∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢(𝑦)− 𝑢(𝑥)∣𝑝 𝑑𝑦 𝑑𝑥 ∀𝑢 ∈ 𝐿𝑝(Ω).

Proposition 2.2. Let 𝑓 ∈ 𝐿2(Ω) and 𝑝 > 2. Then the functional

𝐹𝑝(𝑢) =
1

2𝑝

∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢(𝑦)− 𝑢(𝑥)∣𝑝 𝑑𝑦 𝑑𝑥−

∫
Ω
𝑓(𝑥)𝑢(𝑥) 𝑑𝑥

has a unique minimizer 𝑢𝑝 in 𝑆𝑝 :=
{
𝑢 ∈ 𝐿𝑝(Ω) :

∫
Ω 𝑢(𝑥) 𝑑𝑥 = 0

}
.

Proof. Let 𝑢𝑛 be a minimizing sequence. Hence, 𝐹𝑝(𝑢𝑛) ≤ 𝐶, that is

1

2𝑝

∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢𝑛(𝑦)− 𝑢𝑛(𝑥)∣𝑝 𝑑𝑦 𝑑𝑥−

∫
Ω
𝑓(𝑥)𝑢𝑛(𝑥) 𝑑𝑥 ≤ 𝐶

Then,
1

2𝑝

∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢𝑛(𝑦)− 𝑢𝑛(𝑥)∣𝑝 𝑑𝑦 𝑑𝑥 ≤

∫
Ω
𝑓(𝑥)𝑢𝑛(𝑥) 𝑑𝑥+ 𝐶

From the Poincaré inequality (2.2) and Hölder’s inequality, we get

1

2𝑝

∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢𝑛(𝑦)− 𝑢𝑛(𝑥)∣𝑝 𝑑𝑦 𝑑𝑥 ≤ ∥𝑓∥𝐿2(Ω)∥𝑢𝑛∥𝐿2(Ω) + 𝐶

≤ ∥𝑓∥𝐿2(Ω)

(
1

2𝛽2

∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢(𝑦)− 𝑢(𝑥)∣2 𝑑𝑦 𝑑𝑥

) 1
2

+ 𝐶

≤ 𝐶(𝑓)

(∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢𝑛(𝑦)− 𝑢𝑛(𝑥)∣𝑝 𝑑𝑦 𝑑𝑥

)1/𝑝(∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)

) 2−𝑝
2𝑝

+ 𝐶.

Therefore, we have that ∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢𝑛(𝑦)− 𝑢𝑛(𝑥)∣𝑝 𝑑𝑦 𝑑𝑥 ≤ 𝐶.

Then, applying again Poincaré’s inequality (2.2), we have {𝑢𝑛 : 𝑛 ∈ ℕ} is bounded in 𝐿𝑝(Ω).
Hence, we can extract a subsequence that converges weakly in 𝐿𝑝(Ω) to some 𝑢 (that clearly has
to verify

∫
Ω 𝑢 = 0) and we obtain

lim inf
𝑛→+∞

1

2𝑝

∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢𝑛(𝑦)− 𝑢𝑛(𝑥)∣𝑝 𝑑𝑦 𝑑𝑥 ≥ 1

2𝑝

∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢(𝑦)− 𝑢(𝑥)∣𝑝 𝑑𝑦 𝑑𝑥

and

lim
𝑛→+∞

∫
Ω
𝑓(𝑥)𝑢𝑛(𝑥) 𝑑𝑥 =

∫
Ω
𝑓(𝑥)𝑢(𝑥) 𝑑𝑥

Therefore, 𝑢 is a minimizer of 𝐹𝑝. Uniqueness is a direct consequence of the fact that 𝐹𝑝 is strictly
convex. □
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Lemma 2.3. Given 𝑢 ∈ 𝐿1(Ω) such that

𝐸 := {(𝑥, 𝑦) ∈ Ω× Ω : ∣𝑢(𝑥)− 𝑢(𝑦)∣ > 𝑑1(𝑥, 𝑦)}
is a null set of Ω× Ω, there exists �̂� ∈ 𝐾1 such that

(2.3) 𝑢 = �̂� a.e. in Ω.

Proof. We can assume that 𝑢 is defined everywhere in Ω and bounded. Indeed, let 𝐴 be the null
set in Ω such that for all 𝑥 ∈ Ω ∖ 𝐴, 𝐸𝑥 = {𝑦 ∈ Ω : (𝑥, 𝑦) ∈ 𝐸} is null and 𝑢(𝑥) is finite. Take
𝑥 ∈ Ω ∖𝐴, then, for all 𝑦 ∈ Ω ∖ 𝐸𝑥

𝑢(𝑥)− 𝑑1(𝑥, 𝑦) ≤ 𝑢(𝑦) ≤ 𝑢(𝑥) + 𝑑1(𝑥, 𝑦),

and therefore 𝑢(𝑦) is a.e. bounded by 𝑀 := ∣𝑢(𝑥)∣+ sup𝑧∈Ω 𝑑1(𝑥, 𝑧). Take now 𝐵 the null set in
Ω where ∣𝑢∣ > 𝑀 and define �̃�(𝑥) := 𝑢(𝑥) in Ω ∖𝐵, �̃�(𝑥) := 0 in 𝐵. Then �̃� = 𝑢 a.e. and

∣�̃�(𝑥)− �̃�(𝑦)∣ ≤ 𝑑1(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ Ω× Ω ∖ [𝐸 ∪ (𝐵 × Ω) ∪ (Ω×𝐵)].

Let us consider

𝑢𝜀(𝑥) =
1

∣𝐵𝜀(𝑥)∣
∫
𝐵𝜀(𝑥)

𝑢(𝑧)𝑑𝑧,

where 𝑢 is extended by 0 to ℝ𝑁 ∖ Ω. Then, for any 𝑥 ∈ Ω, we define

�̂�(𝑥) := lim sup
𝜀→0

𝑢𝜀(𝑥).

It is clear that �̂� = 𝑢 a.e. in Ω.
Let 𝑥, 𝑦 ∈ Ω be such that ∣𝑥− 𝑦∣ ∕= 𝑖 for any 𝑖 = 0, 1, 2, . . . . Then, there exists 𝑖 ∈ ℕ such that

𝑖− 1 < ∣𝑥− 𝑦∣ < 𝑖 and there exists 𝜀0 > 0 such that 𝐵𝜀0(𝑥), 𝐵𝜀0(𝑦) ⊂ Ω and

𝑖− 1 < ∣𝑧1 − 𝑧2∣ < 𝑖, for any (𝑧1, 𝑧2) ∈ 𝐵𝜀0(𝑥)×𝐵𝜀0(𝑦).

This implies that, for any 0 < 𝜀 ≤ 𝜀0, we have

𝑢𝜀(𝑥)− 𝑢𝜀(𝑦) =
1

∣𝐵𝜀(𝑥)∣
∫
𝐵𝜀(𝑥)

𝑢(𝑧)𝑑𝑧 − 1

∣𝐵𝜀(𝑦)∣
∫
𝐵𝜀(𝑦)

𝑢(𝑧)𝑑𝑧

=
1

∣𝐵𝜀(0)∣2
∫ ∫

𝐵𝜀(𝑥)×𝐵𝜀(𝑦)
(𝑢(𝑧1)− 𝑢(𝑧2))𝑑𝑧1𝑑𝑧2

≤ 1

∣𝐵𝜀(0)∣2
∫ ∫

𝐵𝜀(𝑥)×𝐵𝜀(𝑦)
𝑑1(𝑧1, 𝑧2)𝑑𝑧1𝑑𝑧2

= 𝑑1(𝑥, 𝑦).

Then, letting 𝜀 → 0, we deduce that

(2.4) �̂�(𝑥) ≤ 𝑑1(𝑥, 𝑦) + �̂�(𝑦) for any (𝑥, 𝑦) ∈ Ω× Ω, ∣𝑥− 𝑦∣ ∕= 𝑖, 𝑖 = 1, 2, . . . .

Now, assume that 𝑥, 𝑦 ∈ Ω, ∣𝑥−𝑦∣ = 𝑖, for some 𝑖 ∈ ℕ. And let 𝜀0 be such that 𝐵𝜀0(𝑥), 𝐵2𝜀0(𝑦) ⊂
Ω. Let 𝑦𝑛 ∈ Ω be such that 𝑦𝑛 → 𝑦, 𝐵𝜀0(𝑦𝑛) ⊂ Ω and 𝑖− 1 < ∣𝑥− 𝑦𝑛∣ < 𝑖. Using the continuity



8 N. IGBIDA, J. M. MAZÓN, J. D. ROSSI AND J. TOLEDO

of 𝑢𝜀 and (2.4) we see that, for any 0 < 𝜀 ≤ 𝜀0,

𝑢𝜀(𝑥)− 𝑢𝜀(𝑦) = lim
𝑛→∞

(
1

∣𝐵𝜀(𝑥)∣
∫
𝐵𝜀(𝑥)

�̂�(𝑧)𝑑𝑧 − 1

∣𝐵𝜀(𝑦𝑛)∣
∫
𝐵𝜀(𝑦𝑛)

�̂�(𝑧)𝑑𝑧

)

= lim
𝑛→∞

1

∣𝐵𝜀(0)∣
∫
𝐵𝜀(0)

(�̂�(𝑥+ 𝑧)− �̂�(𝑦𝑛 + 𝑧))𝑑𝑧

≤ lim
𝑛→∞ 𝑑1(𝑥, 𝑦𝑛) = 𝑖 = 𝑑1(𝑥, 𝑦).

Letting 𝜀 → 0, we obtain that
�̂�(𝑥) ≤ 𝑑1(𝑥, 𝑦) + �̂�(𝑦).

The proof is finished. □
Now we show that the limit as 𝑝 goes to ∞ of the sequence 𝑢𝑝 of minimizers of 𝐹𝑝 in 𝑆𝑝 gives

a Kantorovich potential.

Theorem 2.4. Let 𝑓+, 𝑓− ∈ 𝐿2(Ω) be two non-negative Borel functions satisfying the mass
balance condition (1.1). Let 𝑢𝑝 be the minimizer in Proposition 2.2 for 𝑓 = 𝑓+ − 𝑓−, 𝑝 > 2.
Then, there exists a subsequence {𝑢𝑝𝑛}𝑛∈ℕ having as weak limit a Kantorovich potential 𝑢 for 𝑓±
and the metric cost function 𝑑1, that is,∫

Ω
𝑢(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 = max

𝑣∈𝐾1

∫
Ω
𝑣(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥.

Proof. For 1 ≤ 𝑞, we set

∣∣∣𝑢∣∣∣𝑞 :=
(∫

Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢(𝑦)− 𝑢(𝑥)∣𝑞 𝑑𝑥𝑑𝑦

) 1
𝑞

.

By Hölder’s inequality, for 𝑟 ≥ 𝑞 :

∣∣∣𝑢∣∣∣𝑞 ≤
(∫

Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢(𝑦)− 𝑢(𝑥)∣𝑟 𝑑𝑥𝑑𝑦

) 1
𝑟
(∫

Ω

∫
Ω
𝐽(𝑥− 𝑦) 𝑑𝑥𝑑𝑦

) 𝑟−𝑞
𝑟𝑞

,

that is, for (𝑟, 𝑞), 𝑟 ≥ 𝑞,

(2.5) ∣∣∣𝑢∣∣∣𝑞 ≤ ∣∣∣𝑢∣∣∣𝑟
(∫

Ω

∫
Ω
𝐽(𝑥− 𝑦) 𝑑𝑥𝑑𝑦

) 𝑟−𝑞
𝑟𝑞

.

Since 𝐹𝑝(𝑢𝑝) ≤ 𝐹𝑝(0) = 0 and Poincaré’s inequality (2.2),

∣∣∣𝑢𝑝∣∣∣𝑝𝑝 ≤ 2𝑝

∫
Ω
𝑓(𝑥)𝑢𝑝(𝑥) 𝑑𝑥 ≤ 2𝑝 ∥𝑓∥2∣∣𝑢𝑝∣∣2 ≤ 2𝑝∥𝑓∥2

(2𝛽2)1/2
∣∣∣𝑢𝑝∣∣∣2.

Then, for 2 ≤ 𝑞 < 𝑝, using (2.5) twice (for (𝑝, 𝑞) and for (𝑞, 2)),

∣∣∣𝑢𝑝∣∣∣𝑝𝑞 ≤ ∣∣∣𝑢𝑝∣∣∣𝑝𝑝
(∫

Ω

∫
Ω
𝐽(𝑥− 𝑦) 𝑑𝑥𝑑𝑦

) 𝑝−𝑞
𝑞

≤ 2𝑝∥𝑓∥2
(2𝛽2)1/2

∣∣∣𝑢𝑝∣∣∣2
(∫

Ω

∫
Ω
𝐽(𝑥− 𝑦) 𝑑𝑥𝑑𝑦

) 𝑝−𝑞
𝑞

≤ 2𝑝∥𝑓∥2
(2𝛽2)1/2

∣∣∣𝑢𝑝∣∣∣𝑞
(∫

Ω

∫
Ω
𝐽(𝑥− 𝑦) 𝑑𝑥𝑑𝑦

) 𝑝−𝑞
𝑞

+ 𝑞−2
2𝑞

.
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Consequently,

(2.6) ∣∣∣𝑢𝑝∣∣∣𝑞 ≤
(

2𝑝∥𝑓∥2
(2𝛽2)1/2

) 1
𝑝−1
(∫

Ω

∫
Ω
𝐽(𝑥− 𝑦) 𝑑𝑥𝑑𝑦

) 1
𝑞
− 1

2(𝑝−1)

.

Then, {∣∣∣𝑢𝑝∣∣∣𝑞 : 𝑝 > 𝑞} is bounded. Hence, by Poincaré’s inequality (2.2), we have that
{𝑢𝑝 : 𝑝 > 𝑞} is bounded in 𝐿𝑞(Ω). Therefore, we can assume that 𝑢𝑝 ⇀ 𝑢 weakly in 𝐿𝑞(Ω).
By a diagonal process, we have that there is a sequence 𝑝𝑛 → ∞, such that 𝑢𝑝𝑛 ⇀ 𝑢 weakly in
𝐿𝑚(Ω), as 𝑛 → +∞, for all 𝑚 ∈ ℕ. Thus, 𝑢 ∈ 𝐿∞(Ω). Since the functional 𝑣 7→∣∣∣𝑣∣∣∣𝑞 is weakly
lower semi-continuous, having in mind (2.6), we have

∣∣∣𝑢∣∣∣𝑞 ≤
(∫

Ω

∫
Ω
𝐽(𝑥− 𝑦) 𝑑𝑥𝑑𝑦

) 1
𝑞

.

Therefore, lim𝑞→+∞ ∣∣∣𝑢∣∣∣𝑞 ≤ 1, from where it follows that ∣𝑢(𝑥)− 𝑢(𝑦)∣ ≤ 𝑑1(𝑥, 𝑦) a.e. in Ω×Ω.
Now, thanks to Lemma 2.3 we can suppose, that 𝑢 ∈ 𝐾1. Let us see that 𝑢 is a Kantorovich
potential associated with the metric 𝑑1. Fix 𝑣 ∈ 𝐾1. Then,

−
∫
Ω
𝑓𝑢𝑝 ≤ 1

2𝑝

∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑢𝑝(𝑦)− 𝑢𝑝(𝑥)∣𝑝 𝑑𝑥𝑑𝑦 −

∫
Ω
𝑓(𝑥)𝑢𝑝(𝑥) 𝑑𝑥

= 𝐹𝑝(𝑢𝑝) ≤ 𝐹𝑝

(
𝑣 − 1

∣Ω∣
∫
Ω
𝑣

)
=

1

2𝑝

∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)∣𝑣(𝑦)− 𝑣(𝑥)∣𝑝𝑑𝑥𝑑𝑦 −

∫
Ω
𝑓(𝑥)𝑣(𝑥) 𝑑𝑥

≤ 1

2𝑝

∫
Ω

∫
Ω
𝐽(𝑥− 𝑦)𝑑𝑥𝑑𝑦 −

∫
Ω
𝑓(𝑥)𝑣(𝑥) 𝑑𝑥,

where we have used
∫
Ω 𝑓 = 0 for the second equality and the fact that 𝑣 ∈ 𝐾1 for the last

inequality. Hence, taking limit as 𝑝 → ∞, we obtain that∫
Ω
𝑢(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 ≥

∫
Ω
𝑣(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥.

□
Let us now study a special class of Kantorovich potentials. We begin with the following lemma.

Lemma 2.5. Assume that 𝑣 ∈ 𝐾1 takes a finite number of values. Then, there exists 𝑢 ∈ 𝐾1 that
also takes a finite number of values but with jumps of length 1, the number of points in its image
is less or equal than the number of points in the image of 𝑣 and improves in the maximization
problem, that is, ∫

Ω
𝑢(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 ≥

∫
Ω
𝑣(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥.

Proof. The proof runs by induction in the number of nonempty level sets of 𝑣. Take 𝑓 := 𝑓+−𝑓−
and suppose that 𝑣 ∈ 𝐾1 is given by, without loss of generality, 𝑣(𝑥) = 𝑎0𝜒𝐴0+𝑎1𝜒𝐴1+⋅ ⋅ ⋅+𝑎𝑘𝜒𝐴𝑘

,
𝑎0 = 0, ∣𝐴𝑖∣ > 0, 𝐴𝑖 ∩𝐴𝑗 = ∅ for any 𝑖 ∕= 𝑗.

Set 𝑠 := Sign
(∫

𝐴0
𝑓
)
, where

Sign(𝑟) =

{
1 if 𝑟 ≥ 0,
−1 if 𝑟 < 0,
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and consider 𝑡0 = max{𝑡 ≥ 0 : 𝑢𝑡 := (𝑎0 + 𝑠𝑡)𝜒𝐴0 + 𝑎1𝜒𝐴1 + ⋅ ⋅ ⋅ + 𝑎𝑘𝜒𝐴𝑘
∈ 𝐾1}. So, 𝑡0 is such

that ∃ 𝑖 ∕= 0, 𝑑𝑖𝑠𝑡(𝐴𝑖, 𝐴0) ≤ 1 and ∣𝑎0 + 𝑠𝑡0 − 𝑎𝑖∣ = 1 and∫
Ω
𝑓(𝑥)𝑣(𝑥) 𝑑𝑥 ≤

∫
Ω
𝑓(𝑥)𝑢𝑡(𝑥) 𝑑𝑥.

Hence, replacing 𝑣 by 𝑢𝑡0 , we can assume that 𝐴𝑖 are disjoint sets, 𝑑𝑖𝑠𝑡(𝐴0, 𝐴1) ≤ 1 and
∣𝑢0 − 𝑢1∣ = 1.

Now, we set 𝑠 := Sign
(∫

𝐴0∪𝐴1
𝑓
)
and we consider

𝑡0 = max{𝑡 ≥ 0 ; 𝑢𝑡 := (𝑎0 + 𝑠𝑡)𝜒𝐴0 + (𝑎1 + 𝑠𝑡)𝜒𝐴1 + 𝑎2𝜒𝐴2 + ⋅ ⋅ ⋅+ 𝑎𝑘𝜒𝐴𝑘
∈ 𝐾1}.

So, 𝑡0 is such that ∃ 𝑖 ∈ {0, 1} and ∃ 𝑗𝑖 ∕∈ {0, 1} such that 𝑑𝑖𝑠𝑡(𝐴𝑖, 𝐴𝑗𝑖) ≤ 1, ∣𝑎𝑖 + 𝑠𝑡0 − 𝑎𝑗𝑖 ∣ = 1
and ∫

Ω
𝑓(𝑥)𝑣(𝑥) 𝑑𝑥 ≤

∫
Ω
𝑓(𝑥)𝑢𝑡(𝑥) 𝑑𝑥.

Hence, replacing 𝑣 by 𝑢𝑡0 , we can assume that 𝐴𝑖 are disjoint sets and ∣𝑢𝑖 − 𝑢𝑗 ∣ ∈ {0, 1, 2}, for
any 𝑖, 𝑗 ∈ {0, 1, 2}.

Now, by induction assume that we have 𝑢 = 𝑎0𝜒𝐴0 + ⋅ ⋅ ⋅+ 𝑎𝑙𝜒𝐴𝑙
+ ⋅ ⋅ ⋅+ 𝑎𝑘𝜒𝐴𝑘

, where 𝐴𝑖 are
disjoint sets, and ∣𝑎𝑖− 𝑎𝑗 ∣ ∈ ℕ, for any 𝑖, 𝑗 = 0, 1, . . . , 𝑙, and let us prove that we can assume that
𝐴𝑖 are disjoint compact sets, and ∣𝑎𝑖 − 𝑎𝑗 ∣ ∈ ℕ, for any 𝑖, 𝑗 ∈ {0, 1, . . . , 𝑙 + 1}. We set

𝑠 := Sign

(∫
𝐴0∪...∪𝐴𝑙

𝑓

)
,

and we consider

𝑡0 = max{𝑡 ≥ 0 ; 𝑢𝑡 := (𝑎0 + 𝑠𝑡)𝜒𝐴0 + ⋅ ⋅ ⋅+ (𝑎𝑙 + 𝑠𝑡)𝜒𝐴𝑙
+ 𝑎𝑙+1𝜒𝐴𝑙+1

+ ⋅ ⋅ ⋅+ 𝑎𝑘𝜒𝐴𝑘
∈ 𝐾1}.

So, 𝑡0 is such that ∃ 𝑖 ∈ {0, 1, . . . , 𝑙} and ∃ 𝑗𝑖 ∕∈ {0, 1, . . . , 𝑙} for which

𝑑𝑖𝑠𝑡(𝐴𝑖, 𝐴𝑗𝑖) ≤ 1, ∣𝑢𝑖 + 𝑠𝑡0 − 𝑢𝑗𝑖 ∣ = 1 and

∫
Ω
𝑓(𝑥)𝑢(𝑥) 𝑑𝑥 ≤

∫
Ω
𝑓(𝑥)𝑢𝑡(𝑥) 𝑑𝑥.

Hence, replacing 𝑢 by 𝑢𝑡0 , we can assume that the sets 𝐴𝑖 are disjoint and ∣𝑎𝑖 − 𝑎𝑗 ∣ ∈ ℕ, for any
𝑖, 𝑗 ∈ {0, 1, . . . , 𝑙 + 1}.

Finally, by induction, we deduce that we can assume that 𝐴𝑖 are disjoint compact sets, and
∣𝑎𝑖 − 𝑎𝑗 ∣ ∈ ℕ, for any 𝑖, 𝑗 ∈ {0, 1, . . . , 𝑘}. □

Now we find the special Kantorovich potentials.

Theorem 2.6. Let 𝑓+, 𝑓− ∈ 𝐿∞(Ω) be two non-negative Borel functions satisfying the mass
balance condition (1.1) and such that supp(𝑓+) ∩ supp(𝑓−) is a null set. Then there exists a
Kantorovich potential 𝑢∗ for 𝑓±, associated with the metric 𝑑1, such that 𝑢∗(Ω) ⊂ ℤ and takes a
finite number of values.

Proof. Take 𝑓 := 𝑓+− 𝑓−. By density, we have that there exists a maximizing sequence 𝑣𝑛 ∈ 𝐾1

such that 𝑣𝑛 takes a finite number of values and∫
Ω
𝑣𝑛𝑓 → max

𝑤∈𝐾1

∫
Ω
𝑤𝑓.

Thanks to the previous lemma, there exists 𝑢𝑛 ∈ 𝐾1,

𝑢𝑛 = 0𝜒𝐶𝑛
0
+ 1𝜒𝐶𝑛

1
+ ⋅ ⋅ ⋅+ 𝑘𝑛𝜒𝐶𝑛

𝑘𝑛
, 𝑘𝑛 ∈ ℕ ∪ {0}, ∣𝐶𝑛

𝑖 ∣ > 0, 𝐶𝑛
𝑖 ∩ 𝐶𝑛

𝑗 = ∅, if 𝑖 ∕= 𝑗,
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a new maximizing sequence:

(2.7)

∫
Ω
𝑢𝑛𝑓 → max

𝑤∈𝐾1

∫
Ω
𝑤𝑓.

Notice now that the sequence {𝑘𝑛} is uniformly bounded by a constant that only depends on Ω.
Indeed, if 𝑢 ∈ 𝐾1 is of the form 𝑢(𝑥) = 0𝜒𝐶0 + 1𝜒𝐶1 + ⋅ ⋅ ⋅+ 𝑘𝜒𝐶𝑘

, with ∣𝐶𝑖∣ > 0, 𝐶𝑖 ∩ 𝐶𝑗 = ∅ for
𝑖 ∕= 𝑗, then ∣𝑥 − 𝑦∣ > 1 for every (𝑥, 𝑦) ∈ (𝐶𝑖−1 × 𝐶𝑖+1) for all 𝑖, otherwise 𝑢 ∕∈ 𝐾1. Therefore,
since Ω has finite diameter, this provides a bound 𝑚0 ∈ ℕ for the number of possible sets 𝑘, and
consequently, 0 ≤ 𝑘𝑛 ≤ 𝑚0 for all 𝑛 ∈ ℕ.

By Fatou’s Lemma and having in mind (2.7) we get

max
𝑤∈𝐾1

∫
Ω
𝑤𝑓 ≤

∫
Ω
lim sup
𝑛→∞

(𝑢𝑛𝑓).

Now, since supp(𝑓+) ∩ supp(𝑓−) is a null set and having in mind that 𝑢𝑛(𝑥) ∈ {0, 1, . . . ,𝑚0} for
all 𝑛 ∈ ℕ, it is easy to see that

lim sup
𝑛→∞

(𝑢𝑛𝑓) ≤ 𝑓+ lim sup
𝑛→∞

𝑢𝑛 − 𝑓− lim inf
𝑛→∞ 𝑢𝑛 = 𝑓+

𝑚0∑
𝑖=0

𝑖𝜒𝐴𝑖 − 𝑓−
𝑚0∑
𝑖=0

𝑖𝜒𝐵𝑖 = 𝑓

𝑚0∑
𝑖=0

𝑖𝜒𝐶𝑖 ,

where 𝐶𝑖 = (𝐴𝑖 ∩ {𝑓+(𝑥) > 0}) ∪ (𝐵𝑖 ∩ {𝑓−(𝑥) > 0}) for 𝑖 > 0 and 𝐶0 = Ω ∖∪𝑚0
𝑖=0𝐶𝑖.

Therefore, setting 𝑢∗ =
∑𝑚0

𝑖=0 𝑖𝜒𝐶𝑖 , we have

max
𝑤∈𝐾1

∫
Ω
𝑤𝑓 ≤

∫
Ω
𝑓𝑢∗.

To finish the proof let us see that 𝑢∗ ∈ 𝐾1. Take 𝑥, 𝑦 ∈ Ω. Let us suppose that

𝑥 ∈ 𝐴𝑖 ∩ {𝑓+ > 0}} and 𝑦 ∈ 𝐵𝑗 ∩ {𝑓− > 0}}
(the other cases being similar), then we have

∣𝑢∗(𝑥)− 𝑢∗(𝑦)∣ = ∣𝑖− 𝑗∣ ≤ 𝑑1(𝑥, 𝑦).

If not, that is, if ∣𝑖 − 𝑗∣ > 𝑑1(𝑥, 𝑦), assuming for instance that 𝑖 < 𝑗, we have that there exists
0 < 𝜖 < 1 such that 𝑖 < 𝑖 + 𝜖 < 𝑗 − 𝜖 < 𝑗 and there exists 𝑛 ∈ ℕ such that 𝑢𝑛(𝑥) ∈ [𝑖, 𝑖 + 𝜖],
and 𝑢𝑛(𝑦) ∈ [𝑗 − 𝜖, 𝑗], that is, 𝑢𝑛(𝑥) = 𝑖 and 𝑢𝑛(𝑦) = 𝑗, which contradicts that ∣𝑢𝑛(𝑥)− 𝑢𝑛(𝑦)∣ ≤
𝑑1(𝑥, 𝑦). □
Remark 2.7. Let us remark that the results we have obtained are also true if in the definition
of the metric 𝑑1 we change the Euclidean norm by any norm ∥ ⋅ ∥ of ℝ𝑁 . Especially interesting is
the case in which we consider the ∥ ⋅ ∥∞ norm since in this case it counts the maximum of steps
moving parallel to the coordinate axes. That is, in this case we measure the distance cost as the
number of blocks that the taxi has to cover going from 𝑥 to 𝑦 in a city.

Remark 2.8. If we assume that 𝑢∗ takes only the values {𝑗, 𝑗 + 1, 𝑗 + 2, ..., 𝑗 + 𝑘}, 𝑗 ∈ ℤ, that
is, 𝑢∗ = 𝑗𝜒𝐴0 + (𝑗 + 1)𝜒𝐴1 + (𝑗 + 2)𝜒𝐴2 + ....+ (𝑗 + 𝑘)𝜒𝐴𝑘

, then,

(2.8) ∣𝐴𝑘 ∩ supp(𝑓−)∣ = 0 and ∣𝐴0 ∩ supp(𝑓+)∣ = 0.

In fact, if not, just redefine 𝑢∗ to be

�̃�∗(𝑥) =
{

𝑗 + 𝑘 − 1 in 𝐴𝑘 ∩ supp(𝑓−),
𝑢∗(𝑥) otherwise,
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and we get that �̃�∗ ∈ 𝐾1 with ∫
Ω
𝑢∗𝑓 <

∫
Ω
�̃�∗𝑓,

a contradiction. We also observe that

(2.9)

∫
𝐴𝑘

𝑓+ ≥
∫
𝐴𝑘−1

𝑓−.

In fact, if not, we define

�̃�∗(𝑥) =

⎧⎨⎩ 𝑗 + 𝑘 − 1 in 𝐴𝑘,
𝑗 + 𝑘 − 2 in 𝐴𝑘−1 ∩ supp(𝑓−),
𝑢∗(𝑥) otherwise,

and we get that �̃�∗ ∈ 𝐾1 with ∫
Ω
𝑢∗𝑓 <

∫
Ω
�̃�∗𝑓,

a contradiction. Properties (2.8) and (2.9) will be of special interest in the next sections.

Let us finish this section by proving, working as in the proof of [9, Lemma 6], the following
Dual Criteria for Optimality.

Lemma 2.9.
1. If 𝑢∗ ∈ 𝐾1 and 𝑇 ∗ ∈ 𝒜(𝑓+, 𝑓−) satisfy

(2.10) 𝑢∗(𝑥)− 𝑢∗(𝑇 ∗(𝑥)) = 𝑑1(𝑥, 𝑇
∗(𝑥)) for almost all 𝑥 ∈ supp(𝑓+),

then:

(i) 𝑢∗ is a Kantorovich potential for the metric 𝑑1.
(ii) 𝑇 ∗ is an optimal map for the Monge problem associated to the metric 𝑑1.
(iii) inf {ℱ𝑑1(𝑇 ) : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)} = sup

{𝒫𝑓+,𝑓−(𝑢) : 𝑢 ∈ 𝐾1

}
.

2. Under (iii), every optimal map 𝑇 for the Monge problem associated to the metric 𝑑1 and
Kantorovich potential �̂� for the metric 𝑑1 satisfy (2.10).

Proof. 1. By (2.10)

ℱ𝑑1(𝑇
∗) =

∫
Ω
𝑑1(𝑥, 𝑇

∗(𝑥))𝑓+(𝑥) 𝑑𝑥 =

∫
Ω
(𝑢∗(𝑥)− 𝑢∗(𝑇 ∗(𝑥))) 𝑓+(𝑥) 𝑑𝑥

=

∫
Ω
𝑢∗(𝑥)𝑓+(𝑥) 𝑑𝑥−

∫
Ω
𝑢∗(𝑦) 𝑓−(𝑦) 𝑑𝑦 = 𝒫𝑓+,𝑓−(𝑢∗).

Hence
𝒫𝑓+,𝑓−(𝑢∗) = ℱ𝑑1(𝑇

∗) ≥ inf
{ℱ𝑑1(𝑇 ) : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)

}
≥ sup

{𝒫𝑓+,𝑓−(𝑢) : 𝑢 ∈ 𝐾1

} ≥ 𝒫𝑓+,𝑓−(𝑢∗),
and consequently (iii) holds. Moreover, we also get 𝒫(𝑢∗) = max {𝒫(𝑢) : 𝑢 ∈ 𝐾1} , from where
it follows (i), and ℱ𝑑1(𝑇

∗) = min {ℱ𝑑1(𝑇 ) : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)} , from where (ii) follows.

2. Assume (iii) holds. Let 𝑇 be an optimal map for the Monge problem associated to the metric

𝑑1 and �̂� a Kantorovich potential for the metric 𝑑1. Then ℱ𝑑1(𝑇 ) = 𝒫(�̂�), that is,∫
Ω
𝑑1(𝑥, 𝑇 (𝑥))𝑓

+(𝑥) 𝑑𝑥 =

∫
Ω
(�̂�(𝑥)− �̂�(𝑇 (𝑥))) 𝑓+(𝑥) 𝑑𝑥.
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Consequently, since 𝑑1(𝑥, 𝑇 (𝑥)) ≥ �̂�(𝑥) − �̂�(𝑇 (𝑥)) and 𝑓+ ≥ 0, we have that �̂�(𝑥) − �̂�(𝑇 (𝑥)) =

𝑑1(𝑥, 𝑇 (𝑥)) for almost all 𝑥 ∈ supp(𝑓+). □

Remark 2.10. Observe also that when 𝑢∗ is a Kantorovich potential for the metric 𝑑1, from
(1.2) and the inequality 𝑢∗(𝑥)− 𝑢∗(𝑦) ≤ 𝑑1(𝑥, 𝑦) it follows that, if 𝜇

∗ ∈ 𝜋(𝑓+, 𝑓−),

(2.11) 𝜇∗ is optimal ⇐⇒ 𝑢∗(𝑥)− 𝑢∗(𝑦) = 𝑑1(𝑥, 𝑦) 𝜇∗ − 𝑎.𝑒. in Ω× Ω.

3. Constructing optimal transport plans. A nonlocal version of the
Evans-Gangbo approach

As remarked in the introduction, although the general theory provides the existence of optimal
transport plans, our objective is to give a concrete construction via an equation satisfied by the
Kantorovich potentials following the approach of Evans-Gangbo.

We first begin with the one-dimensional case where some examples illustrate the difficulties of
the mass transport problem with 𝑑1.

3.1. The one-dimensional case.

3.1.1. A better description of the special Kantorovich potentials. We assume first that
the functions 𝑓+ and 𝑓− are 𝐿∞-functions satisfying

(3.1) 𝑓− = 𝑓−𝜒
[𝑎,0], 𝑓+ = 𝑓+𝜒

[𝑐,𝑑], 𝑐 ≥ 0, supp(𝑓±) ⊂ [−𝐿,𝐿], for some 𝐿 ∈ ℕ.

Set Ω any interval containing [−𝐿,𝐿].
By Theorem 2.6, there exists a Kantorovich potential 𝑢∗ associated with the metric 𝑑1, such

that 𝑢∗(Ω) ⊂ ℤ and takes a finite number of values. It is easy to see that we can take

(3.2) 𝑢∗(𝑥) = 𝜃𝛼(𝑥) :=

⎧⎨⎩

...
−1 if 𝛼− 2 < 𝑥 ≤ 𝛼− 1,
0 if 𝛼− 1 < 𝑥 ≤ 𝛼,
1 if 𝛼 < 𝑥 ≤ 𝛼+ 1,
...

for some 0 < 𝛼 ≤ 1. In order to find which 𝛼’s give the Kantorovich potential, we need to
maximize ∫

Ω
𝑢∗(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 = −

∫ 0

−𝐿
𝑢∗(𝑥)𝑓−(𝑥) 𝑑𝑥+

∫ 𝐿

0
𝑢∗(𝑥)𝑓+(𝑥) 𝑑𝑥

= −
−1∑

𝑗=−𝐿

∫ 1

0
(𝜃𝛼(𝑥) + 𝑗)𝑓−(𝑥+ 𝑗) 𝑑𝑥+

𝐿−1∑
𝑗=0

∫ 1

0
(𝜃𝛼(𝑥) + 𝑗)𝑓+(𝑥+ 𝑗) 𝑑𝑥

= −
−1∑

𝑗=−𝐿

∫ 1

0
𝜃𝛼(𝑥)𝑓

−(𝑥+ 𝑗) 𝑑𝑥+

𝐿−1∑
𝑗=0

∫ 1

0
𝜃𝛼(𝑥)𝑓

+(𝑥+ 𝑗) 𝑑𝑥

−
−1∑

𝑗=−𝐿

∫ 1

0
𝑗𝑓−(𝑥+ 𝑗) 𝑑𝑥+

𝐿−1∑
𝑗=0

∫ 1

0
𝑗𝑓+(𝑥+ 𝑗) 𝑑𝑥.
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Since the last two integrals are independent of 𝜃𝛼, we only need to maximize

−
−1∑

𝑗=−𝐿

∫ 1

0
(𝜃𝛼(𝑥))𝑓

−(𝑥+ 𝑗) 𝑑𝑥+

𝐿−1∑
𝑗=0

∫ 1

0
(𝜃𝛼(𝑥))𝑓

+(𝑥+ 𝑗) 𝑑𝑥

=

∫ 1

0
𝜃𝛼(𝑥)𝑀(𝑥) 𝑑𝑥 =

∫ 1

𝛼
𝑀(𝑥) 𝑑𝑥,

for 0 < 𝛼 ≤ 1, where

(3.3) 𝑀(𝑥) = −
−1∑

𝑗=−𝐿

𝑓−(𝑥+ 𝑗) +
𝐿−1∑
𝑗=0

𝑓+(𝑥+ 𝑗), 0 < 𝑥 ≤ 1.

Observe that
∫ 1
0 𝑀(𝑥) 𝑑𝑥 =

∫
(𝑓+− 𝑓−) = 0. If 𝑀(𝑥) is monotone nondecreasing, it is clear that,

for 0 < 𝑥 ≤ 1,

𝜃𝛼(𝑥) =

{
0 if 𝑀(𝑥) < 0,
1 if 𝑀(𝑥) > 0,

is the best choice (unique for points where 𝑀(𝑥) ∕= 0). If 𝑀(𝑥) is monotone nonincreasing, 𝛼 = 1
is the best choice.

Remark 3.1. Let us suppose now that the supports of the masses are not ordered. For example,
let us search for a Kantorovich potential associated with the metric 𝑑1 for 𝑓− = 𝑓1 + 𝑓2, 𝑓1 =
𝑓−
1
𝜒
(𝑎1,𝑎2), 𝑓2 = 𝑓−

2
𝜒
(𝑐1,𝑐2), and 𝑓+ = 𝑓+𝜒

(𝑏1,𝑏2), with 𝑎1 < 𝑎2 < 𝑏1 < 𝑏2 < 𝑐1 < 𝑐2. Let

𝑏 ∈ (𝑏1, 𝑏2) be such that
∫
𝑓1 =

∫
𝑓𝜒(𝑏1,𝑏) and

∫
𝑓2 =

∫
𝑓𝜒(𝑏,𝑏2). Let us call 𝑓+

1 := 𝑓𝜒(𝑏1,𝑏) and

𝑓+
2 := 𝑓𝜒(𝑏,𝑏2). By the previous example we construct a monotone nondecreasing stair-shaped

function, 𝜃1, as Kantorovich potential for 𝑓+
1 and 𝑓−

1 with value at 𝑏 equals to some 𝜆 fixed, and a
monotone nonincreasing stair function, 𝜃2, as Kantorovich potential for 𝑓+

2 and 𝑓−
2 with the same

value 𝜆 at 𝑏. Then, 𝜃 = 𝜃1𝜒(𝑎1,𝑏) + 𝜃2𝜒(𝑏,𝑐2) gives a Kantorovich potential for 𝑓+ and 𝑓−. This

construction can be done for any configuration 𝑓+ =
∑𝑚

𝑖=1
𝜒
(𝑏1,𝑖,𝑏2,𝑖) and 𝑓− =

∑𝑛
𝑖=1

𝜒
(𝑐1,𝑖,𝑐2,𝑖).

3.1.2. Nonexistence of optimal transport maps. Here we see with a simple example that,
in general, an optimal transport map does not exist for 𝑑1 as cost function. Let us point out that
for the Euclidean distance it is well known (see for instance [1] or [19]) the existence of an optimal
transport map in the case 𝑓± ∈ 𝐿1(𝑎, 𝑏), even more, there exists a unique optimal transport map
in the class of monotone nondecreasing functions:

(3.4) 𝑇0(𝑥) := sup

{
𝑦 ∈ ℝ :

∫ 𝑦

𝑎
𝑓−(𝑡) 𝑑𝑡 ≤

∫ 𝑥

𝑎
𝑓+(𝑡) 𝑑𝑡

}
if 𝑥 ∈ (𝑎, 𝑏).

Let 𝑓+ = 𝐿𝜒[0,1] and 𝑓− = 𝜒
[−𝐿,0] with 𝐿 ∈ ℝ. Set Ω an interval containing [−𝐿,𝐿]. Let us

see that if 𝐿 ∈ ℕ, 𝐿 ≥ 2, then there is no optimal transport map 𝑇 with distance 𝑑1 pushing
𝑓+ to 𝑓−, nevertheless we will see later in Example 3.4 that if 𝐿 /∈ ℕ then there is an optimal
transport map pushing 𝑓+ to 𝑓−.

A Kantorovich potential for this configuration of masses 𝑓+ and 𝑓− is given by

𝑢∗(𝑥) =

⎧⎨⎩
0, 𝑥 ∈ (0, 1)
−1, 𝑥 ∈ (−1, 0]

...
−𝐿, 𝑥 ∈ (−𝐿,−𝐿+ 1],
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and hence we have

sup {𝒫(𝑢) : 𝑢 ∈ 𝐾1} =

∫
Ω
𝑢∗(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 = 1 + 2 + 3 + ⋅ ⋅ ⋅+ 𝐿 =

𝐿(𝐿+ 1)

2
.

Let us see first that the Monge infimum and the Kantorovich minimum are the same by finding
𝑡𝑛 ∈ 𝒜(𝑓+, 𝑓−) such that

ℱ𝑑1(𝑡𝑛) =

∫
Ω
𝑑1(𝑥, 𝑡𝑛(𝑥))𝑓

+(𝑥) 𝑑𝑥
𝑛→0+→ 𝐿(𝐿+ 1)

2
.

Consider 𝐿 = 2 for simplicity. These 𝑡𝑛 can be constructed following the subsequent ideas. Push
𝑓+𝜒[

1− 1
2𝑛+1 ,1

] to 𝑓−𝜒
[−2,−2+ 1

2𝑛 ]
with a plan induced by a map as in the picture below , paying

3
2𝑛 , and 𝑓+𝜒[

0,1− 1
2𝑛+1

] to 𝑓−𝜒
[−2+ 1

2𝑛
,0] with a plan induced also by a map, see below, paying

3− 2
2𝑛 .

𝑥

𝑦

7
8

− 7
4

− 1
4

3
4

1
2

− 3
2

1
4

− 3
4

1
80 1

0

-1

-2

Support of 2𝜒[0,1](𝑥)𝛿[𝑦=𝑡2(𝑥)]

Observe that all the segments have slope 2

In this way,

ℱ𝑑1(𝑡𝑛) =

∫
Ω
𝑑1(𝑥, 𝑡𝑛(𝑥))𝑓

+(𝑥) 𝑑𝑥 = 3 +
1

2𝑛
𝑛→0+→ 3.

Arguing by contradiction assume now that there is an optimal transport map 𝑇 pushing 𝑓+ to
𝑓−. Then, since inf {ℱ𝑑1(𝑇 ) : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)} = sup

{𝒫𝑓+,𝑓−(𝑢) : 𝑢 ∈ 𝐾1

}
, from Lemma 2.9

we have the equality 𝑢∗(𝑥)− 𝑢∗(𝑇 (𝑥)) = 𝑑1(𝑥, 𝑇 (𝑥)). Then,

𝐴𝑖 := {𝑥 ∈]0, 1[ : 𝑑1(𝑥, 𝑇 (𝑥)) = 𝑖} = 𝑇−1((−𝑖,−𝑖+ 1]), 𝑖 = 1, ..., 𝐿.

Therefore, ∣𝐴𝑖∣ = ∣𝑇−1((−𝑖,−𝑖+ 1])∣ = 1/𝐿. Moreover, we also have 𝑇 (𝑥) ≥ 𝑥− 𝑖 for all 𝑥 ∈ 𝐴𝑖.
Now, we claim that

(3.5) 𝑇 (𝑥) = 𝑥− 𝑖 for all 𝑥 ∈ 𝐴𝑖, for every 𝑖 = 1, . . . , 𝐿.
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Hence, ∣𝑇 (𝐴𝑖)∣ = 1/𝐿 which gives a contradiction with the fact that ∣𝑇 ([0, 1])∣ = 𝐿.
To prove (3.5) we argue as follows: assume, without lose of generality, that there is a set of

positive measure 𝐾 ⊂ 𝐴1 such that 𝑇 (𝑥) > 𝑥− 1 in 𝐾. Then, it is easy to see that there exists
𝜃 ∈ (0, 1) such that ∣𝑇−1((−1, 𝜃−1))∣ < ∣𝐴1∩(0, 𝜃)∣. Therefore, since 𝑇−1((−𝑖, 𝜃−𝑖)) ⊂ 𝐴𝑖∩(0, 𝜃)
for all 𝑖, we have

𝜃 =
1

𝐿

∣∣∣∣∣
𝐿∪
𝑖=1

(−𝑖, 𝜃 − 𝑖)

∣∣∣∣∣ =
∣∣∣∣∣𝑇−1

(
𝐿∪
𝑖=1

(−𝑖, 𝜃 − 𝑖)

)∣∣∣∣∣ =
∣∣∣∣∣
𝐿∪
𝑖=1

𝑇−1 ((−𝑖, 𝜃 − 𝑖))

∣∣∣∣∣ <
𝐿∪
𝑖=1

∣𝐴𝑖 ∩ (0, 𝜃)∣ = 𝜃,

and we arrive to a contradiction.
With a similar proof it can be proved that there is no transport map 𝑇 between 𝑓+ = 𝐿𝜒[0,1]

and 𝑓− = 𝜒
[−𝐿,0] with 𝐿 ∈ ℕ if one considers the distance 𝑑1/𝑘 with 𝑘 ∈ ℕ.

Remark 3.2. Observe that it is easy to construct an optimal transport plan 𝜇∗ ∈ 𝜋(𝑓+, 𝑓−)
solving the Monge-Kantorovich problem. Indeed, if define the measure 𝜇∗ in Ω× Ω by

𝜇∗(𝑥, 𝑦) := 𝐿𝜒[0,1](𝑥)

(
1

𝐿
𝛿[𝑦=−1+𝑥] +

1

𝐿
𝛿[𝑦=−2+𝑥] + ⋅ ⋅ ⋅+ 1

𝐿
𝛿[𝑦=−𝐿+𝑥]

)
,

then 𝜇∗ ∈ 𝜋(𝑓+, 𝑓−) and, moreover, since

𝒦𝑑1(𝜇
∗) =

∫
Ω×Ω

𝑑1(𝑥, 𝑦) 𝑑𝜇
∗(𝑥, 𝑦)

= 𝐿

∫ 1

0

(
1

𝐿
𝑑1(𝑥,−1 + 𝑥) +

1

𝐿
𝑑1(𝑥,−2 + 𝑥) + ⋅ ⋅ ⋅+ 1

𝐿
𝑑1(𝑥,−𝐿+ 𝑥)

)
𝑑𝑥

=
𝐿(𝐿+ 1)

2
= sup {𝒫(𝑢) : 𝑢 ∈ 𝐾1}

= min{𝒦1(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)},
we have that 𝜇∗ is an optimal plan.

3.1.3. A precise construction of optimal transport plans. Let us now see that in one
dimension we can give, in a quite easy way, a construction of optimal transport plans by using the
special Kantorovich potentials obtained in §3.1.1. This is independent of the general construction
given afterward.

We will construct an optimal transport plan under the assumptions (3.1); Remark 3.1 says
how to work in a more general situation. Let 𝑢∗ = 𝜃𝛼 be the Kantorovich potential given from
(3.2) and construct a new configuration of equal masses as follows:

𝑓+
0 (𝑥) =

⎛⎝𝐿−1∑
𝑗=0

𝑓+(𝑥+ 𝑗)

⎞⎠𝜒
]0,1[(𝑥), 𝑓−

0 (𝑥) =

⎛⎝𝐿−1∑
𝑗=0

𝑓−(𝑥− 𝑗)

⎞⎠𝜒
]−1,0[(𝑥).

For these masses, the same 𝑢∗ is a Kantorovich potential. Moreover,∫ 𝐿

−𝐿
𝑢∗(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 =

∫ 1

−1
𝑢∗(𝑥)(𝑓+

0 (𝑥)− 𝑓−
0 (𝑥)) 𝑑𝑥

+

𝐿−1∑
𝑗=0

∫ 1

0
𝑗 𝑓+(𝑥+ 𝑗) 𝑑𝑥+

𝐿−1∑
𝑗=0

∫ 0

−1
𝑗 𝑓−(𝑥− 𝑗) 𝑑𝑥.
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By (2.9) there exists 𝛽 ∈ [𝛼, 1] such that∫ 𝛽

𝛼
𝑓+
0 =

∫ 0

−1+𝛼
𝑓−
0 .

Consider the smallest of such 𝛽. Take also the smallest 𝛾 ∈ [−1,−1 + 𝛼] such that∫ 1

𝛽
𝑓+
0 =

∫ 𝛾

−1
𝑓−
0 .

For 𝑥 ∈ (0, 1), we define 𝑇0 by

𝑇0(𝑥) =

⎧⎨⎩

sup

{
𝑦 ∈ ℝ :

∫ 𝑦

−1+𝛼
𝑓−
0 =

∫ 𝑥

𝛼
𝑓+
0

}
if 𝑥 ∈ (𝛼, 𝛽),

sup

{
𝑦 ∈ ℝ :

∫ 𝑦

−1
𝑓−
0 =

∫ 𝑥

𝛽
𝑓+
0

}
if 𝑥 ∈ (𝛽, 1),

sup

{
𝑦 ∈ ℝ :

∫ 𝑦

𝛾
𝑓−
0 =

∫ 𝑥

0
𝑓+
0

}
if 𝑥 ∈ (0, 𝛼).

𝑥

𝑦

𝛾

𝛼 𝛽0 1

−1

0

The straight lines are only illustrative.

It is easy to see that 𝑇0 ∈ 𝒜(𝑓+, 𝑓−) and that

𝑑1(𝑥, 𝑇0(𝑥)) = 𝑢∗(𝑥)− 𝑢∗(𝑇0(𝑥)) 𝑎.𝑒. 𝑥 ∈ supp(𝑓+).

Then, by Lemma 2.9 (or a direct computation), 𝜇00(𝑥, 𝑦) = 𝑓+
0 (𝑥)𝛿[𝑦=𝑇0(𝑥)] is an optimal transport

plan between 𝑓+
0 and 𝑓−

0 for the cost function 𝑑1.
Once we have the above construction, it is also easy to see that

𝜇0(𝑥, 𝑦) =

𝐿−1∑
𝑗=0

𝑓+(𝑥)𝜒(𝑗,𝑗+1)(𝑥)𝛿[𝑦=𝑇0(𝑥−𝑗)]

is an optimal transport plan between 𝑓+ and 𝑓−
0 for the cost function 𝑑1. A remarkable observa-

tion is that these 𝜇00 and 𝜇0 are induced by transport maps and that for the above configurations
the Monge infimum and the Monge-Kantorovich minimum coincide.

By splitting the mass

(3.6) 𝑓+(𝑥)𝜒(𝑗,𝑗+1)(𝑥) =
𝐿−1∑
𝑖=0

𝑔𝑖,𝑗(𝑥), 𝑗 = 0, 1, ..., 𝐿− 1,
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is such a way that, for 𝑖 = 0, 1, ..., 𝐿− 1,

(3.7)
𝐿−1∑
𝑗=0

∫ 𝑥+𝑗

𝑗
𝑔𝑖,𝑗 =

∫ 𝑇0(𝑥)−𝑖

𝛾−𝑖
𝑓− if 𝑥 ∈ (0, 𝛽),

and

(3.8)
𝐿−1∑
𝑗=0

∫ 𝑥+𝑗

𝛽+𝑗
𝑔𝑖,𝑗 =

∫ 𝑇0(𝑥)−𝑖

−1−𝑖
𝑓− if 𝑥 ∈ (𝛽, 1),

we can finally see that

𝜇(𝑥, 𝑦) =
𝐿−1∑
𝑖=0

𝐿−1∑
𝑗=0

𝑔𝑖,𝑗(𝑥)𝜒(𝑗,𝑗+1)(𝑥)𝛿[𝑦=−𝑖+𝑇0(𝑥−𝑗)]

is a transport plan between 𝑓+ and 𝑓− for the cost function 𝑑1: taking 𝑥 = 𝛽 in (3.7), and 𝑥 = 1
in (3.8), respectively, we get

𝐿−1∑
𝑗=0

∫ 𝛽+𝑗

𝑗
𝑔𝑖,𝑗 =

∫ −𝑖

𝛾−𝑖
𝑓− and

𝐿−1∑
𝑗=0

∫ 1+𝑗

𝛽+𝑗
𝑔𝑖,𝑗 =

∫ 𝛾−𝑖

−1−𝑖
𝑓−.

Adding the last two equalities, we obtain

𝐿−1∑
𝑗=0

∫ 1+𝑗

𝑗
𝑔𝑖,𝑗(𝑥) 𝑑𝑥 =

∫ −𝑖

−1−𝑖
𝑓−(𝑥) 𝑑𝑥 =

∫ 0

−1
𝑓−(𝑥− 𝑖) 𝑑𝑥.

Hence, ∫ 𝐿

−𝐿
𝑢∗(𝑓+ − 𝑓−) =

∫ ∫
𝑑1(𝑥, 𝑦)𝜇0(𝑥, 𝑦) +

𝐿−1∑
𝑗=0

∫ 0

−1
𝑗 𝑓−(𝑥− 𝑗) 𝑑𝑥

=

𝐿−1∑
𝑗=0

∫ 𝑗+1

𝑗
𝑑1(𝑥, 𝑇0(𝑥− 𝑗))𝑓+(𝑥) +

𝐿−1∑
𝑖=0

𝑖

∫ 0

−1
𝑓−(𝑥− 𝑖) 𝑑𝑥

=

𝐿−1∑
𝑗=0

∫ 𝑗+1

𝑗
𝑑1(𝑥, 𝑇0(𝑥− 𝑗))

(
𝐿−1∑
𝑖=0

𝑔𝑖,𝑗(𝑥)

)
𝑑𝑥+

𝐿−1∑
𝑖=0

𝑖

𝐿−1∑
𝑗=0

∫ 𝑗+1

𝑗
𝑔𝑖,𝑗(𝑥) 𝑑𝑥

=
𝐿−1∑
𝑖=0

𝐿−1∑
𝑗=0

∫ 𝑗+1

𝑗
(𝑑1(𝑥, 𝑇0(𝑥− 𝑗)) + 𝑖) 𝑔𝑖,𝑗(𝑥) 𝑑𝑥

=
𝐿−1∑
𝑖=0

𝐿−1∑
𝑗=0

∫ 𝑗+1

𝑗
𝑑1(𝑥,−𝑖+ 𝑇0(𝑥− 𝑗))𝑔𝑖,𝑗(𝑥) 𝑑𝑥 =

∫
Ω×Ω

𝑑1(𝑥, 𝑦)𝜇(𝑥, 𝑦).

In the following example, 𝜇(𝑥, 𝑦) = 𝑓+(𝑥)𝛿[𝑦=𝑇 ∗
1 (𝑥)]

illustrates the above construction.

Example 3.3. Set 𝑓− = 1
4
𝜒
]−1,0[ and 𝑓+ = 𝜒

] 7
4
,2[. Then 𝑀 = −1

4
𝜒
]0, 3

4
[ +

3
4
𝜒
] 3
4
,1[ and therefore

𝑢∗(𝑥) = 𝜃 3
4
is (up to adding a constant) the unique Kantorovich potential associated with the
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metric 𝑑1 for 𝑓+ and 𝑓−, moreover
∫
𝑢∗(𝑓+− 𝑓−) = 11

16 . Nevertheless, there exist infinitely many
optimal transport maps. For example, the following two are optimal transport maps,

𝑇1
∗(𝑥) =

⎧⎨⎩
4𝑥− 29

4 if 28
16 < 𝑥 < 29

16 ,

4𝑥− 33
4 if 29

16 < 𝑥 < 2,

𝑥 otherwise,

𝑇2
∗(𝑥) =

⎧⎨⎩
4𝑥− 29

4 if 28
16 < 𝑥 < 57

32 ,

−4𝑥+ 57
8 if 57

32 < 𝑥 < 29
16 ,

−4𝑥+ 7 if 29
16 < 𝑥 < 2,

𝑥 otherwise.

Observe that both push the mass 𝑓+𝜒
] 7
4
, 29
16

[ toward 𝑓−𝜒
]− 1

4
,0[ paying, after 2 steps, 2 × 1

16 , and

push the rest from 𝑓+𝜒
] 29
16

,2[ toward 𝑓−𝜒
]−1,− 1

4
[ paying, after 3 steps, 3× 3

16 . Therefore the total

cost is, as known, 2× 1
16 + 3× 3

16 = 11
16 .

We want to remark that the unique monotone nondecreasing optimal transport map, 𝑇0, for the
Euclidean distance as cost function that pushes 𝑓+ forward to 𝑓− in this particular case is 𝑇0(𝑥) =
4𝑥−8. Now, 𝑇0 is not an optimal transport map for 𝑑1, the transport cost with this map is, in fact,
12
16 . However, it is well known (see [3]) that if the cost function 𝑐(𝑥, 𝑦) is equal to 𝜙(∣𝑥−𝑦∣) with 𝜙
monotone nondecreasing and convex then 𝑇0 is an optimal transport, but in our situation 𝜙 fails
to be convex. On the other hand, the following simple transport plan between 𝑓+ and 𝑓−, not
induced by a map, is optimal: 𝜇 = 𝜒

( 7
4
,2)(𝑥)

(
1
4𝛿[𝑦=𝑥−2] +

1
4𝛿[𝑦=𝑥− 9

4
] +

1
4𝛿[𝑦=𝑥− 10

4
] +

1
4𝛿[𝑦=𝑥− 11

4
]

)
.

In contrast with the example given in §3.1.2 for which there is not optimal transport map we
present the following one.

Example 3.4. Let 𝑓+ = 𝐿𝜒[0,1] and 𝑓− = 𝜒
[−𝐿,0] with 𝐿 /∈ ℕ. Let us see that there is an optimal

transport map 𝑇 pushing 𝑓+ to 𝑓− for 𝑑1. In order to simplify the exposition we take 2 < 𝐿 < 3.
This particular case shows clearly how to handle the general case.

Using the procedure introduced in this subsection we have that

𝑇0(𝑥) =

⎧⎨⎩
𝐿
2 𝑥− 1 if 0 < 𝑥 < 2(3−𝐿)

𝐿 ,

𝐿
3 (𝑥− 1) if 2(3−𝐿)

𝐿 < 𝑥 < 1,

is an optimal transport map pushing 𝑓+
0 to 𝑓−

0 (𝛼 = 1 = 𝛽 and 𝛾 = −1). Now, we perform
the splitting procedure (3.6) (there are many different ways) in the following adequate way. For

𝑥 < 2(3−𝐿)
𝐿 we have to distribute the mass 𝑓+ in two equiweighted parts, so, set the rectangles

with corner coordinates,

upper-left, 𝑢𝑙𝑖 = (𝑥𝑖+1, 𝑦𝑖), upper-right, 𝑢𝑟𝑖 = (𝑥𝑖, 𝑦𝑖),
lower-left, 𝑙𝑙𝑖 = (𝑥𝑖+1, 𝑦𝑖+1), lower-right, 𝑙𝑟𝑖 = (𝑥𝑖, 𝑦𝑖+1),

𝑖 = 1, 2, . . . , where

𝑥1 =
2(3− 𝐿)

𝐿
, 𝑦1 = 2− 𝐿,

𝑦𝑖+1 = 𝑥𝑖 − 1, 𝑥𝑖+1 = 𝑥𝑖 − 2

𝐿
(𝑦𝑖 − 𝑦𝑖+1) =

2

𝐿
(𝑦𝑖+1 + 1),

(observe that 𝑙𝑟𝑖 ∈ [𝑦 = 𝑥 − 1] and 𝑙𝑙𝑖, 𝑢𝑟𝑖 ∈ [𝑦 = 𝐿
2 𝑥 − 1]); in each rectangle we can trace 2

parallel segments of slope 𝐿 defined by the lines

𝑦 = 𝐿(𝑥− 𝑥𝑖) + 𝑦𝑖 and 𝑦 = 𝐿(𝑥− �̂�𝑖) + 𝑦𝑖, with �̂�𝑖 = 𝑥𝑖 − 𝑥𝑖 − 𝑥𝑖+1

2
;
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then 𝑇𝑖(𝑥) = 𝑓+(𝑥)𝜒]�̂�𝑖,𝑥𝑖[(𝑥)𝛿[𝑦=𝐿(𝑥−𝑥𝑖)+𝑦𝑖] + 𝑓+(𝑥)𝜒]𝑥𝑖+1,�̂�𝑖[(𝑥)𝛿[𝑦=𝐿(𝑥−�̂�𝑖)+𝑦𝑖−1] push in an opti-

mal way 𝑓+𝜒
]𝑥𝑖+1,𝑥𝑖[ to 𝑓−𝜒

]𝑦𝑖+1,𝑦𝑖[∪]𝑦𝑖+1−1,𝑦𝑖−1[, for 𝑖 = 1, 2, . . .

𝑥

𝑦

2 − 𝐿

2(3−𝐿)
𝐿0 1

−1

0

For 𝑥 > 2(3−𝐿)
𝐿 we have to distribute the mass 𝑓+ in three equiweighted parts, in this case, set

the rectangles with corner coordinates,

lower-left, 𝑙𝑙𝑖 = (𝑥𝑖, 𝑦𝑖), lower-right, 𝑙𝑟𝑖 = (𝑥𝑖+1, 𝑦𝑖),
upper-left, 𝑢𝑙𝑖 = (𝑥𝑖, 𝑦𝑖+1), upper-right, 𝑢𝑟𝑖 = (𝑥𝑖+1, 𝑦𝑖+1),

𝑖 = 1, 2, . . . , where now

𝑥1 =
2(3− 𝐿)

𝐿
, 𝑦1 = 2− 𝐿, 𝑥𝑖+1 = 𝑦𝑖 + 1, 𝑦𝑖+1 = 𝑦𝑖 +

𝐿

3
(𝑥𝑖+1 − 𝑥𝑖) =

𝐿

3
(𝑥𝑖+1 − 1),

(observe that 𝑙𝑟𝑖 ∈ [𝑦 = 𝑥 − 1] and 𝑙𝑙𝑖, 𝑢𝑟𝑖 ∈ [𝑦 = 𝐿
3 (𝑥 − 1)]); in each rectangle we can trace

three parallel segments of slope 𝐿 defined by the lines

𝑦 = 𝐿(𝑥− 𝑥𝑖) + 𝑦𝑖, 𝑦 = 𝐿(𝑥− �̂�𝑖) + 𝑦𝑖, �̂�𝑖 = 𝑥𝑖 +
𝑥𝑖+1 − 𝑥𝑖

3
,

and

𝑦 = 𝐿(𝑥− �̃�𝑖) + 𝑦𝑖, �̃�𝑖 = 𝑥𝑖 + 2
𝑥𝑖+1 − 𝑥𝑖

3
;

then
𝑇𝑖(𝑥) = 𝑓+(𝑥)𝜒(𝑥𝑖,�̂�𝑖)(𝑥)𝛿[𝑦=𝐿(𝑥−𝑥𝑖)+𝑦𝑖] + 𝑓+(𝑥)𝜒(�̂�𝑖,�̃�𝑖)(𝑥)𝛿[𝑦=𝐿(𝑥−�̂�𝑖)+𝑦𝑖−1]

+𝑓+(𝑥)𝜒(�̃�𝑖,𝑥𝑖+1)(𝑥)𝛿[𝑦=𝐿(𝑥−�̃�𝑖)+𝑦𝑖−2]

push in an optimal way 𝑓+𝜒
(𝑥𝑖,𝑥𝑖+1) to 𝑓−𝜒

(𝑦𝑖,𝑦𝑖+1)∪(𝑦𝑖−1,𝑦𝑖+1−1)∪(𝑦𝑖−2,𝑦𝑖+1−2), for 𝑖 = 1, 2, . . .

3.2. Characterizing the Euler-Lagrange equation: A nonlocal version of the Evans-
Gangbo approach. Our first objective is to characterize the Euler-Lagrange equation associated
with the variational problem sup

{𝒫𝑓+,𝑓−(𝑢) : 𝑢 ∈ 𝐾𝑑1(Ω)
}
, that is, characterize 𝑓+ − 𝑓− ∈

∂𝕀𝐾1(𝑢), where, as above, we denote for simplicity 𝐾1 := 𝐾𝑑1(Ω).
Let ℳ𝑎

𝑏 (Ω× Ω) := {bounded antisymmetric Radon measures in Ω× Ω}. And define the mul-
tivalued operator 𝐵1 in 𝐿2(Ω) as follows: (𝑢, 𝑣) ∈ 𝐵1 if and only if 𝑢 ∈ 𝐾1, 𝑣 ∈ 𝐿2(Ω), and there
exists 𝜎 ∈ ℳ𝑎

𝑏 (Ω× Ω) such that

𝜎 = 𝜎 {(𝑥, 𝑦) ∈ Ω× Ω : ∣𝑥− 𝑦∣ ≤ 1},
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Ω×Ω

𝜉(𝑥) 𝑑𝜎(𝑥, 𝑦) =

∫
Ω
𝜉(𝑥)𝑣(𝑥) 𝑑𝑥, ∀ 𝜉 ∈ 𝐶𝑐(Ω),

and

∣𝜎∣(Ω× Ω) ≤ 2

∫
Ω
𝑣(𝑥)𝑢(𝑥) 𝑑𝑥.

Theorem 3.5. The following characterization holds: ∂𝕀𝐾1 = 𝐵1.

Proof. Let us first see that 𝐵1 ⊂ ∂𝕀𝐾1 . Let (𝑢, 𝑣) ∈ 𝐵1, to see that (𝑢, 𝑣) ∈ ∂𝕀𝐾1 we need to prove
that

0 ≤
∫
Ω
𝑣(𝑥)(𝑢(𝑥)− 𝜉(𝑥)) 𝑑𝑥, ∀ 𝜉 ∈ 𝐾1.

Using an approximation procedure, we can assume that 𝜉 ∈ 𝐾1 is continuous. Then,∫
Ω
𝑣(𝑥)(𝑢(𝑥)− 𝜉(𝑥)) 𝑑𝑥 ≥ 1

2
∣𝜎∣(Ω× Ω)−

∫
Ω
𝑣(𝑥)𝜉(𝑥) 𝑑𝑥 =

1

2
∣𝜎∣(Ω× Ω)−

∫
Ω×Ω

𝜉(𝑥) 𝑑𝜎(𝑥, 𝑦)

=
1

2
∣𝜎∣(Ω× Ω)− 1

2

∫
Ω×Ω

(𝜉(𝑥)− 𝜉(𝑦)) 𝑑𝜎(𝑥, 𝑦) ≥ 0,

where in the last equality we have used the antisymmetry of 𝜎. Therefore, we have 𝐵1 ⊂ ∂𝕀𝐾1 .
Since ∂𝕀𝐾1 is a maximal monotone operator, to see that the operators are equal we only need to
show that for every 𝑓 ∈ 𝐿2(Ω) there exists 𝑢 ∈ 𝐾1 such that

(3.9) 𝑢+𝐵1(𝑢) ∋ 𝑓.

Let 𝐽 : ℝ𝑁 → ℝ as in (2.1). By results in [5], given 𝑝 > 𝑁 and 𝑓 ∈ 𝐿2(Ω) there exists a unique
solution 𝑢𝑝 ∈ 𝐿∞(Ω) of the nonlocal 𝑝-Laplacian problem

(3.10) 𝑢𝑝(𝑥)−
∫
Ω
𝐽(𝑥− 𝑦) ∣𝑢𝑝(𝑦)− 𝑢𝑝(𝑥)∣𝑝−2 (𝑢𝑝(𝑦)− 𝑢𝑝(𝑥)) 𝑑𝑦 = 𝑇𝑝(𝑓)(𝑥) ∀𝑥 ∈ Ω,

where 𝑇𝑘(𝑟) := max{min{𝑘, 𝑟},−𝑟}. And we also know, using again Lemma 2.3, that there exists
𝑢 ∈ 𝐾1 such that

(3.11) 𝑢𝑝 → 𝑢 in 𝐿2(Ω) as 𝑝 → +∞,

with 𝑢+ ∂𝕀𝐾1(𝑢) ∋ 𝑓, from where it follows that∫
Ω
(𝑓(𝑥)− 𝑢(𝑥))(𝑤(𝑥)− 𝑢(𝑥)) 𝑑𝑥 ≤ 0, ∀𝑤 ∈ 𝐾1,

and consequently, 𝑢 = 𝑃𝐾1(𝑓). Multiplying (3.10) by 𝑢𝑝 and integrating, we get

(3.12)

∫
Ω
(𝑇𝑝(𝑓)(𝑥)− 𝑢𝑝(𝑥))𝑢𝑝(𝑥) 𝑑𝑥 =

1

2

∫
Ω×Ω

𝐽(𝑥− 𝑦) ∣𝑢𝑝(𝑦)− 𝑢𝑝(𝑥)∣𝑝 𝑑𝑥𝑑𝑦,

from where it follows that

(3.13)

∫
Ω×Ω

𝐽(𝑥− 𝑦) ∣𝑢𝑝(𝑦)− 𝑢𝑝(𝑥)∣𝑝 𝑑𝑥𝑑𝑦 +

∫
Ω
∣𝑢𝑝(𝑥)∣2 𝑑𝑥 ≤ ∥𝑓∥2𝐿2(Ω).
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If we set 𝜎𝑝(𝑥, 𝑦) := 𝐽(𝑥− 𝑦) ∣𝑢𝑝(𝑦)− 𝑢𝑝(𝑥)∣𝑝−2 (𝑢𝑝(𝑦)− 𝑢𝑝(𝑥)), by Hölder’s inequality,∫
Ω×Ω

∣𝜎𝑝(𝑥, 𝑦)∣ 𝑑𝑥𝑑𝑦 =

∫
Ω×Ω

𝐽(𝑥− 𝑦) ∣𝑢𝑝(𝑦)− 𝑢𝑝(𝑥)∣𝑝−1 𝑑𝑥𝑑𝑦

≤
(∫

Ω×Ω
𝐽(𝑥− 𝑦) ∣𝑢𝑝(𝑦)− 𝑢𝑝(𝑥)∣𝑝 𝑑𝑥𝑑𝑦

) 𝑝−1
𝑝
(∫

Ω×Ω
𝐽(𝑥− 𝑦) 𝑑𝑥𝑑𝑦

) 1
𝑝

=

(∫
Ω×Ω

𝐽(𝑥− 𝑦) ∣𝑢𝑝(𝑦)− 𝑢𝑝(𝑥)∣𝑝 𝑑𝑥𝑑𝑦

) 𝑝−1
𝑝

.

Now, by (3.13), we have ∫
Ω×Ω

∣𝜎𝑝(𝑥, 𝑦)∣ 𝑑𝑥𝑑𝑦 ≤
(
∥𝑓∥2𝐿2(Ω)

) 𝑝−1
𝑝

.

Hence, {𝜎𝑝 : 𝑝 ≥ 2} is bounded in 𝐿1(Ω× Ω), and consequently we can assume that

(3.14) 𝜎𝑝(., .) ⇀ 𝜎 weakly∗ in ℳ𝑏(Ω× Ω).

Obviously, since each 𝜎𝑝 is antisymmetric, 𝜎 ∈ ℳ𝑎
𝑏 (Ω × Ω). Moreover, since supp(𝐽) = 𝐵1(0),

we have 𝜎 = 𝜎 {(𝑥, 𝑦) ∈ Ω× Ω : ∣𝑥− 𝑦∣ ≤ 1}. On the other hand, given 𝜉 ∈ 𝐶𝑐(Ω), by (3.10),
(3.11) and (3.14), we get∫

Ω×Ω
𝜉(𝑥) 𝑑𝜎(𝑥, 𝑦) = lim

𝑝→+∞

∫
Ω×Ω

𝜉(𝑥)𝜎𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= lim
𝑝→+∞

∫
Ω×Ω

𝐽(𝑥− 𝑦) ∣𝑢𝑝(𝑦)− 𝑢𝑝(𝑥)∣𝑝−2 (𝑢𝑝(𝑦)− 𝑢𝑝(𝑥))𝜉(𝑥) 𝑑𝑥 𝑑𝑦

= lim
𝑝→+∞

∫
Ω
(𝑇𝑝(𝑓)(𝑥)− 𝑢𝑝(𝑥))𝜉(𝑥) 𝑑𝑥 =

∫
Ω
(𝑓(𝑥)− 𝑢(𝑥))𝜉(𝑥) 𝑑𝑥.

Then, to prove (3.9), we only need to show that ∣𝜎∣(Ω× Ω) ≤ 2
∫
Ω(𝑓(𝑥)− 𝑢(𝑥))𝑢(𝑥) 𝑑𝑥. In fact,

by (3.14), we have

∣𝜎∣(Ω× Ω) ≤ lim inf
𝑝→+∞

∫
Ω

∫
Ω
∣𝜎𝑝(𝑥, 𝑦)∣ 𝑑𝑥 𝑑𝑦.

Now, by (3.12),∫
Ω×Ω

∣𝜎𝑝(𝑥, 𝑦)∣ 𝑑𝑥 𝑑𝑦 ≤
(∫

Ω×Ω
𝐽(𝑥− 𝑦) ∣𝑢𝑝(𝑦)− 𝑢𝑝(𝑥)∣𝑝 𝑑𝑥𝑑𝑦

) 𝑝−1
𝑝

=

(
2

∫
Ω
(𝑇𝑝(𝑓)(𝑥)− 𝑢𝑝(𝑥))𝑢𝑝(𝑥) 𝑑𝑥

) 𝑝−1
𝑝

= 2
𝑝−1
𝑝

(∫
Ω
(𝑇𝑝(𝑓)(𝑥)− 𝑢𝑝(𝑥))𝑢𝑝(𝑥) 𝑑𝑥

) 𝑝−1
𝑝

.

Therefore ∣𝜎∣(Ω× Ω) ≤ 2
∫
Ω(𝑓(𝑥)− 𝑢(𝑥))𝑢(𝑥) 𝑑𝑥. □

We can rewrite the operator 𝐵1 as follows.

Corollary 3.6. (𝑢, 𝑣) ∈ 𝐵1 if and only if 𝑢 ∈ 𝐾1, 𝑣 ∈ 𝐿2(Ω), and there exists 𝜎 ∈ ℳ𝑎
𝑏 (Ω × Ω)

such that
𝜎+ = 𝜎+ {(𝑥, 𝑦) ∈ Ω× Ω : ∣𝑥− 𝑦∣ ≤ 1, 𝑢(𝑥)− 𝑢(𝑦) = 1},
𝜎− = 𝜎− {(𝑥, 𝑦) ∈ Ω× Ω : ∣𝑥− 𝑦∣ ≤ 1, 𝑢(𝑦)− 𝑢(𝑥) = 1},∫

Ω×Ω
𝜉(𝑥)𝑑𝜎(𝑥, 𝑦) =

∫
Ω
𝜉(𝑥)𝑣(𝑥) 𝑑𝑥, ∀ 𝜉 ∈ 𝐶𝑐(Ω),
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and

∣𝜎∣(Ω× Ω) = 2

∫
Ω
𝑣(𝑥)𝑢(𝑥) 𝑑𝑥.

Proof. Let (𝑢, 𝑣) ∈ 𝐵1, then

(3.15)

∫
Ω×Ω

𝜉(𝑥)𝑑𝜎(𝑥, 𝑦) =

∫
Ω
𝜉(𝑥)𝑣(𝑥) 𝑑𝑥, ∀ 𝜉 ∈ 𝐶𝑐(Ω).

Hence, by approximation, we can take 𝜉 ∈ 𝐿2(Ω) in (3.15) and

∫
Ω

∫
Ω
𝜉(𝑥)𝑑𝜎(𝑥, 𝑦) has this sense.

Taking 𝜉 = 𝑢 in (3.15) and using the antisymmetric of 𝜎 and the previous result we get

∣𝜎∣(Ω× Ω) ≥
∫
Ω×Ω

(𝑢(𝑥)− 𝑢(𝑦))𝑑𝜎(𝑥, 𝑦)

= 2

∫
Ω×Ω

𝑢(𝑥)𝑑𝜎(𝑥, 𝑦) = 2

∫
Ω
𝑢(𝑥)𝑣(𝑥) 𝑑𝑥 ≥ ∣𝜎∣(Ω× Ω).

□

As consequence of the above results, we have that 𝑢∗ ∈ 𝐾1 is a Kantorovich potential for 𝑑1,
𝑓+, 𝑓−, if and only if

(3.16) 𝑓+ − 𝑓− ∈ 𝐵1(𝑢
∗).

that is, if 𝑢∗ ∈ 𝐾1 and there exists 𝜎∗ ∈ ℳ𝑎
𝑏 (Ω× Ω), such that

(3.17)

⎧⎨⎩
[𝜎∗]+ = [𝜎∗]+ {(𝑥, 𝑦) ∈ Ω× Ω : 𝑢∗(𝑥)− 𝑢∗(𝑦) = 1, ∣𝑥− 𝑦∣ ≤ 1},
[𝜎∗]− = [𝜎∗]− {(𝑥, 𝑦) ∈ Ω× Ω : 𝑢∗(𝑦)− 𝑢∗(𝑥) = 1, ∣𝑥− 𝑦∣ ≤ 1},∫
Ω×Ω

𝜉(𝑥)𝑑𝜎∗(𝑥, 𝑦) =
∫
Ω
𝜉(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥,

and

(3.18) ∣𝜎∗∣(Ω× Ω) = 2

∫
Ω
(𝑓+(𝑥)− 𝑓−(𝑥))𝑢∗(𝑥) 𝑑𝑥 = 2𝒫(𝑢∗).

We want to highlight that (3.16) plays the role of (1.4). Moreover we will see in the next
subsection that we can construct optimal transport plans from it, more precisely, we shall see
that the potential 𝑢∗1 and the measure 𝜎∗

1 encode all the information that we need to construct
an optimal transport plan associated with the problem.

3.3. Constructing optimal transport plans. We will use a gluing lemma (see Lemma 7.6 in
[19]), which permits to glue together two transport plans in an adequate way. As remarked in [19],
it is possible to state the gluing lemma in the following way (we present it for the distance 𝑑1).

Lemma 3.7. Let 𝑓1, 𝑓2, 𝑔 be three positive measures in Ω. If 𝜇1 ∈ 𝜋(𝑓1, 𝑔) and 𝜇2 ∈ 𝜋(𝑔, 𝑓2),
there exists a measure 𝒢(𝜇1, 𝜇2) ∈ 𝜋(𝑓1, 𝑓2) such that

(3.19) 𝒦𝑑1(𝒢(𝜇1, 𝜇2)) ≤ 𝒦𝑑1(𝜇1) +𝒦𝑑1(𝜇2).
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Let us now proceed with the general construction. Given 𝑓+, 𝑓− ∈ 𝐿∞(Ω) two non-negative
Borel functions satisfying the mass balance condition (1.1) and ∣supp(𝑓+) ∩ supp(𝑓−)∣ = 0, by
Theorems 1.2 and 2.6, there exists a Kantorovich potential 𝑢∗ taking a finite number of entire
values such that

min{𝒦𝑑1(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)} =

∫
Ω
𝑢∗(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥.

Then, by Corollary 3.6, there exists 𝜎 ∈ ℳ𝑎
𝑏 (Ω × Ω) satisfying (3.17) and (3.18). We are going

to give a method to obtain an optimal transport plan 𝜇∗ from the measure 𝜎.
We divide the construction in two steps. We assume without loss of generality that

𝑢∗ = 0𝜒𝐴0 + 1𝜒𝐴1 + ⋅ ⋅ ⋅+ 𝑘𝜒𝐴𝑘
, with 𝐴𝑖 = {𝑥 ∈ Ω : 𝑢∗(𝑥) = 𝑖}.

Step 1. How the measures 𝜎+ (𝐴𝑗 × 𝐴𝑗−1) work. Taking into account the antisymmetry of 𝜎
and (3.17), we have that 𝑝𝑟𝑜𝑗𝑥(𝜎

+)−𝑝𝑟𝑜𝑗𝑦(𝜎
+) = 𝑓+−𝑓−, which implies 𝑔 := 𝑝𝑟𝑜𝑗𝑥(𝜎

+)−𝑓+ =
𝑝𝑟𝑜𝑗𝑦(𝜎

+)− 𝑓−. By (2.8), 𝑝𝑟𝑜𝑗𝑥(𝜎
+) 𝐴𝑘 = 𝑓+ 𝜒𝐴𝑘

and 𝑝𝑟𝑜𝑗𝑥(𝜎
+) 𝐴0 = 𝑓+ 𝜒𝐴0 = 0, then

𝑔 𝐴𝑘 = 𝑔 𝐴0 = 0.

Moreover we have 𝑝𝑟𝑜𝑗𝑥(𝜎
+ (𝐴𝑗 × 𝐴𝑗−1)) = 𝑝𝑟𝑜𝑗𝑥(𝜎

+) 𝐴𝑗 and 𝑝𝑟𝑜𝑗𝑦(𝜎
+ (𝐴𝑗 × 𝐴𝑗−1)) =

𝑝𝑟𝑜𝑗𝑥(𝜎
+) 𝐴𝑗−1, then 𝑝𝑟𝑜𝑗𝑥(𝜎

+ (𝐴𝑗 ×𝐴𝑗−1)) = 𝑓+ 𝜒𝐴𝑗 + 𝑔 𝐴𝑗 and 𝑝𝑟𝑜𝑗𝑦(𝜎
+ (𝐴𝑗 ×𝐴𝑗−1)) =

𝑓− 𝜒𝐴𝑗−1 + 𝑔 𝐴𝑗−1. Let us call 𝜇𝑗 := 𝜎+ (𝐴𝑗 × 𝐴𝑗−1). Let us briefly comment what these

measures do. The first one, 𝜇𝑘, transports 𝑓+𝜒𝐴𝑘
into 𝑓−𝜒𝐴𝑘−1

plus something else, that is

𝑔 𝐴𝑘−1. Afterwards, 𝜇𝑗 transports 𝑓
+𝜒𝐴𝑗 + 𝑔 𝐴𝑗 into 𝑓−𝜒𝐴𝑗−1 again plus something else, that

is 𝑔 𝐴𝑗−1. The last one, 𝜇1, transports 𝑓
+𝜒𝐴1 + 𝑔 𝐴1 to 𝑓−𝜒𝐴0 .

Step 2. The Gluing. Now, we would like to glue this transportations, and, in order to apply the
Gluing Lemma, we consider the measures

𝜇𝑙
𝑘(𝑥, 𝑦) := 𝜇𝑘(𝑥, 𝑦) + 𝑓+(𝑥)𝜒𝐴𝑘−1

(𝑥)𝛿[𝑦=𝑥],

and

𝜇𝑟
𝑘−1(𝑥, 𝑦) := 𝜇𝑘−1(𝑥, 𝑦) + 𝑓−(𝑥)𝜒𝐴𝑘−1

(𝑥)𝛿[𝑦=𝑥].

It is easy to see that

𝜇𝑙
𝑘 ∈ 𝜋(𝑓+𝜒𝐴𝑘

+ 𝑓+𝜒𝐴𝑘−1
, 𝑓−𝜒𝐴𝑘−1

+ 𝑝𝑟𝑜𝑗𝑥(𝜎
+) 𝐴𝑘−1)

and

𝜇𝑟
𝑘−1 ∈ 𝜋(𝑓−𝜒𝐴𝑘−1

+ 𝑝𝑟𝑜𝑗𝑥(𝜎
+) 𝐴𝑘−1, 𝑓

−𝜒𝐴𝑘−1
+ 𝑓−𝜒𝐴𝑘−2

+ 𝑔 𝐴𝑘−2).

Therefore, by the Gluing Lemma,

𝒢(𝜇𝑙
𝑘, 𝜇

𝑟
𝑘−1) ∈ 𝜋(𝑓+𝜒𝐴𝑘

+ 𝑓+𝜒𝐴𝑘−1
, 𝑓−𝜒𝐴𝑘−1

+ 𝑓−𝜒𝐴𝑘−2
+ 𝑔 𝐴𝑘−2).

Let us now consider the measures

𝜇𝑙
𝑘−1(𝑥, 𝑦) := 𝒢(𝜇𝑙

𝑘, 𝜇
𝑟
𝑘−1)(𝑥, 𝑦) + 𝑓+(𝑥)𝜒𝐴𝑘−2

(𝑥)𝛿[𝑦=𝑥]

and

𝜇𝑟
𝑘−2(𝑥, 𝑦) := 𝜇𝑘−2(𝑥, 𝑦) +

(
𝑓−(𝑥)𝜒𝐴𝑘−1

(𝑥) + 𝑓−(𝑥)𝜒𝐴𝑘−2
(𝑥)
)
𝛿[𝑦=𝑥].

Then we have

𝜇𝑙
𝑘−1 ∈ 𝜋(𝑓+𝜒𝐴𝑘

+ 𝑓+𝜒𝐴𝑘−1
+ 𝑓+𝜒𝐴𝑘−2

, 𝑓−𝜒𝐴𝑘−2
+ 𝑓−𝜒𝐴𝑘−1

+ 𝑝𝑟𝑜𝑗𝑥(𝜎
+) 𝐴𝑘−2)
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and

𝜇𝑟
𝑘−2 ∈ 𝜋(𝑓−𝜒𝐴𝑘−2

+ 𝑓−𝜒𝐴𝑘−1
+ 𝑝𝑟𝑜𝑗𝑥(𝜎

+) 𝐴𝑘−2, 𝑓
−𝜒𝐴𝑘−1

+ 𝑓−𝜒𝐴𝑘−2
+ 𝑓−𝜒𝐴𝑘−3

+ 𝑔 𝐴𝑘−3).

Consequently,

𝒢(𝜇𝑙
𝑘−1, 𝜇

𝑟
𝑘−2) ∈ 𝜋(𝑓+𝜒𝐴𝑘

+ 𝑓+𝜒𝐴𝑘−1
+ 𝑓+𝜒𝐴𝑘−2

, 𝑓−𝜒𝐴𝑘−1
+ 𝑓−𝜒𝐴𝑘−2

+ 𝑓−𝜒𝐴𝑘−3
+ 𝑔 𝐴𝑘−3).

Proceeding in this way we arrive to the construction of

𝜇𝑙
2(𝑥, 𝑦) = 𝒢(𝜇𝑙

3, 𝜇
𝑟
2)(𝑥, 𝑦) + 𝑓+(𝑥)𝜒𝐴1(𝑥)𝛿[𝑦=𝑥],

𝜇𝑟
1(𝑥, 𝑦) = 𝜇1(𝑥, 𝑦) +

𝑘−1∑
𝑖=1

𝑓−(𝑥)𝜒𝐴𝑖(𝑥)𝛿[𝑦=𝑥]

and

𝜇∗ = 𝒢(𝜇𝑙
2, 𝜇

𝑟
1) ∈ 𝜋(𝑓+, 𝑓−),

which is, in fact, an optimal transport plan since, by (3.19),

𝒦𝑑1(𝜇
∗) = 𝒦𝑑1(𝒢(𝜇𝑙

2, 𝜇
𝑟
1)) ≤ 𝒦𝑑1(𝜇

𝑙
2) +𝒦𝑑1(𝜇

𝑟
1) = 𝒦𝑑1(𝒢(𝜇𝑙

3, 𝜇
𝑟
2)) +𝒦𝑑1(𝜇1)

≤ 𝒦𝑑1(𝜇
𝑙
3) +𝒦𝑑1(𝜇

𝑟
2) +𝒦𝑑1(𝜇1) = 𝒦𝑑1(𝒢(𝜇𝑙

4, 𝜇
𝑟
3)) +𝒦𝑑1(𝜇2) +𝒦𝑑1(𝜇1) ≤ . . .

≤ 𝒦𝑑1(𝜇
𝑙
𝑘) +

𝑘−1∑
𝑗=1

𝒦𝑑1(𝜇𝑗) =
𝑘∑

𝑗=1

𝒦𝑑1(𝜇𝑗) =
𝑘∑

𝑗=1

∫
Ω×Ω

𝑑𝜎+ (𝐴𝑗 ×𝐴𝑗−1)

=

∫
Ω×Ω

𝑑𝜎+ =
1

2
∣𝜎∣(Ω× Ω) = min{𝒦𝑑1(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)}.

We want to remark that a similar construction works for any Kantorovich potential 𝑢∗, without
assuming that 𝑢∗(Ω) ⊂ ℤ, but the above one is simpler.

4. Convergence to the classical problem

The task of this section is the connection between this discrete mass transport problem and
the classical transport problem for the Euclidean distance. In particular we recover the PDE
formulation (1.4) of Evans-Gangbo by means of this discrete approach.

Let us begin by remarking that an equivalent result to Corollary 3.5 for 𝑑𝜀 gives us that (𝑢
∗
𝜀, 𝜎

∗
𝜀)

is a solution of the Euler-Lagrange equation

(4.1) 𝑓+ − 𝑓− ∈ ∂𝕀𝐾𝑑𝜀 (Ω)(𝑢),

that corresponds to the maximization problem

max

{∫
Ω
𝑢(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 : 𝑢 ∈ 𝐾𝑑𝜀(Ω)

}
,

if and only if 𝑢∗𝜀 ∈ 𝐾𝑑𝜀(Ω) and 𝜎∗
𝜀 in Ω is an antisymmetric bounded Radon measure such that

(4.2)
[𝜎∗

𝜀 ]
+ = [𝜎∗

𝜀 ]
+ {(𝑥, 𝑦) ∈ Ω× Ω : 𝑢∗𝜀(𝑥)− 𝑢∗𝜀(𝑦) = 𝜀, ∣𝑥− 𝑦∣ ≤ 𝜀},

[𝜎∗
𝜀 ]

− = [𝜎∗
𝜀 ]

− {(𝑥, 𝑦) ∈ Ω× Ω : 𝑢∗𝜀(𝑦)− 𝑢∗𝜀(𝑥) = 𝜀, ∣𝑥− 𝑦∣ ≤ 𝜀},

(4.3)

∫
Ω×Ω

𝜉(𝑥)𝑑𝜎∗
𝜀(𝑥, 𝑦) =

∫
Ω
𝜉(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥,
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and

(4.4) ∣𝜎∗
𝜀 ∣(Ω× Ω) =

2

𝜀

∫
Ω
(𝑓+(𝑥)− 𝑓−(𝑥))𝑢∗𝜀(𝑥) 𝑑𝑥 =

2

𝜀
𝒫(𝑢∗𝜀).

4.1. Convergence to the classical problem. Let us fix 𝑓+, 𝑓− ∈ 𝐿2(Ω) satisfying the mass
balance condition (1.1). First of all, in the following result we state the convergence to the
Monge/Kantorovich problems. We will denote 𝐾𝜀 = 𝐾𝑑𝜀(Ω) and 𝐾𝑑∣⋅∣ = 𝐾𝑑∣⋅∣(Ω) for simplicity

(recall that 𝑑∣⋅∣ denotes the Euclidean distance), and

𝒲 := sup
{
𝒫𝑓+,𝑓−(𝑢) : 𝑢 ∈ 𝐾𝑑∣.∣

}
= min

{
𝒦𝑑∣⋅∣(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)

}
= inf {ℱ(𝑇 ) : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)} ,

𝒲𝜀 := sup
{𝒫𝑓+,𝑓−(𝑢) : 𝑢 ∈ 𝐾𝜀

}
= min {𝒦𝜀(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)} .

Proposition 4.1. For the costs 𝒲𝜀 and 𝒲 the following facts hold:

𝒲𝜀 ≤ 𝒲𝜀′ for 𝜀 ≤ 𝜀′.

(4.5) 0 ≤ 𝒲𝜀 −𝒲 ≤ 𝜀

∫
Ω
𝑓+(𝑥) 𝑑𝑥 for any 𝜀 > 0.

For the primal problems, it also holds:

(4.6) lim
𝜀→0+

inf
{ℱ𝜀(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)

}
= 𝒲.

Proof. Since

(4.7) 𝑑𝜀(𝑥, 𝑦)− 𝜀 ≤ 𝑑∣⋅∣(𝑥, 𝑦) ≤ 𝑑𝜀(𝑥, 𝑦),

given 𝜇 ∈ 𝜋(𝑓+, 𝑓−), we have∫
Ω×Ω

(𝑑𝜀(𝑥, 𝑦)− 𝜀) 𝑑𝜇(𝑥, 𝑦) ≤
∫
Ω×Ω

𝑑∣⋅∣(𝑥, 𝑦) 𝑑𝜇(𝑥, 𝑦) ≤
∫
Ω×Ω

𝑑𝜀(𝑥, 𝑦) 𝑑𝜇(𝑥, 𝑦).

Then, taking the minimum over all 𝜇 ∈ 𝜋(𝑓+, 𝑓−), and having in mind that∫
Ω×Ω

𝑑𝜇(𝑥, 𝑦) =

∫
Ω
𝑓+(𝑥) 𝑑𝑥,

we obtain (4.5). Moreover, since 𝑑𝜀 ≤ 𝑑𝜀′ for 𝜀 ≤ 𝜀′, the sequence of costs {𝒲𝜀}𝜀>0 is monotone
nonincreasing as 𝜀 decreases to zero.

Let us now prove (4.6), which, by Example 1.4, is not a trivial consequence of the above
statement. Precisely, this previous statement gives:

(4.8) lim
𝜀→0+

𝒲𝜀 = inf
{ℱ(𝑇 ) : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)

}
.

Take now 𝑇 ′ a transport map. Thanks to (4.7),

lim sup
𝜀→0

inf
{ℱ𝜀(𝑇 ) : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)

}
= lim sup

𝜀→0
inf

{∫
Ω
𝑑𝜀(𝑥, 𝑇 (𝑥))𝑓

+(𝑥) 𝑑𝑥 : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)
}

≤ lim sup
𝜀→0

∫
Ω
𝑑𝜀(𝑥, 𝑇

′(𝑥))𝑓+(𝑥) 𝑑𝑥 =

∫
Ω
∣𝑥− 𝑇 ′(𝑥)∣𝑓+(𝑥) 𝑑𝑥.
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Therefore,

(4.9) lim sup
𝜀→0

inf
{ℱ𝜀(𝑇 ) : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)

} ≤ inf
{ℱ(𝑇 ) : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)

}
.

On the other hand,

𝒲𝜀 = min
{𝒦𝜀(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)

} ≤ inf
{ℱ𝜀(𝑇 ) : 𝑇 ∈ 𝒜(𝑓+, 𝑓−)

}
.

Taking now the lim inf𝜀→0 in the above expression and taking into account (4.8) and (4.9) we
obtain (4.6). □

Let us now proceed with the approximation of optimal transport plans. Let us consider, for
each 𝜀 > 0, an optimal transport plan 𝜇𝜀 between 𝑓+ and 𝑓− for 𝑑𝜀, that is, 𝜇𝜀 ∈ 𝜋(𝑓+, 𝑓−) such
that

𝒦𝜀(𝜇𝜀) = min{𝒦𝜀(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)}.
Proposition 4.2. There exists a sequence 𝜀𝑛 → 0 as 𝑛 → ∞ and 𝜇∗ ∈ 𝜋(𝑓+, 𝑓−) such that

𝜇𝜀𝑛 ⇀ 𝜇∗ as measures

and

𝒦(𝜇∗) = min{𝒦(𝜇) : 𝜇 ∈ 𝜋(𝑓+, 𝑓−)}.
Proof. To prove this we just observe that

𝑑∣⋅∣(𝑥, 𝑦) = ∣𝑥− 𝑦∣ ≤ 𝑑𝜀(𝑥, 𝑦) ≤ ∣𝑥− 𝑦∣+ 𝜀.

(note that this implies 𝑑𝜀(𝑥, 𝑦) → ∣𝑥− 𝑦∣ uniformly as 𝜀 → 0). Hence,∫
Ω×Ω

∣𝑥− 𝑦∣ 𝑑𝜇𝜀(𝑥, 𝑦) ≤
∫
Ω×Ω

𝑑𝜀(𝑥, 𝑦) 𝑑𝜇𝜀(𝑥, 𝑦) ≤
∫
Ω×Ω

(∣𝑥− 𝑦∣+ 𝜀) 𝑑𝜇𝜀(𝑥, 𝑦).

On the other hand, by Prokhorov’s Theorem, we can assume that, there exists a sequence 𝜀𝑛 → 0
as 𝑛 → ∞ such that 𝜇𝜀𝑛 converges weakly∗ in the sense of measures to a limit 𝜇∗. Therefore, we
conclude that ∫

Ω×Ω
∣𝑥− 𝑦∣ 𝑑𝜇∗(𝑥, 𝑦) = lim

𝑛→+∞

∫
Ω×Ω

𝑑𝜀𝑛(𝑥, 𝑦) 𝑑𝜇𝜀𝑛(𝑥, 𝑦).

Finally, by Proposition 4.1 we obtain that 𝜇∗ is a minimizer for the usual Euclidean distance. □

To illustrate these results, we present an example in one dimension that shows how one can
recover the unique monotone nondecreasing optimal transport map for the Euclidean distance
between 𝑓+ and 𝑓−.

Example 4.3. Let 𝑓+ = 2𝜒[0,1] and 𝑓− = 𝜒
[−2,0]. Set Ω an interval containing [−2, 2]. As we

set in §3.1.2, there is no transport map 𝑇 between 𝑓+ and 𝑓− if one considers the distance 𝑑1/𝑘
with 𝑘 ∈ ℕ. Nevertheless, for each 𝑛 ∈ ℕ,

𝜇𝑛(𝑥, 𝑦) = 𝜒
[ 2

𝑛−1
2𝑛

,1](𝑥)𝛿[𝑦=𝑥−1] +

2𝑛−1∑
𝑚=1

𝜒
[ 2

𝑛−𝑚−1
2𝑛

, 2
𝑛−𝑚+1

2𝑛
](𝑥)𝛿[𝑦=𝑥−1− 𝑚

2𝑛
] + 𝜒

[0, 1
2𝑛

](𝑥)𝛿[𝑦=𝑥−2]

is an optimal transport plan between 𝑓+ and 𝑓− for the distance 𝑑 1
2𝑛

such that

𝜇𝑛 ⇀ 𝑓+(𝑥)𝛿[𝑦=𝑇 (𝑥)] weakly∗ as measures,



28 N. IGBIDA, J. M. MAZÓN, J. D. ROSSI AND J. TOLEDO

where 𝑇 (𝑥) = 2𝑥 − 2 is the unique monotone nondecreasing optimal transport map for the
Euclidean distance between 𝑓+ and 𝑓−.

Let us finish this subsection with a convergence result for Kantorovich potentials.

Proposition 4.4. Let 𝑢∗𝜀 be a Kantorovich potential for 𝑓+ − 𝑓− associated with the metric 𝑑𝜀.
Then, there exists a sequence 𝜀𝑛 → 0 as 𝑛 → ∞ such that

𝑢∗𝜀𝑛 ⇀ 𝑢∗ in 𝐿2,

where 𝑢∗ is a Kantorovich potential associated with the Euclidean metric 𝑑∣⋅∣.

Proof. It is an obvious fact that {𝑢𝜀} is 𝐿∞-bounded, then, there exists a sequence,

𝑢∗𝜀𝑛 ⇀ 𝑣 in 𝐿2.

Therefore,

lim
𝑛→+∞

∫
Ω
𝑢∗𝜀𝑛(𝑥)(𝑓

+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 =

∫
Ω
𝑣(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥.

Now, since ∫
Ω
𝑢∗𝜀𝑛(𝑥)(𝑓

+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 = sup
{𝒫𝑓+,𝑓−(𝑢) : 𝑢 ∈ 𝐾𝜀𝑛

}
,

by Proposition 4.1, we conclude that∫
Ω
𝑣(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 = sup

{
𝒫𝑓+,𝑓−(𝑢) : 𝑢 ∈ 𝐾𝑑∣⋅∣

}
.

In order to have that the limit 𝑣 is a maximizer 𝑢∗ we need to show that 𝑣 ∈ 𝐾𝑑∣.∣ , and this

follows by the Mosco-convergence of 𝕀𝐾𝜀 to 𝕀𝐾𝑑∣.∣
(see [5]). □

4.2. Approximating the Evans-Gangbo PDE. The main task in this subsection is to show
how from the solutions (𝑢∗𝜀, 𝜎∗

𝜀) of the Euler-Lagrange equation

𝑓+ − 𝑓− ∈ ∂𝕀𝐾𝑑𝜀 (Ω)(𝑢),

that corresponds to the maximization problem

max

{∫
Ω
𝑢(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 : 𝑢 ∈ 𝐾𝑑𝜀(Ω)

}
,

we can recover 𝑢∗ ∈ 𝐾𝑑∣⋅∣(Ω) such that∫
Ω
𝑢∗(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 = max

{∫
Ω
𝑢(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 : 𝑢 ∈ 𝐾𝑑∣⋅∣(Ω)

}
,

and 0 ≤ 𝑎 ∈ 𝐿∞(Ω) such that

𝑓+ − 𝑓− = −div(𝑎∇𝑢∗) in 𝒟′(Ω), ∣∇𝑢∗∣ = 1 a.e. on the set {𝑎 > 0}.
Remember that 𝑢∗𝜀 ∈ 𝐾𝑑𝜀(Ω) and 𝜎∗

𝜀 is an antisymmetric bounded Radon measure in Ω satis-
fying (4.2), (4.3) and (4.4). Moreover, by Proposition 4.4, after a subsequence,

𝑢∗𝜀 ⇀ 𝑢∗ in 𝐿2(Ω) as 𝜀 → 0,

where 𝑢∗ is a Kantorovich potential associated with the metric 𝑑∣⋅∣.
Let us now fix

(4.10) Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω
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be such that ∣𝑥− 𝑦∣ > 𝑟 = diam(supp(𝑓+ − 𝑓−)) for any 𝑥 ∈ supp(𝑓+ − 𝑓−) and any 𝑦 ∈ Ω ∖Ω′.
By (4.3),

(4.11)

∫
Ω
𝜉(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 =

∫
Ω×Ω

𝜉(𝑥) 𝑑𝜎∗
𝜀(𝑥, 𝑦), ∀ 𝜉 ∈ 𝐶𝑐(Ω).

Hence, for 𝜉 ∈ 𝐶1
𝑐 (Ω), by (4.11) and the antisymmetry of 𝜎∗

𝜀 , we have that∫
Ω
𝜉(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 =

∫
Ω×Ω

𝜉(𝑥) 𝑑𝜎∗
𝜀(𝑥, 𝑦) =

∫
Ω×Ω

𝜉(𝑥)− 𝜉(𝑦)

𝜀
𝑑
(𝜀
2
𝜎∗
𝜀(𝑥, 𝑦)

)
,

and

(4.12)

∫
Ω
𝜉(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 =

∫
Ω×Ω

𝜉(𝑥) 𝑑𝜎∗
𝜀(𝑥, 𝑦) =

∫
Ω×Ω

𝜉(𝑥)− 𝜉(𝑦)

𝜀
𝑑(𝜀[𝜎∗

𝜀 ]
+(𝑥, 𝑦)).

Now observe that for 𝜑 ∈ 𝐶𝑐(Ω× Ω), if 𝜙(𝑥, 𝑧) = 𝜑(𝑥, 𝑥+ 𝜀𝑧) and 𝑇𝜀(𝑥, 𝑦) =
𝑦−𝑥
𝜀 , then∫

Ω×Ω
𝜑(𝑥, 𝑦) 𝑑[𝜎∗

𝜀 ]
+(𝑥, 𝑦) =

∫
Ω×Ω

𝜙((𝜋1, 𝑇𝜀)(𝑥, 𝑦)) 𝑑[𝜎
∗
𝜀 ]

+(𝑥, 𝑦)

=

∫
Ω×Ω−Ω

𝜀

𝜙(𝑥, 𝑧)𝑑((𝜋1, 𝑇𝜀)#[𝜎∗
𝜀 ]

+)(𝑥, 𝑧) =

∫
Ω×Ω−Ω

𝜀

𝜑(𝑥, 𝑥+ 𝜀𝑧) 𝑑((𝜋1, 𝑇𝜀)#[𝜎∗
𝜀 ]

+)(𝑥, 𝑧).

Also, since

[𝜀𝜎∗
𝜀 ]

+ = [𝜀𝜎∗
𝜀 ]

+ {(𝑥, 𝑦) ∈ Ω× Ω : 𝑢∗𝜀(𝑥)− 𝑢∗𝜀(𝑦) = 𝜀, ∣𝑥− 𝑦∣ ≤ 𝜀},
and (𝜋1, 𝑇𝜀) is one to one and continuous, we have that, setting 𝜇𝜀 := (𝜋1, 𝑇𝜀)#[𝜀𝜎∗

𝜀 ]
+,

𝜇𝜀 = 𝜇𝜀 (𝜋1, 𝑇𝜀) ({(𝑥, 𝑦) ∈ Ω× Ω : 𝑢∗𝜀(𝑥)− 𝑢∗𝜀(𝑦) = 𝜀, ∣𝑥− 𝑦∣ ≤ 𝜀}) ,
that is,

𝜇𝜀 = 𝜇𝜀 {(𝑥, 𝑧) : 𝑥 ∈ Ω, 𝑥+ 𝜀𝑧 ∈ Ω, ∣𝑧∣ ≤ 1, 𝑢∗𝜀(𝑥)− 𝑢∗𝜀(𝑥+ 𝜀𝑧) = 𝜀}.
Therefore, we can rewrite (4.12) as

(4.13)

∫
Ω
𝜉(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 =

∫
Ω×𝐵1(0)

𝜉(𝑥)− 𝜉(𝑥+ 𝜀𝑧)

𝜀
𝑑𝜇𝜀(𝑥, 𝑧).

On the other hand, by (4.4), 𝜇𝜀 is bounded by a constant independent of 𝜀. Therefore there exists
a subsequence 𝜀𝑛 → 0 such that

(4.14) 𝜇𝜀𝑛 ⇀ 𝜗 weakly as measures,

with

𝜗 = 𝜗 {(𝑥, 𝑧) : 𝑥 ∈ Ω, ∣𝑧∣ ≤ 1}.
Then, taking limit in (4.13), for 𝜀 = 𝜀𝑛, as 𝑛 goes to infinity, we obtain

(4.15)

∫
Ω
𝜉(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 =

∫
Ω×𝐵1(0)

∇𝜉(𝑥) ⋅ (−𝑧) 𝑑𝜗(𝑥, 𝑧).

Now, by disintegration of the measure 𝜗 (see [2]),

𝜗 = (𝜗)𝑥 ⊗ 𝜇,

with

𝜇 = 𝜋1#𝜗,
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that is a non-negative measure. Moreover, if we define

𝜈(𝑥) :=

∫
𝐵1(0)

(−𝑧) 𝑑(𝜗)𝑥(𝑧), 𝑥 ∈ Ω,

then, 𝜈 ∈ 𝐿1
𝜇(Ω,ℝ𝑁 ) and we can rewrite (4.15) as

(4.16)

∫
Ω
𝜉(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 =

∫
Ω
∇𝜉(𝑥) ⋅ 𝜈(𝑥) 𝑑𝜇(𝑥), ∀ 𝜉 ∈ 𝐶1

𝑐 (Ω).

Let us see that

(4.17) supp(𝜇) ⊂⊂ Ω.

The proof of (4.17) follows the argument of [1, Lemma 5.1] (we include this argument here for
the sake of completeness). In fact, let 𝑥0 ∈ supp(𝑓+−𝑓−) be a minimum point for the restriction
of 𝑢∗ to supp(𝑓+ − 𝑓−) and define

𝑤(𝑥) := min{(𝑢∗(𝑥)− 𝑢∗(𝑥0))+,dist(𝑥,Ω ∖ Ω′)},
where Ω′ verifies (4.10). Then, 𝑤(𝑥) = 𝑢∗(𝑥) − 𝑢∗(𝑥0) on supp(𝑓+ − 𝑓−) and 𝑤 ≡ 0 on Ω ∖ Ω′.
On the other hand,

(4.18)

𝜇(Ω) = 𝜗(Ω× ℝ𝑁 ) ≤ lim inf
𝜀→0

𝜇𝜀(Ω× ℝ𝑁 ) ≤ lim inf
𝜀→0

𝜀 [𝜎∗
𝜀 ]

+(Ω× ℝ𝑁 )

= lim inf
𝜀→0

∫
Ω
𝑢∗𝜀(𝑥) (𝑓

+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 =

∫
Ω
𝑢∗(𝑥) (𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥.

and, for a regularizing sequence {𝜌 1
𝑛
}, on account of (4.16) and using that ∣𝜈(𝑥)∣ ≤ 1, we have∫

Ω
𝑢∗(𝑥) (𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 =

∫
Ω
(𝑢∗(𝑥)− 𝑢∗(𝑥0)) (𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥

= lim
𝑛

∫
Ω
(𝑤 ∗ 𝜌 1

𝑛
)(𝑥) (𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 = lim

𝑛

∫
Ω
∇(𝑤 ∗ 𝜌 1

𝑛
)(𝑥) ⋅ 𝜈(𝑥) 𝑑𝜇(𝑥) ≤ 𝜇(Ω′′),

where Ω′′ verifies (4.10). So, 𝜇(Ω ∖ Ω′′) = 0, and (4.17) is satisfied.
Let us now recall some tangential calculus for measures (see [7], [8]). We introduce the tangent

space 𝒯𝜇 to the measure 𝜇 which is defined 𝜇-a.e. by setting 𝒯𝜇(𝑥) := 𝒩⊥
𝜇 (𝑥) where:

𝒩𝜇(𝑥) = {𝜉(𝑥) : 𝜉 ∈ 𝒩𝜇} being

𝒩𝜇 = {𝜉 ∈ 𝐿∞
𝜇 (Ω,ℝ𝑁 ) : ∃𝑢𝑛 smooth, 𝑢𝑛 → 0 uniformly, ∇𝑢𝑛 ⇀ 𝜉 weakly∗ in 𝐿∞

𝜇 }.
In [7], given 𝑢 ∈ 𝒟(Ω), for 𝜇–a.e. 𝑥 ∈ Ω, the tangential derivative ∇𝜇𝑢(𝑥) is defined as the
projection of ∇𝑢(𝑥) on 𝒯𝜇(𝑥). Now, by [8, Proposition 3.2], there is an extension of the linear
operator ∇𝜇 to Lip1(Ω, 𝑑∣⋅∣) the set of Lipschitz continuous functions. Let us see that

(4.19) 𝜈(𝑥) ∈ 𝒯𝜇(𝑥) 𝜇− 𝑎.𝑒. 𝑥 ∈ Ω.

For that we need to show that

(4.20)

∫
Ω
𝜈(𝑥) ⋅ 𝜉(𝑥) 𝑑𝜇(𝑥) = 0, ∀ 𝜉 ∈ 𝒩𝜇.
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In fact, given 𝜉 ∈ 𝒩𝜇, there exists 𝑢𝑛 smooth, 𝑢𝑛 → 0 uniformly, ∇𝑢𝑛 ⇀ 𝜉 weakly∗ in 𝐿∞
𝜇 . Then,

taking 𝜉 = 𝑢𝑛 in (4.16), which is possible on account of (4.17), we obtain∫
Ω
𝑢𝑛(𝑥)(𝑓

+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 =

∫
Ω
∇𝑢𝑛(𝑥) ⋅ 𝜈(𝑥) 𝑑𝜇(𝑥),

from here, taking limit as 𝑛 → +∞, we get∫
Ω
𝑣(𝑥)𝜉(𝑥) ⋅ 𝜈(𝑥) 𝑑𝜇(𝑥) = 0, ∀𝑣 ∈ 𝐷(Ω),

from where (4.20) follows. Now, if we set Φ := 𝜈𝜇, by (4.16) we have

−div(Φ) = 𝑓+ − 𝑓− in 𝒟′(Ω).

Then, having in mind (4.19), by [8, Proposition 3.5], we get

(4.21)

∫
Ω
𝑢∗(𝑥)(𝑓+(𝑥)− 𝑓−(𝑥)) 𝑑𝑥 =

∫
Ω
𝜈(𝑥)∇𝜇𝑢

∗(𝑥) 𝑑𝜇(𝑥),

where ∇𝜇𝑢
∗ is the tangential derivative. Then, since ∣𝜈(𝑥)∣ ≤ 1 and ∣∇𝜇𝑢

∗(𝑥)∣ ≤ 1 for 𝜇-a.e
𝑥 ∈ Ω, from (4.21) and (4.18), we obtain that 𝜈(𝑥) = ∇𝜇𝑢

∗(𝑥) and ∣∇𝜇𝑢
∗(𝑥)∣ = 1 𝜇−a.e 𝑥 ∈ Ω.

Therefore, we have { −div(𝜇∇𝜇𝑢
∗) = 𝑓+ − 𝑓− in 𝒟′(Ω),

∣∇𝜇𝑢
∗(𝑥)∣ = 1 𝜇− 𝑎.𝑒 𝑥 ∈ Ω.

Now, by the regularity results given in [12] (see also [1] and [13]) , since 𝑓+, 𝑓− ∈ 𝐿∞(Ω), we have
that the transport density 𝜇 ∈ 𝐿∞(Ω). Consequently we conclude that the density transport of
Evans-Gangbo is represented by 𝑎 = 𝜋1#𝜗 for any 𝜗 obtained as in (4.14).
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