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Ciudad Universitaria, Pab 1 (1428),

Buenos Aires, Argentina.
julio.rossi@ua.es

J. Toledo
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Abstract

This paper is concerned with the best Lipschitz extension problem for a discrete
distance that counts the number of steps. We relate this absolutely minimizing Lip-
schitz extension with a discrete ∞-Laplacian problem, which arise as the dynamic
programming formula for the value function of some ε-tug-of-war games. As in the
classical case, we obtain the absolutely minimizing Lipschitz extension of a datum
f by taking the limit as p → ∞ in a nonlocal p–Laplacian problem.

Résumé

Dans cet article nous étudions le problème de la meilleur extension Lipschitz
pour une distance discrète qui compte le nombre de pas. Nous rapportons cette
extension Lipschitz absolument minimisante avec un problème ∞-Laplacien discrète
qui découle de la formule de programmation dynamique pour la fonction valeur
de certains ε-jeux de tir à la corde. Comme dans le cas classique nous obtenons
l’extension Lipschitz absolument minimisante d’une donné f en prenant la limite
quand p → +∞ dans un problème non local du type p-Laplacien.
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1 Introduction

Since the classical work of Aronsson [6], in which he introduced the concept
of absolutely minimizing Lipschitz extension and showed its relation with the
infinity Laplace equation, a large amount of literature has appeared in this
direction. For a systematic treatment of the theory of absolute minimizers
see the recent survey [7] by Aronson, Cradall and Juutinen, and the references
therein. A new insight has come in with the work of Peres, Schramm, Sheffield
and Wilson [20] where it has been shown an interesting connection between
absolutely minimizing Lipschitz extension and Game Theory. More precisely,
the authors of [20] proved that if uε is the value function for a certain ε-tug-
of-war game with final payoff function f , then the uniform limit u of uε, as ε
goes to zero, is the absolutely minimizing Lipschitz extension of f .

In this work our aim is twofold, first we characterize the value function uε

as the absolutely minimizing Lipschitz extension with respect to a discrete
distance in a proper way, and next we show that uε can be obtained by taking
the limit as p → ∞ in a nonlocal p–Laplacian Dirichlet problem with boundary
data f .

Let (X, d) be an arbitrary metric space and let f : A ⊂ X → R. We denote
by Ld(f,A) the smallest Lipschitz constant of f in A, i.e.,

Ld(f,A) := sup
x,y∈A

|f(x)− f(y)|
d(x, y)

.

If we are given a Lipschitz function f : A ⊂ X → R, i.e., Ld(f, A) < +∞,
then it is well-known that there exists a minimal Lipschitz extension (MLE
for short) of f to X, that is, a function h : X → R such that h|A = f
and Ld(h,X) = Ld(f, A). We will denote the space of such extensions as
MLE(f,X).

Extremal extensions were explicitly constructed by McShane [17] and Whitney
[21],

Ψ(f)(x) := inf
y∈A

(f(y) + Ld(f, A)d(x, y)) , x ∈ X,

and
Λ(f)(x) := sup

y∈A
(f(y)− Ld(f, A)d(x, y)) , x ∈ X,
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belong to MLE(f,X), and if u ∈ MLE(f,X) then Λ(f) ≤ u ≤ Ψ(f).

The notion of minimal Lipschitz extension is not completely satisfactory since
it involves only the global Lipschitz constant of the extension and ignore what
may happen locally. To solve this problem, in the particular case of the eu-
clidean space RN , Arosson [6] introduced the concept of absolutely minimizing
Lipschitz extension (AMLE for short) and proved the existence of AMLE by
means of a variant of the Perron’s method. An extension of this concept to
the case of a general metric space is due to Juutinen [11] (see also [18]). In
[11], Juutinen gave the following definition.

Definition 1.1 Let A be any nonempty subset of the metric spaces (X, d)
and let f : A ⊂ X → R be a Lipschitz function. A function h : X → R is an
absolutely minimizing Lipschitz extension of f to X if

(i) h ∈ MLE(f,X),
(ii) whenever B ⊂ X and g ∈ MLE(f,X) such that g = h in X \ B, then

Ld(h,B) ≤ Ld(g,B).

Also in [11] it is proved the existence of an AMLE under the assumption that
the metric space (X, d) is a separable length space.

Aronsson’s original definition in RN was formulated in a slightly different way.
He assumed that A is a compact set and required that Ld(h,D) = Ld(h, ∂D)
for every bounded open set D in RN \A. As remarked by Juutinen in [11], for
a general metric space “this kind of definition would be somewhat ambiguous
because the boundary of an open subset of a metric space may very well be
empty”, and the issue of [11] was to find a right way to interpret the “boundary
condition”.

Moreover, in [6], Aronsson proposed an approach to obtain the AMLE exten-
sion of a datum f by taking the limit as p → ∞ in the p–Laplacian problem

−∆pup = 0 in Ω,

up = f on ∂Ω.
(1.1)

This approach was made completely rigorous by Jensen in [10] (see also [9]).
In [7] you can find the following result: the limit as p → ∞ of up, u∞, is the
best Lipschitz extension (AMLE) of f in Ω and moreover it is characterized
as the unique viscosity solution to

−∆∞u∞ = 0, Ω,

u∞ = f, ∂Ω,
(1.2)
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where ∆∞ is the infinity Laplace operator, that is, the degenerate elliptic
operator given by

∆∞u :=
N∑

i,j=1

uxi
uxj

uxixj
.

Recently, Peres, Schramm, Sheffield and Wilson [20] have shown that the
infinity Laplace equation (1.2) is solved by the continuous value function for
a random turn tug-of-war game, in which the players, at each step, flip a fair
coin to determine which player plays.

Given a bounded domain Ω in RN and a function defined outside Ω (this will
be properly stated afterward), our aim is to study the Lipschitz extension
problem to Ω respect to the discrete distance that counts the number of steps,

dε(x, y) =

 0 if x = y,

ε
([[

|x−y|
ε

]]
+ 1

)
if x ̸= y,

(1.3)

where |.| is the Euclidean norm and [[r]] is defined for r > 0 by [[r]] := n, if
n < r ≤ n+ 1, n = 0, 1, 2, . . . , that is,

dε(x, y) =



0 if x = y,

ε if 0 < |x− y| ≤ ε,

2ε if ε < |x− y| ≤ 2ε,
...

The distance dε was used in [20] in relation with ε-tug-of-war games. It was
also used in [2] to give a mass transport interpretation of a nonlocal model of
sandpiles.

1.1 Description of the main results

Since (RN , dε) is not a separable length space, the general concept of AMLE
due to Juutinen does not work on it. We give a concept of AMLE respect to
the distance dε, which we name as AMLEε(f,Ω), in an slight different way
that finds the right manner to interpret the “boundary condition” (observe
that for the metric dε the boundary of Ω is empty).

In addition, we relate this absolutely minimizing Lipschitz extension problem
with a discrete ∞-Laplacian problem, which arise as the dynamic program-
ming formula for the value function of some ε-tug-of-war game. More precisely,
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we characterize the value function for the ε-tug-of-war game with payoff func-
tion f as the AMLEε(f,Ω). Therefore, as consequence of the results in [20] we
have existence and uniqueness of AMLEε(f,Ω).

Finally, we also obtain the nonlocal version of the approximation by the p–
Laplacian, that is, we get the AMLEε(f,Ω) by taking the limit as p → ∞ in
a nonlocal p–Laplacian problem.

2 Definition and characterization of AMLEε

Given a set A ⊂ RN and ε > 0, we denote

Aε :=
{
x ∈ RN : dist(x,A) := inf

y∈A
|x− y| < ε

}
.

The euclidean open ball centred at x with radius r will be denoted by Br(x),
and with Br(x) its closure. Throughout the paper, we assume that Ω is a
bounded domain of RN .

Given u : Ωε → R and D ⊂ Ω, we define

Lε(u,D) := sup
x ∈ D, y ∈ Dε

|x − y| ≤ ε

|u(x)− u(y)|
ε

.

Observe that

Lε(u,D) = sup
x ∈ D, y ∈ Dε

|x − y| ≤ ε

|u(x)− u(y)|
dε(x, y)

≤ sup
x∈D, y∈Dε

|u(x)− u(y)|
dε(x, y)

.

And that, if D is convex, the above inequality is an equality. Indeed, for
x0 = x ∈ D, xn = y ∈ Dε and x1, x2, ..., xn−1 in the segment between x and y
such that |xi − xi−1| = ε for i = 1, ..., n− 1, and |xn − xn−1| ≤ ε, we have that

|u(x)− u(y)| ≤
n∑

i=1

|u(xi)− u(xi−1)| ≤ ε
n∑

i=1

Lε(u,D)

= εnLε(u,D) = dε(x, y)Lε(u,D).

Also, for any convex D,

Ldε(u,D) = sup
x,y∈D,|x−y|≤ε

|u(x)− u(y)|
ε

.

Therefore, the constant Lε(u,D) is not genuinely the Lipschitz constant asso-
ciated to dε in D, Ldε(u,D), even if D is convex, but, as we will see, it is the
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right one to treat the absolutely minimizing Lipschitz extensions when dε is
considered.

Definition 2.1 Let f : Ωε \ Ω → R be bounded. We say that a function
u : Ωε → R is an Absolutely Minimizing Lipschitz Extension for Lε of f into
Ω (u is AMLEε(f,Ω) for shortness) if

(i) u = f in Ωε \ Ω,
(ii) for every D ⊂ Ω and v : Ωε → R with v = u in Ωε \ D, then Lε(u,D) ≤

Lε(v,D).

Lemma 2.2 When Ω is convex the above definition is equivalent to the fol-
lowing two conditions, that match better the idea of Definition 1.1,

(i’) u ∈ MLE(f,Ωε),
(ii’) for every D ⊂ Ω and v ∈ MLE(f,Ωε) with v = u in Ωε\D, then Lε(u,D) ≤

Lε(v,D).

Proof. Let us first see that (i), (ii) implies (i’) ((ii’) is immediate): take v ∈
MLE(f,Ωε), then

Lε(u,Ω) ≤ Lε(v,Ω) ≤ Ldε(v,Ωε) = Ldε(f,Ωε \ Ω).

Therefore, since Ω is convex,

sup
x∈Ω, y∈Ωε

|u(x)− u(y)|
dε(x, y)

= Lε(u,Ω) ≤ Ldε(f,Ωε \ Ω). (2.1)

On the other hand, since u = f in Ωε \ Ω,

Ldε(f,Ωε \ Ω) ≤ Ldε(u,Ωε) = sup
x∈Ωε, y∈Ωε

|u(x)− u(y)|
dε(x, y)

. (2.2)

Consequently, from (2.1) and (2.2), Ldε(u,Ωε) = Ldε(f,Ωε \ Ω).

Let us now see that (i’), (ii’) implies (ii) ((i) is immediate). Let us argue by
contradiction and suppose that there exist D and v such that v = u in Ωε \D
and Lε(v,D) < Lε(u,D). Then, by (ii’), v can not be in MLE(f,Ωε). But also,
the above strict inequality implies that, on account that Ωε is convex,

Ldε(f,Ωε \ Ω) ≤ Ldε(v,Ωε) = sup
x /∈ D, y /∈ D

|x − y| ≤ ε

|v(x)− v(y)|
ε

= sup
x /∈ D, y /∈ D

|x − y| ≤ ε

|u(x)− u(y)|
ε

≤ Ldε(u,Ωε) = Ldε(f,Ωε \ Ω)
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and consequently v ∈ MLE(f,Ωε), which is a contradiction. 2

Remark that independently of the convexity of Ω, if u is AMLEε(f,Ω), it
always holds that

Lε(u,Ω) ≤ Ldε(f,Ωε \ Ω).

In the next result we obtain the characterization of the AMLEε(f,Ω) by means
of a discrete ∞-Laplacian problem.

Theorem 2.3 Let f : Ωε \ Ω → R be bounded. Then, u : Ωε → R is
AMLEε(f,Ω) if and only if u is a solution of

−∆ε
∞u = 0 in Ω,

u = f on Ωε \ Ω,
(2.3)

where
∆ε

∞u(x) := sup
y∈Bε(x)

u(y) + inf
y∈Bε(x)

u(y)− 2u(x) (2.4)

is the discrete infinity Laplace operator.

Proof. Without loss of generality we will take ε = 1 along the proof. Let
us first take u a solution of (2.3) and suppose that u is not AMLE1(f,Ω).
Then, there exists D ⊂ Ω and v : Ω1 → R, v = u in Ω1 \ D, such that
L1(v,D) < L1(u,D). Set δ := L1(u,D)− L1(v,D) > 0, and let n ∈ N, n > 3,
such that

sup
D

u− inf
D

u ≤ (n− 1)L1(u,D). (2.5)

Take (x0, y0) ∈ D × Ω1, |x0 − y0| ≤ 1, such that

L1(u,D)− δ

n
≤ |u(x0)− u(y0)| ≤ L1(u,D).

We have that ∆1
∞u(x0) = 0 and ∆1

∞u(y0) = 0 if y0 ∈ Ω. Let us suppose that
u(y0) ≥ u(x0) (the other case being similar), which implies

L1(u,D)− δ

n
≤ u(y0)− u(x0) ≤ L1(u,D). (2.6)

If y0 /∈ D, set y1 = y0. If y0 ∈ D, since ∆1
∞u(y0) = 0 and x0 ∈ B1(y0), we have

sup
y∈B1(y0)

u(y)− u(y0) = u(y0)− inf
y∈B1(y0)

u(y) ≥ u(y0)− u(x0) ≥ L1(u,D)− δ

n
.

Hence, there exists y1 ∈ B1(y0) such that

u(y1)− u(y0) ≥ L1(u,D)− 2δ

n
.
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Also, since ∆1
∞u(x0) = 0, we have

u(x0)− inf
x∈B1(x0)

u(x) = sup
x∈B1(x0)

u(x)− u(x0) ≥ u(y0)− u(x0) ≥ L1(u,D)− δ

n
,

and consequently, there exists x1 ∈ B1(x0) such that

u(x0)− u(x1) ≥ L1(u,D)− 2δ

n
.

Following this construction, and with the rule that in the case xj /∈ D or
yj /∈ D, then xi = xj or yi = yj for all i ≥ j, we claim that there exists m ≤ n
for which xm /∈ D and ym /∈ D. In fact, if not, then either {xi}i=1,...,n ⊂ D,
either {yi}i=1,...,n ⊂ D, with {xi}i=1,...,n and {yi}i=1,...,n satisfying

u(yi)− u(yi−1) ≥ L1(u,D)− 2δ

n
, yi ∈ B1(yi−1), i = 1, . . . , n, (2.7)

and

u(xi)− u(xi−1) ≥ L1(u,D)− 2δ

n
, xi ∈ B1(xi−1), i = 1, . . . , n. (2.8)

Let us suppose the first of these two possibilities, that is, {xi}i=1,...,n ⊂ D.
Then, having in mind (2.5), (2.6) and (2.8), we get

(n− 1)L1(u,D) ≥ u(y0)− u(xn)

= u(y0)− u(x0) + u(x0)− u(x1) + · · ·+ u(xn−1)− u(xn)

≥ L1(u,D)− δ
n
+ (n+ 1)(L1(u,D)− 2δ

n
),

from where it follows that

2n+ 3

n
δ ≥ 3L1(u,D) ≥ 3δ,

which is a contradiction since n > 3. Now, for {xi, yi}i=1,...,m, we have

v(ym)− v(xm) = u(ym)− u(xm) ≥ 2m

(
L1(u,D)− 2δ

n

)
+ L1(u,D)− δ

n
,

v(ym)− v(xm) ≤ (2m+ 1)L1(v,D),

and therefore,

(2m+ 1)L1(u,D)− (4m+ 1)
δ

n
≤ (2m+ 1)L1(v,D),
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that is

δ = L1(u,D)− L1(v,D) ≤ 4m+ 1

2m+ 1

δ

n
,

which implies n ≤ 4m+1
2m+1

≤ 2, which is a contradiction since n > 3.

Let us now consider u an AMLE1(f,Ω) and suppose that u is not a solution
of (2.3). Then, {x ∈ Ω : ∆1

∞u(x) ̸= 0} ̸= ∅. Let us suppose without loss of
generality, that,{

x ∈ Ω : sup
y∈B1(x)

u(y)− u(x) > u(x)− inf
y∈B1(x)

u(y)
}
̸= ∅.

Then, there exists δ > 0 and a nonempty set D ⊂ Ω such that

sup
y∈B1(x)

u(y)− u(x) > u(x)− inf
y∈B1(x)

u(y) + δ for all x ∈ D. (2.9)

Consider the function v : Ω1 → R defined by

v(x) =


u(x) if x ∈ Ω1 \D,

u(x) + δ
2

if x ∈ D.

Then, since u is an AMLE1(f,Ω), we have L1(u,D) ≤ L1(v,D). Now, there
exists x0 ∈ D and y0 ∈ B1(x0) such that

L1(v,D) ≤ δ

4
+ |v(x0)− v(y0)|.

Therefore, if v(x0) ≥ v(y0), by (2.9),

L1(v,D) ≤ δ

4
+ v(x0)− v(y0) ≤

3δ

4
+ u(x0)− u(y0)

≤ 3δ

4
+ u(x0)− inf

x∈B1(x0)
u(x) < −δ

4
+ sup

x∈B1(x0)

u(x)− u(x0) < L1(u,D),

which is a contradiction, and, if v(x0) < v(y0),

L1(v,D) ≤ δ

4
+ v(y0)− v(x0) = −δ

4
+ v(y0)− u(x0),

so, if y0 /∈ D,

L1(v,D) ≤ −δ

4
+ u(y0)− u(x0) < L1(u,D),

also a contradiction, and if y0 ∈ D, since also x0 ∈ B1(y0), by (2.9),

L1(v,D) ≤ δ

4
+ u(y0)− u(x0) ≤

δ

4
+ u(y0)− inf

y∈B1(y0)
u(y)
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< −3δ

4
+ sup

y∈B1(y0)

u(y)− u(y0) < L1(u,D),

again a contradiction. Then, in any case we arrive to a contradiction and
consequently u is a solution of (2.3). 2

The first analysis of the interesting functional equation −∆ε
∞u = 0 appeared

in the article by Le Gruyer and Archer [13], but it also arises as the dynamic
programming formula for the value function of some tug-of-war games (see for
instance [8,15,16,20]). Let us briefly review the ε-tug-of-war game introduced
by Peres, Schramm, Sheffield and Wilson in [20]. Fix a number ε > 0. The
dynamic of the game is as follows. There are two players moving a token inside
a set EΩ containing Ω, a bounded domain in RN . The token is placed at an
initial position x0 ∈ Ω. At the kth stage of the game, player I and player II
select points xI

k and xII
k , respectively, both belonging to Bε(xk−1) ∩ EΩ. The

token is then moved to xk, where xk is chosen randomly so that xk = xI
k or

xk = xII
k , depending who was the winner of a flip of a fair coin. After the kth

stage of the game, if xk ∈ Ω then the game continues to stage k+1. Otherwise,
if xk ∈ EΩ \ Ω, the game ends and player II pays player I the amount f(xk),
where f : EΩ \Ω → R is a final payoff function of the game. Of course, player
I attempts to maximize the payoff, while player II attempts to minimize it.

Given a strategy for player I, that is a mapping SI from the set of all possible
partially played games (x0, x1, . . . , xk−1) to possible positions xk ∈ Bε(xk−1),
and a strategy SII for player II, we denote by Ex0

I (SI , SII) and Ex0
II (SI , SII) the

expected value of f(xk) (Ex0
SI ,SII

[f(xk)]), if the game terminates a.s., −∞ and
+∞, respectively, otherwise (there is a severe penalization for both players if
the game never ends). The value of the game for player I is the quantity

sup
SI

inf
SII

Ex0
I (SI , SII),

where the supremum is taken over all possible strategies for player I and the
infimum over all strategies of player II. Similarly, the value of the game for
player II is

inf
SII

sup
SI

Ex0
II (SI , SII).

We denote the value for player I as a function of the starting point x0 ∈ Ω
by uε

I(x0), and similarly the value for player II by uε
II(x0). The game is said

to have a value if uε
I = uε

II =: uε. According with the Dynamic Programming
Principle, see [20], there is a value function for the ε-tug-of-war game, uε, that
satisfies the functional equation

uε(x) =
1

2

 sup
y∈Bε(x)∩EΩ

uε(y) + inf
y∈Bε(x)∩EΩ

uε(y)

 in Ω,

with uε = f in EΩ \ Ω. Observe that this is (2.3) when EΩ = Ωε (see [15,16]
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for this problem). In [20], using martingale methods, it is proved that prob-
lem (2.3) has a unique solution; then, by Theorem 2.3, we get the following
existence and uniqueness result.

Theorem 2.4 Let f : Ωε \ Ω → R be bounded. Then, there is a unique
AMLEε(f,Ω).

Some of the difficulties in the analysis of the ε-tug-of-war game are due to
the fact that the value function uε can be discontinuous. When the limit
u := limε→0 u

ε exists pointwise, the function u is called the continuum value of
the game. In [20], Peres, Schramm, Sheffield and Wilson proved that if EΩ = Ω
and the terminal payoff function of the game f is Lipschitz continuous on ∂Ω
then the continuum value u exists and uε → u uniformly in Ω as ε → 0.
Moreover, u is the unique AMLE extension of f to Ω and the unique viscosity
solution of the boundary value problem

−∆∞u = 0 in Ω,

u = f on ∂Ω.

Our Theorem 2.3 gives this characterization in the case of the discrete distance.
We will see in the next section that we can also obtain the AMLEε extension
by taking the limit as p → ∞ in a nonlocal p–Laplacian problem, which
represents the nonlocal version of the approximation of the local problem
with the p–Laplacian.

3 Existence of AMLEε by a nonlocal Lp-variational approach

First, let us introduce some notation. Given f : Ωε \ Ω → R and u : Ω → R,
we will denote

uf (x) :=


u(x) if x ∈ Ω,

f(x) if x ∈ Ωε \ Ω.

Given a convex set K ⊂ L2(Ω), we denote by IK to the indicator function of
K, that is, the function defined as

IK(u) :=


0 if u ∈ K,

+∞ if u ̸∈ K.

Let J : RN → R be a nonnegative, radial, continuous function, strictly positive
in B1(0), vanishing in RN \B1(0) and such that

∫
RN J(z) dz = 1. For 1 < p <
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+∞ and f : Ω1 \Ω → R such that |f |p−1 ∈ L1(Ω1 \Ω), we define in L1(Ω) the
operator BJ

p,f by

BJ
p,f (u)(x) := −

∫
Ω
J(x− y)|u(y)− u(x)|p−2(u(y)− u(x)) dy

−
∫
Ω1\Ω

J(x− y)|f(y)− u(x)|p−2(f(y)− u(x)) dy, x ∈ Ω,

that is,

BJ
p,f (u)(x) = −

∫
Ω1

J(x− y)|uf (y)− u(x)|p−2(uf (y)− u(x)) dy, x ∈ Ω.

In [1] (see also [3]) we have seen that the nonlocal version of the Dirichlet
problem (1.1), with boundary value f , can be written as

BJ
p,f (u) = 0. (3.1)

We have also established the following Poincaré’s type inequality for such kind
of integral operators.

Proposition 3.1 ([1]) Given J : RN → R as above, p ≥ 1 and f ∈ Lp(Ω1 \
Ω), there exists λ = λ(J,Ω, p) > 0 such that

λ
∫
Ω
|u(x)|p dx ≤

∫
Ω

∫
Ω1

J(x− y)|uf (y)− u(x)|p dy dx+
∫
Ω1\Ω

|f(y)|p dy (3.2)

for all u ∈ Lp(Ω).

We say that u is a supersolution (resp. subsolution) of the nonlocal Dirichlet
problem (3.1) with boundary value f if BJ

p,f (u) ≥ 0 (resp. BJ
p,f (u) ≤ 0). We

have the following comparison principle.

Lemma 3.2 Let J : RN → R as above, p ≥ 2 and f, f ∈ Lp(Ω1 \ Ω), with

f ≥ f . If u is a supersolution of the Dirichlet problem (3.1) with boundary

value f and u is a subsolution of the Dirichlet problem (3.1) with boundary
value f then u ≥ u.

Proof. By assumption we have

0 ≥ −
∫
Ω1

J(x− y)|uf (y)− u(x)|p−2(uf (y)− u(x)) dy ∀ x ∈ Ω

and

0 ≤ −
∫
Ω1

J(x− y)|uf (y)− u(x)|p−2(uf (y)− u(x)) dy ∀x ∈ Ω.

12



Then, multiplying by (u− u)+(x), integrating and having in mind that

(uf (x)− uf (x))
+ = (f(x)− f(x))+ = 0

if x ∈ Ω1 \ Ω, we get

0 ≥ −
∫
Ω1×Ω1

J(x− y)|uf (y)− uf (x)|p−2(uf (y)− uf (x))(uf (x)− uf (x))
+ dydx

=
1

2

∫
Ω1×Ω1

J(x− y)|uf (y)− uf (x)|p−2(uf (y)− uf (x))

×
[
(uf (y)− uf (y))

+ − (uf (x)− uf (x))
+
]
dydx

and

0 ≥
∫
Ω1×Ω1

J(x− y)|uf (y)− uf (x)|
p−2(uf (y)− uf (x))(uf (x)− uf (x))

+ dydx

= −
∫
Ω1×Ω1

J(x− y)

2
|uf (y)− uf (x)|

p−2(uf (y)− uf (x))

×
[
(uf (y)− uf (y))

+ − (uf (x)− uf (x))
+
]
dydx.

Then, adding the last two inequalities we obtain that∫
Ω1×Ω1

J(x− y)
(
|uf (y)− uf (x)|p−2(uf (y)− uf (x))

−|uf (y)− uf (x)|
p−2(uf (y)− uf (x))

)
×
(
(uf (y)− uf (y))

+ − (uf (x)− uf (x))
+
)

dydx ≤ 0.

Therefore, since (|r|p−2r − |s|p−2s)(r+ − s+) ≥ 0, we get that

J(x− y)
(
|uf (y)− uf (x)|p−2(uf (y)− uf (x))

−|uf (y)− uf (x)|
p−2(uf (y)− uf (x))

)
×
(
(uf (y)− uf (y))

+ − (uf (x)− uf (x))
+
)
= 0

(3.3)

for a.e. (x, y) ∈ Ω1 × Ω1.

Let Ω̃ := {x ∈ Ω : u(x) > u(x)}. Since (|r|p−2r − |s|p−2s)(r − s) ≥ C|r − s|p,
from (3.3) we obtain that, for a.e. (x, y) ∈ Ω̃× Ω̃,

0 = J(x− y) (|u(y)− u(x)|p−2(u(y)− u(x))− |u(y)− u(x)|p−2(u(y)− u(x)))

× (u(y)− u(x)− (u(y)− u(x)))

≥ CJ(x− y)|u(y)− u(x)− (u(y)− u(x))|

13



that is,

J(x− y)|u(y)− u(y)− (u(x)− u(x))|p = 0 for a.e. (x, y) ∈ Ω̃× Ω̃. (3.4)

Therefore, if
|Ω̃| > 0, (3.5)

from (3.4), we get there exists Λ ⊂ Ω̃ with |Λ| > 0 such that

u(x)− u(x) = λ > 0 a.e. in Λ.

Then, taking the above conclusion in (3.3) we have that, for a.e. (x, y) ∈
(Ω1 \ Ω̃)× Λ,

0 = J(x− y)
(
|u(y)− uf (x)|p−2(u(y)− uf (x))

−|u(y)− uf (x)|
p−2(u(y)− uf (x))

)
(u(y)− u(y))

= J(x− y)
(
|u(y)− (uf (x)− λ)|p−2(u(y)− (uf (x)− λ))

−|u(y)− uf (x)|
p−2(u(y)− uf (x))

)
λ .

Now, since |r|p−2r − |s|p−2s = 0 if and only if r = s we conclude that

uf (x)− λ = uf (x) a.e. in Ω1 \ Ω̃,

which contradicts that Ω1 \ Ω̃ contains the non-null set Ω1 \ Ω (since f ≥ f).
Therefore (3.5) is false, and then u ≤ u a.e. in Ω. 2

For the energy functional

GJ
p,f (u) =

1

2p

∫
Ω

∫
Ω
J(x− y)|u(y)− u(x)|p dy dx

+
1

p

∫
Ω

∫
Ω1\Ω

J(x− y)|f(y)− u(x)|p dy dx,

we have the following result:

Theorem 3.3 Assume that p ≥ 2. Then, there exists a unique up ∈ Lp(Ω)
such that

GJ
p,f (up) = min{GJ

p,f (u) : u ∈ Lp(Ω)}. (3.6)

Moreover, up is the unique solution of the nonlocal Euler–Lagrange equation
BJ

p,f (up) = 0, and it has a continuous representative in Ω.

Proof. Let vn ∈ Lp(Ω) a minimizing sequence, that is,

m := inf{GJ
p,f (u) : u ∈ Lp(Ω)} = lim

n→+∞
GJ

p,f (vn).

14



Then, by the Poincaré inequality (3.2), we have

∥vn∥p ≤
(
1

λ

(
m+ 1 +

∫
Ω1\Ω

|f(y)|p dy
)) 1

p

.

Therefore, we can assume that vn ⇀ up weakly in L2(Ω). Hence, since the
functional GJ

p,f is weakly lower semi-continuous in L2(Ω), we get

GJ
p,f (up) ≤ lim inf

n→∞
GJ

p,f (vn) = m,

consequently, m = GJ
p,f (up) and (3.6) holds.

By results in [1], we know that the operator BJ
p,f is completely accretive and

verifies the range condition Lp(Ω) ⊂ Ran(I + BJ
p,f ). Let us see that

∂GJ
p,f = BJ

p,f

L2(Ω)
. (3.7)

Since GJ
p,f is convex an lower semi-continuous in L2(Ω), to prove (3.7) it is

enough to show that

BJ
p,f ⊂ ∂GJ

p,f . (3.8)

Let us see that (3.8) holds. Set v = BJ
p,f (u) and let w ∈ D(GJ

p,f ). Then∫
Ω
v(x)(w(x)− u(x)) dx

= −
∫
Ω

∫
Ω1

J(x− y)|uf (y)− u(x)|p−2(uf (y)− u(x)) dy(w(x)− u(x)) dx

= −
∫
Ω1

∫
Ω1

J(x− y)|uf (y)− uf (x)|p−2(uf (y)− uf (x)) dy(wf (x)− uf (x)) dx

=
1

2

∫
Ω1

∫
Ω1

J(x− y)|uf (y)− uf (x)|p−2(uf (y)− uf (x))

×(wf (y)− wf (x)− (uf (x)− uf (y))) dydx.

From here, using the numerical inequality

1

2
|r|p−2r(s− r) ≤ 1

2p
(|s|p − |r|p) ,

we obtain that

GJ
p,f (w)−GJ

p,f (u) =
1

2p

∫
Ω1

∫
Ω1

J(x− y)|wf (y)− wf (x)|p dy dx

− 1

2p

∫
Ω1

∫
Ω1

J(x− y)|uf (y)− uf (x)|p dy dx

≥
∫
Ω
v(x)(w(x)− u(x)) dx,
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from where it follows (3.8). The second part of the theorem is a consequence
of (3.7).

Now, BJ
p,f (up) = 0 can be written as∫

Ω1

J(x− y)φp((up)f (y)− up(x))dy = 0 ∀x ∈ Ω \N, meas(N) = 0,

for φp(r) := |r|p−2r. Then, the continuity of up in Ω follows by the above
conclusion and the Implicit Function Theorem ([12]): since J is continuous
and φp is continuous and increasing,

F (x, α) :=
∫
Ω1

J(x− y)φp((up)f (y)− α)dy

is continuous in Ω×R and for fixed x ∈ Ω it is decreasing in α. Therefore, by
[12, Theorem 1.1] F (x, α) = 0 has a unique solution α(x) continuous in Ω. In
fact, this can be proved in a direct way as follows. Since limα→−∞ F (x, α) =
+∞, limα→+∞ F (x, α) = −∞ and F (x, ·) is continuous and decreasing, there
exists a unique α(x) such that F (x, α(x)) = 0. Now α(x) is l.s.c. at x0 ∈ Ω;
indeed, take α < α(x0), therefore∫

Ω1

J(x− y)φp((up)f (y)− α)dy > 0.

Since J is continuous, there exists r > 0 such that∫
Ω1

J(x− y)φp((up)f (y)− α)dy > 0 ∀x ∈ Br(x0).

Therefore
α < α(x) ∀x ∈ Br(x0).

Similarly α(x) is u.s.c. Finally, since α(x) = up(x) in Ω \N we conclude that
up has a continuous representative. 2

From now on, we will suppose that minimizers up of GJ
p,f are continuous and

satisfy the Euler–Lagrange equation BJ
p,f (up) = 0 everywhere.

At this step we also rescale de kernel J in order to deal with dε instead of with
d1. So, let

Jε(z) =
1

εN
J
(
z

ε

)
.

We want to study the limit as p → ∞ of the minimizers uε
p of G

Jε
p,f . From now

on, we assume that f ∈ L∞(Ωε \ Ω).

In [1], we have proved that

lim
p→+∞

GJε
p,f = Gε

∞,f in the sense of Mosco, (3.9)
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where

Gε
∞,f (u) =



0 if |u(x)− u(y)| ≤ ε, for x, y ∈ Ω, |x− y| ≤ ε, and

|f(y)− u(x)| ≤ ε, for x ∈ Ω, y ∈ Ωε \ Ω, |x− y| ≤ ε,

+∞ in other case.

Now, by Hölder’s and Poincaré’s inequality (3.2), we have ∥uε
p∥2 ≤ C∥f∥∞ for

every p ≥ 2. Therefore, we can assume that

uε
p ⇀ v∞ weakly in L2(Ω) as p → +∞. (3.10)

Then, by (3.9), we have

Gε
∞,f (v∞) ≤ lim inf

p→∞
GJε

p,f (u
ε
p). (3.11)

Given v ∈ D(Gε
∞,f ), by the definition of Mosco convergence, there exists

vp ∈ D(GJ
p,f ), such that vp → v in L2(Ω), and such that

Gε
∞,f (v) ≥ lim sup

p→∞
GJε

p,f (vp). (3.12)

Now, by (3.6), GJε
p,f (u

ε
p) ≤ GJε

p,f (vp) for all p ≥ 2, and therefore, by (3.11) and
(3.12), we obtain that Gε

∞,f (v∞) ≤ Gε
∞,f (v), and consequently

Gε
∞,f (v∞) = min{Gε

∞,f (u) : u ∈ D(Gε
∞,f )}.

Therefore,
0 ∈ ∂Gε

∞,f (v∞). (3.13)

If we define

Kε
∞,f :=

u ∈ L2(Ω) :
|u(x)− u(y)| ≤ ε for x, y ∈ Ω, |x− y| ≤ ε, and

|f(y)− u(x)| ≤ ε for x ∈ Ω, y ∈ Ωε \ Ω, |x− y| ≤ ε

 ,

we have that the functional Gε
∞,f is given by the indicator function of Kε

∞,f ,
that is, Gε

∞,f = IKε
∞,f

. Therefore, the Euler-Lagrange equation (3.13) can be
written as

0 ∈ ∂IKε
∞,f

(v∞). (3.14)

Observe that Kε
∞,f is not empty if we assume that Ldε(f,Ωε \ Ω) ≤ 1. In this

case it is not difficult to see that

Ψ(f),Λ(f) ∈
{
u ∈ L2(Ω) : |uf (x)− uf (y)| ≤ dε(x, y), x, y ∈ Ωε

}
⊂ Kε

∞,f ,

(3.15)
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being Ψ(f) and Λ(f) the McShane-Whitney extensions.

Now, to study the Lipschitz extension problem we can always assume that f
satisfies

Ldε(f,Ωε \ Ω) = 1. (3.16)

In fact: given f : Ωε \ Ω → R Lipschitz continuous respect to the distance dε,

consider f̃(x) := f(x)
k
, k := Ldε(f,Ωε \Ω). Now, if v : Ωε → R is AMLEε(f̃ ,Ω),

then, u(x) := kv(x) is AMLEε(f,Ω).

Consequently, if f satisfies (3.16), on account of (3.14) and (3.15), (v∞)f ∈
Kε

∞,f .

Remark that for Ω convex, if f satisfies (3.16) then MLE(f,Ωε) = {uf : u ∈
Kε

∞,f}, and we conclude, directly, that (v∞)f ∈ MLE(f,Ωε).

Our aim is to see that (v∞)f is AMLEε(f,Ω). To this aim we need the following
result.

Lemma 3.4 Let δ > 0. There exists a unique solution u∞,δ of
−∆ε

∞u = δ in Ω,

u = f + δ in Ωε \ Ω,
(3.17)

where
∆ε

∞u(x) := sup
y∈Bε(x)

u(y) + inf
y∈Bε(x)

u(y)− 2u(x), (3.18)

and we have a bound of the form

u∞,δ(x)− C(Ω, ε)δ ≤ u∞(x) ≤ u∞,δ(x),

where u∞ is the solution of Problem (2.3).

Analogously, there is a unique solution u∞,−δ of
−∆ε

∞u = −δ in Ω,

u = f − δ in Ωε \ Ω,
(3.19)

and we have a bound of the form

u∞,−δ(x) + C(Ω, ε)δ ≥ u∞(x) ≥ u∞,−δ(x).

Proof. We use probabilistic arguments. The existence and uniqueness of u∞,δ

comes from the fact that it can be obtained as the value of the tug-of-war
game with running payoff δ and final payoff f(x) + δ, see [20], [16]. In fact,
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the equation verified by u∞,δ is just the dynamic programming principle that
holds for the value function of this game, see [15].

Hence we are left with the proof of the bounds. The fact that u∞(x) ≤ u∞,δ(x)
is almost immediate since both functions can be seen as values of the same
tug-of-war game in which the running payoff and the final payoff for u∞ are
strictly below than those for u∞,δ. In fact the rules of the Tug-of-War game
are the same; to obtain u∞,δ we use running payoff δ and final payoff f(x)+ δ,
while for u∞ we use zero running payoff and final payoff f(x). See [16] for a
detailed proof of a comparison principle. To see the other bound,

u∞,δ(x)− C(Ω, ε)δ ≤ u∞(x),

we argue as follows. Fix η > 0 and using the value function u∞,δ let us choose a
strategy for Player I in the game without running payoff and with final payoff
f (this will provide a lower bound for u). Player II follows any strategy and
Player I follows a strategy S0

I such that at xk−1 ∈ Ω he chooses to step to a
point that almost maximizes u∞,δ, that is, to a point xk ∈ Bε(xk−1) such that

u∞,δ(xk) ≥ sup
Bε(xk−1)

u∞,δ − η2−k.

We start from the point x0. The following inequality for the expectation holds:

Ex0

S0
I ,SII

[u∞,δ(xk) + kδ − η2−k | x0, . . . , xk−1]

≥ 1

2

 inf
Bε(xk−1)

u∞,δ + kδ − η2−k + sup
Bε(xk−1)

u∞,δ − η2−k + kδ − η2−k


≥ u∞,δ(xk−1) + (k − 1)δ − η2−(k−1),

where we have estimated the strategy of Player II by inf and used the fact that
u∞,δ verifies (3.17). Thus Mk = u∞,δ(xk) + kδ − η2−k is a submartingale and
consequently, if τ is the stopping time of the game, and S0

II is a quasioptimal
strategy for Player II in the game without running payoff and with final payoff
f , that is a strategy such that

inf
SII

Ex0

S0
I ,SII

[f(xτ )] ≥ Ex0

S0
I ,S

0
II
[f(xτ )]− η,

19



we deduce that

u∞(x0) = inf
SII

sup
SI

Ex0
SI ,SII

[f(xτ )]

≥ Ex0

S0
I ,S

0
II
[f(xτ )]− η

≥ Ex0

S0
I ,S

0
II
[f(xτ ) + δ + δτ − η2−τ − δ(τ + 1)]− η

= Ex0

S0
I ,S

0
II
[Mτ − δ(τ + 1)]− η

≥ lim sup
k→∞

Ex0

S0
I ,S

0
II
[Mτ∧k]− Ex0

S0
I ,S

0
II
[δ(τ + 1)]− η

≥ Ex0

S0
I ,S

0
II
[M0]− δEx0

S0
I ,S

0
II
[τ + 1]− η

= u∞,δ(x0)− 2η − δEx0

S0
I ,S

0
II
[τ + 1],

where we have used Fatou’s Lemma and the Optional Stopping Theorem for
the submartingale Mk. Now, we just observe that, under strategies S

0
I , S

0
II , the

game finishes if, in some moment, Player II obtains n = n(Ω, ε) consecutive
victories. Now, the expected number of tosses to get n consecutive victories
of Player II is a finite number N = N(n). Therefore

Ex0

S0
I ,S

0
II
[τ ] ≤ N = c(Ω, ε).

Consequently, we have

u∞(x0) ≥ u∞,δ(x0)− 2η − δC(Ω, ε),

and, since η was arbitrary, this implies the desired estimate. 2

Remark 3.5 From [19, Proposition 7.1] and [14, Theorem 1.9] (see also [5]),
the expected value for the stopping time for a standard ε-tug-of-war game, is
O(ε−2) (see also [16]). Since we are looking at this problem with a fixed ϵ > 0
we don’t need this more precise estimate.

Lemma 3.6 Let u ∈ L∞(Ω). Then,

lim
p→+∞

(
GJε

p,f (u)
) 1

p = Lε(uf ,Ω). (3.20)
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Proof. We have

(
GJε

p,f (u)
) 1

p =

(
1

2p

∫
Ω

∫
Ω
Jε(x− y)|u(y)− u(x)|p dy dx

+
1

p

∫
Ω

∫
Ωε\Ω

Jε(x− y)|uf (y)− u(x)|p dy dx
) 1

p

≤
(
(Lε(uf ,Ω))

p 1

2p

∫
Ω

∫
Ω
Jε(x− y) dy dx

+(Lε(uf ,Ω))
p 1

p

∫
Ω

∫
Ωε\Ω

Jε(x− y) dy dx

) 1
p

= Lε(uf ,Ω)

(
1

2p

∫
Ω

∫
Ω
Jε(x− y) dy dx+

1

p

∫
Ω

∫
Ωε\Ω

J(x− y) dy dx

) 1
p

.

Hence,

lim sup
p→+∞

(
GJε

p,f (u)
) 1

p ≤ Lε(uf ,Ω).

On the other hand, suppose that

α := lim inf
p→+∞

(
GJε

p,f (u)
) 1

p < Lε(uf ,Ω).

Let α̃ be such that α < α̃ < Lε(uf ,Ω). Then, there exists a set A ⊂ {(x, y) ∈
Ω× Ωε : |x− y| ≤ ε}, with positive measure, such that |uf (x)− uf (y)| > α̃ if
(x, y) ∈ A. Consequently,

(
GJε

p,f (u)
) 1

p ≥
(

1

2p

∫
A
Jε(x− y)|uf (y)− uf (x)|p dy dx

) 1
p

> α̃

(
1

2p

∫
A
Jε(x− y) dy dx

) 1
p

,

from where it follows the contradiction

α = lim inf
p→+∞

(
GJε

p,f (u)
) 1

p ≥ α̃ > α.

Therefore,

Lε(uf ,Ω) ≤ lim inf
p→+∞

(
GJε

p,f (u)
) 1

p ,

and we have concluded the proof. 2

In the next result we denote M ε
p := GJε

p,f (u
ε
p) = min{GJε

p,f (u) : u ∈ Lp(Ω)}.

Theorem 3.7 Let f ∈ L∞(Ωε\Ω), Ldε(f,Ωε\Ω) = 1, and let uε
p a minimizer

of GJε
p,f , p ≥ 2. Then, there exists a sequence pi → +∞, as i → +∞, such that

uε
pi
⇀ v∞ ∈ L∞(Ω) in Lq(Ω) as i → +∞, (3.21)
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(M ε
p )

1/p → inf
u∈L∞(Ω)

Lε(uf ,Ω) as p → +∞, (3.22)

inf
u∈L∞(Ω)

Lε(uf ,Ω) = Lε((v∞)f ,Ω), (3.23)

and (v∞)f is AMLEε(f,Ω). Moreover, uε
p → v∞ pointwise and hence strongly

in any Lq(Ω).

Proof. Set M ε
∞ := infu∈L∞(Ω) Lε(uf ,Ω). Let v ∈ L∞(Ω) such that Lε(vf ,Ω) ≤

M ε
∞ + δ. Then, for p large enough,

(M ε
p )

1/p ≤ GJε
p,f (v)

1/p

≤ Lε(vf ,Ω)

(
1

2p

∫
Ω

∫
Ω
Jε(x− y) dy dx+

1

p

∫
Ω

∫
Ωε\Ω

Jε(x− y) dy dx

) 1
p

≤ (M ε
∞ + δ)

(
1

p

∫
Ωε×Ωε

J(x− y)dxdy

)1/p

≤ M ε
∞ + 2δ,

and consequently
lim sup

p
M1/p

p ≤ M∞.

Fix now q ≥ 2. For p > q, by Holder inequality,

q1/qGJε
q,f (u

ε
p)

1/q ≤ (2p)1/p(M ε
p )

1/p
(∫

Ωε×Ωε

Jε(x− y)dxdy
)1/q−1/p

.

Therefore, by Poincare’s inequality (3.2), there exist a subsequence pi such
that, for any q ≥ 2,

uε
pi
⇀ v∞ in Lq(Ω) as i → +∞, (3.24)

v∞ ∈ L∞(Ω). Moreover, by the lower semicontinuity of GJε
q,f ,

GJε
q,f (v∞)1/q ≤ lim sup

p
(M ε

p )
1/p

(
1

q

∫
Ωε×Ωε

Jε(x− y)dxdy

)1/q

.

Letting now q to +∞, and having in mind Lemma 3.6, we get

Lε((v∞)f ,Ω) ≤ lim sup
p

(M ε
p )

1/p ≤ M ε
∞,

and we have proved (3.21), (3.22) and (3.23).

Let us prove now that (v∞)f is AMLEε(f,Ω). By Theorem 2.3 we need to
prove that v∞ coincide with the unique solution u∞ of Problem (2.3). To this
end we want to use comparison arguments. Take u∞,δ as in Lemma 3.4 and
regularize it as follows:

uθ
∞,δ(x) = u∞,δ ∗ ρθ(x),
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where ρθ is a usual mollifier. Here the convolution is taken in the whole Ωε.
As u∞,δ is a solution of (3.17), we get that uθ

∞,δ is a continuous function that,
for θ small, verifies pointwise

−∆ε
∞u ≥ δ

2
in Ω,

u ≥ f + δ
2

in Ωε \ Ω.
(3.25)

Now, we claim that there exists pδ,θ, pδ,θ → +∞ as δ, θ → 0, such that for
every p ≥ pδ,θ the following inequality holds:∫

Ωε

Jε(x− y)φp((u
θ
∞,δ)f (y)− uθ

∞,δ(x))dy ≤ 0 ∀x ∈ Ω,

being φp(r) := |r|p−2r. To see this fact we argue by contradiction. Assume
that there exists pn → ∞ and xn ∈ Ω such that∫

Ωε

Jε(xn − y)φpn((u
θ
∞,δ)f (y)− uθ

∞,δ(xn))dy > 0.

We rewrite this as∫
Ωε∩{(uθ

∞,δ
)f (y)>(uθ

∞,δ
)f (xn)}

Jε(xn − y)φpn((u
θ
∞,δ)f (y)− uθ

∞,δ(xn))dy

>
∫
Ωε∩{(uθ

∞,δ
)f (y)<(uθ

∞,δ
)f (xn)}

Jε(xn − y)φpn((u
θ
∞,δ)f (xn)− uθ

∞,δ(y))dy.

Thus,

(∫
Ωε∩{(uθ

∞,δ
)f (y)>(uθ

∞,δ
)f (xn)}

Jε(xn − y)φpn((u
θ
∞,δ)f (y)− (uθ

∞,δ(xn))dy

) 1
pn−1

>

(∫
Ωε∩{(uθ

∞,δ
)f (y)<(uθ

∞,δ
)f (xn)}

Jε(xn − y)φpn(u
θ
∞,δ(xn)− (uθ

∞,δ)f (y))dy

) 1
pn−1

.

Then, passing to the limit, using that Ω is compact (hence we can assume
that xn → x0) and that uθ

∞,δ is a uniformly continuous function that does not
depend on n, we obtain

sup
y∈Bε(x0)

uθ
∞,δ(y) + inf

y∈Bε(x0)
uθ
∞,δ(y)− 2uθ

∞,δ(x0) ≥ 0,

a contradiction with the fact that uθ
∞,δ verifies (3.25).

Therefore uθ
∞,δ is a supersolution of the problem for every p ≥ pδ,θ and, using

the comparison principle given in Lemma 3.2, we have uε
p ≤ uθ

∞,δ for every
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p ≥ pδ,θ. Therefore, letting p → ∞, we get v∞ ≤ uθ
∞,δ. Now, we let θ → 0 and

use the bounds in Lemma 3.4 to obtain

v∞ ≤ u∞(x) + Cδ.

Finally, we take δ → 0 and conclude that

v∞ ≤ u∞.

A symmetric argument using a regularization of u∞,−δ as subsolution proves
the reverse inequality. Hence we have that

v∞ = u∞.

In addition, since

uθ
∞,−δ ≤ uε

p ≤ uθ
∞,δ ∀p ≥ pδ,θ,

and uθ
∞,−δ, u

θ
∞,δ → u∞ pointwise as θ, δ → 0, we have

uε
p → v∞ pointwise as p → +∞.

2

4 Viscosity solutions

The solutions of problem (1.2) are usually understood in the viscosity sense,
nevertheless, in Theorem 2.3, we have understood the solution of Problem
(2.3) in the pointwise sense: u ∈ L∞(Ωε) is a solution of (2.3) if

sup
y∈Bε(x)

u(y) + inf
y∈Bε(x)

u(y)− 2u(x) = 0 for all x ∈ Ω,

u(x) = f(x) for all x ∈ Ωε \ Ω.

In this section we will see that this concept implies also the viscosity one.

Since the solutions of Problem (2.3) are discontinuous in general (see the
Appendix), to work with viscosity solutions we need to use the generalized
definition of discontinuous viscosity solutions. Let us consider the upper and
lower semi-continuous envelopes of u in Ωε defined as

u∗(x) := lim sup
y∈Ωε,y→x

u(y) and u∗(x) := lim inf
y∈Ωε,y→x

u(y),
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respectively. Then, we say that u ∈ L∞(Ωε) is a viscosity subsolution of
problem (2.3) if u(x) = f(x) for almost all x ∈ Ωε \ Ω and −∆ε

∞ϕ(x0) ≤
0 when ϕ ∈ C(Ωε), ϕ(x0) = u∗(x0) and u∗ − ϕ achieves a maximum at
x0 ∈ Ω. Likewise, u ∈ L∞(Ωε) is a viscosity supersolution of problem (2.3)
if u(x) = f(x) for almost all x ∈ Ωε \Ω and −∆ε

∞ϕ(x0) ≥ 0 when ϕ ∈ C(Ωε),
ϕ(x0) = u∗(x0) and u∗ − ϕ achieves a minimum at x0 ∈ Ω. We say that u is
a viscosity solution of problem (2.3) if u is both a viscosity subsolution and a
viscosity supersolution.

Proposition 4.1 Let u ∈ L∞(Ωε). We have

(i) If −∆ε
∞u(x) ≤ 0 for all x ∈ Ω, then −∆ε

∞u∗(x) ≤ 0 for all x ∈ Ω and
consequently u is a viscosity subsolution of Problem (2.3).

(ii) If −∆ε
∞u(x) ≥ 0 for all x ∈ Ω, then −∆ε

∞u∗(x) ≥ 0 for all x ∈ Ω and
consequently u is a viscosity supersolution of Problem (2.3).

(iii) If −∆ε
∞u(x) = 0 for all x ∈ Ω, then u is a viscosity solution of Problem

(2.3).

Proof. We are going to prove (i), the proof of (ii) is similar, and (iii) is a
consequence of (i) and (ii).

Fix x0 ∈ Ω, and let xk ∈ Ω such that xk → x0 and u∗(x0) = limk→∞ u(xk).
Fix 0 < δ < ε

2
, and select for each k ∈ N, point yk, zk ∈ Bε(xk) such that

sup
y∈Bε(xk)

u(y) ≤ u(yk) + δ, inf
z∈Bε(xk)

u(z) ≥ u(zk)− δ. (4.1)

By taking subsequences, we may assume that yk → y ∈ Bε(x0) and zk → z ∈
Bε(x0). Then,

sup
x∈Bε(x0)

u∗(x)− u∗(x0) ≥ u∗(y)− u∗(x0) ≥ lim sup
k→+∞

(u(yk)− u(xk))

≥ lim sup
k→+∞

 sup
y∈Bε(xk)

u(y)− δ − u(xk)

 .

Sending δ → 0+, we get

sup
x∈Bε(x0)

u∗(x)− u∗(x0) ≥ lim sup
k→+∞

 sup
y∈Bε(xk)

u(y)− u(xk)

 . (4.2)

On the other hand,

u∗(x0)− inf
x∈Bε(x0)

u∗(x) ≤ u∗(x0)− u∗(z) ≤ lim inf
k→+∞

(u(xk)− u(zk))

≤ lim inf
k→+∞

(
u(xk)− inf

z∈Bε(xk)
u(z) + δ

)
.
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Sending δ → 0+, we get

u∗(x0)− inf
x∈Bε(x0)

u∗(x) ≤ lim inf
k→+∞

(
u(xk)− inf

z∈Bε(xk)
u(z)

)
. (4.3)

From (4.2) and (4.3), and having in ind that by hypothesis we have−∆ε
∞u ≤ 0,

we obtain that

−∆ε
∞u∗(x0) = −

 sup
x∈Bε(x0)

u∗(x)− u∗(x0)

−
(

inf
x∈Bε(x0)

u∗(x)− u∗(x0)

)

≤ lim inf
k→+∞

u(xk)− sup
y∈Bε(xk)

u(y) + u(xk)− inf
z∈Bε(xk)

u(z)


= lim inf

k→+∞
(−∆ε

∞u(xk)) ≤ 0.

This ends the proof. 2

Problem (2.3) has not continuous solutions even for continuous boundary data,
however assuming the continuity of the data and the continuity of the solution
at the boundary, adapting an argument due to Le Gruyer and J. C. Archer
[13] (see also [4]), we obtain the following result.

Proposition 4.2 Let f : Ωε \Ω → R be a continuous function. If u : Ωε → R
is a solution of 

−∆ε
∞u = 0 in Ω,

u = f on Ωε \ Ω,

and we assume that u∗(x) = u∗(x) = f(x) for all x ∈ Ωε \ Ω, then u is
continuous in Ωε.

Proof. By Lemma 4.1, we have

−∆ε
∞u∗(x) ≤ 0 ≤ −∆ε

∞u∗(x) for all x ∈ Ω. (4.4)

Set α := sup{u∗(x)−u∗(x) : x ∈ Ω}. To prove the result it is enough to show
that α = 0. Arguing by contradiction, we suppose α > 0. By the upper semi-
continuity of the function u∗ − u∗ and having in mind that u∗(x) = u∗(x) =
f(x) for all x ∈ Ωε \ Ω, we have the set

A := {x ∈ Ωε : (u∗ − u∗)(x) = α}

is nonempty, closed and contained in Ω. Define B := {x ∈ A : u∗(x) =
maxA u∗}. By the upper semi-continuity of the function u∗, B is nonempty.
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Then, take x0 ∈ ∂B. Since x0 ∈ A, we have

(u∗ − u∗)(x0) ≥ sup
x∈Bε(x0)

(u∗ − u∗)(x) ≥ inf
x∈Bε(x0)

u∗(x)− inf
x∈Bε(x0)

u∗(x). (4.5)

First suppose that

u∗(x0) = sup
x∈Bε(x0)

u∗(x).

Then, since −∆ε
∞u∗(x0) ≤ 0, we have

u∗(x0) = inf
x∈Bε(x0)

u∗(x),

and by (4.5) we deduce that

u∗(x0) = inf
x∈Bε(x0)

u∗(x).

Then, since −∆ε
∞u∗(x0) ≥ 0, we obtain that

u∗(x0) = sup
x∈Bε(x0)

u∗(x).

Therefore, u∗ and u∗ are constant in Bε(x0), contradicting our assumption
that x0 ∈ ∂B.

It remains to arrive to a contradiction in the case

u∗(x0) < sup
x∈Bε(x0)

u∗(x).

By the upper semi-continuity of the function u∗ there is y0 ∈ Bε(x0) such that

u∗(y0) = sup
x∈Bε(x0)

u∗(x).

Since u∗(y0) > u∗(x0) and x0 ∈ B, we see that y0 ̸∈ A. Then,

u∗(y0)− u∗(y0) < α = u∗(x0)− u∗(x0).

Hence,

sup
x∈Bε(x0)

u∗(x)− u∗(x0) ≥ u∗(y0)− u∗(x0)

> u∗(y0)− u∗(x0) = sup
x∈Bε(x0)

u∗(x)− u∗(x0).
(4.6)

Combining (4.5) and (4.6), we obtain −∆ε
∞u∗(x0) < −∆ε

∞u∗(x0), which con-
tradicts (4.4), and the proposition follows. 2
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5 Appendix: Examples

In this appendix we collect some concrete examples that are illustrative of the
difficulties of the problem. In the first example we see that there exists f for
which the AMLE1 of f is not AMLE of f in the sense of Definition 1.1 (in
fact, there is no AMLE of f in that sense).

Example 5.1 For ε = 1, Ω = (0, 1
2
) and f = 0χ(−1,0] + 1χ[ 1

2
, 3
2
), for any z

defined in (0, 1
2
) such that z(x) ∈ [0, 1], f + zχ(0, 1

2
) ∈ MLE(f,Ω1). Between all

of them, u = f + 1
2
χ
(0, 1

2
) is the unique AMLE1(f,Ω) (it is very easy to prove

that it is solution of (2.3)). On the other hand, there is not AMLE of f in the
sense of Definition 1.1. In fact, if u is AMLE of f , then if B = (−1

2
, 1
2
), the

function g = 0χ(−1, 1
2
) + 1χ( 1

2
, 3
2
) ∈ MLE(f,Ω1) and g = u in Ω1 \ B, therefore

Ld1(u,B) ≤ Ld1(g,B) = 0, and, hence, u is constant in B, that is, u = 0 in
(0, 1

2
). Similarly, we can prove that u = 1 in (0, 1

2
) by taking B = (0, 1) and

g = 0χ(−1,0) + 1χ(0, 3
2
), which gives a contradiction.

Example 5.2 For ε = 1, Ω = (0, 2) and f = xχ(−1,0] + 2χ[2,3), the unique
solution u of (2.3) can be explicitly found as follows. First, we observe that u
is increasing in x. Indeed, Since Ld1(f,Ω1 \ Ω) = 1, it is easy to see that the
McShane-Whitney extensions are given in Ω by

Ψ(f)(x) = x, Λ(f)(x) = 0χ(0,1)(x) + 1χ[1,2)(x).

Then, if u is the solution of (2.3), since Ω is convex, by Theorem 2.3, u ∈
MLE(f,Ω1) and therefore

0χ(0,1)(x) + 1χ[1,2)(x) ≤ u(x) ≤ x ∀x ∈ (0, 2). (5.1)

By (5.1), for any x ∈ (0, 1) we have

u(x) =
1

2
x+

1

2
sup

y∈[1,x+1]
u(y),

so it is nondecreasing in this interval. For any x ∈ (1, 2) we have

u(x) =
1

2
inf

y∈[x−1,1]
u(y) + 1,

so it also is nondecreasing in this interval. So, taking into account again (5.1),
u is nondecreasing in all Ω = (0, 2). Therefore, for any x ∈ (0, 1) we have

u(x+ 1) = 2u(x) + 1− x
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and for any z ∈ (1, 2) we have

2 = u(z + 1) = 2u(z)− u(z − 1)

but taking z − 1 = x we get,

2 = 2u(x+ 1)− u(x) = 3u(x) + 2− 2x

and we conclude that

u(x) =
2

3
x, x ∈ (0, 1).

This implies

u(x) = 1 +
1

3
(x− 1), x ∈ (1, 2).

Finally, u(1) = 1.

Note that u∗(2) = 4
3
< 2 = u∗(2) = f(2) and u is discontinuous at x =

1, therefore, the assumption u∗(x) = u∗(x) = f(x) for all x ∈ Ωε \ Ω in
Proposition 4.2 is necessary for the continuity of u on Ω.

Example 5.3 For ε = 3/2, Ω = (0, 2) and f = xχ(− 3
2
,0] + 2χ[2, 7

2
), the unique

solution u of (2.3) can also be explicitly found as follows. Since Ld 3
2

(f,Ω 3
2
\Ω) =

1, it is easy to see that the McShane-Whitney extensions are given in Ω by

Ψ(f)(x) = x, Λ(f)(x) = −1χ(0, 1
2
)(x) +

1

2
χ
[ 1
2
,2)(x).

Then, if u is the solution of (2.3), since Ω is convex, by Theorem 2.3, u ∈
MLE(f,Ω 3

2
) and therefore

−1χ(0, 1
2
)(x) +

1

2
χ
( 1
2
,2)(x) ≤ u(x) ≤ x ∀x ∈ (0, 2). (5.2)

By (5.2), for any x ∈ (0, 1/2) we have

u(x) =
1

2

(
x− 3

2

)
+

1

2
sup

y∈[ 1
2
,x+ 3

2
]

u(y),

so it is nondecreasing in this interval. For any x ∈ (1/2, 2) we have

u(x) =
1

2
inf

y∈[x− 3
2
, 1
2
]
u(y) + 1,

so it also is nondecreasing in this interval. So, taking into account again (5.2),
u is nondecreasing in all Ω = (0, 2). Consequently, we have

u(x) =
1

2

(
x− 3

2

)
+

1

2
u
(
x+

3

2

)
if x ∈ (0, 1/2) (5.3)
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and

u(x) =
1

2
u
(
x− 3

2

)
+ 1 if x ∈ (1/2, 2). (5.4)

Now, if x ∈ (3/2, 2), since x− 3
2
∈ (0, 1/2), by (5.3) and (5.4), we have

u(x) =
1

2

(
1

2
(x− 3) +

1

2
u(x)

)
+ 1,

from where it follows that

u(x) =
1

3
+

1

3
x, x ∈ (3/2, 2).

Similarly, if x ∈ (0, 1/2), since x+ 3
2
∈ (3/2, 2), by (5.3) and (5.4), we have

u(x) =
1

2

(
x− 3

2

)
+

1

2

(
1

2
u(x) + 1

)
,

from where it follows that

u(x) =
2

3
x− 1

3
, x ∈ (0, 1/2).

Let us see now how u is in [1
2
, 3
2
). If x ∈ [1

2
, 7
6
), since infB 3

2
(x) u(y) is taken in

x− 3
2
, we have

u(x) =
1

2

(
x− 3

2

)
+

1

2
2 =

1

2
x+

1

4
.

And, if x ∈ [7
6
, 3
2
) since infB 3

2
(x) u(y) = −1

3
, we have

u(x) =
5

6
, x ∈ [7/6, 3/2).

Finally u(1/2) = 1/2. And we have arrived at

u(x) =



2
3
x− 1

3
, x ∈ (0, 1/2),

1
2
x+ 1

4
, x ∈ [1/2, 7/6),

5
6
, x ∈ [7/6, 3/2),

1
3
+ 1

3
x, x ∈ [3/2, 2).

Observe that u(x) < 0 for 0 < x < 1
2
; u is increasing in Ω but not in the whole

Ωε.
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