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In this paper we study the questions of existence and uniqueness of solutions for equa-
tions of type −diva(x,Du)+ γ(u) � φ, posed in an open bounded subset Ω of R

N , with
nonlinear boundary conditions of the form a(x,Du) ·η+β(u) � ψ. The nonlinear elliptic
operator diva(x,Du) modeled on the p-Laplacian operator ∆p(u) = div(|Du|p−2Du),
with p > 1, γ and β maximal monotone graphs in R

2 such that 0 ∈ γ(0) ∩ β(0),
R �= D(γ) ⊂ D(β) and the data φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). Since D(γ) �= R, we are
dealing with obstacle problems. For this kind of problems the existence of weak solution,
in the usual sense, fails to be true for nonhomogeneous boundary conditions, so a new
concept of solution has to be introduced.
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1. Introduction

The purpose of this paper is to establish the existence and uniqueness of solutions
for a degenerate elliptic obstacle problem with nonlinear boundary condition of the
form

(Sγ,βφ,ψ)

{
−diva(x,Du) + γ(u) � φ in Ω,

a(x,Du) · η + β(u) � ψ on ∂Ω,

where Ω is a bounded domain in RN with Lipschitz boundary ∂Ω, the function
a : Ω × RN → RN is a Carathéodory function satisfying the classical Leray–Lions
conditions (see Sec. 3.1), η is the unit outward normal on ∂Ω, φ ∈ L1(Ω), ψ ∈
L1(∂Ω) and the nonlinearities γ and β are maximal monotone graphs in R2 (see,
e.g. Ref. 10) such that 0 ∈ γ(0) ∩ β(0) and

R �= D(γ) ⊂ D(β).

Notice that the general nonlinear diffusion operators of Leray–Lions type, dif-
ferent from the Laplacian, appear when one deals with non-Newtonian fluids (see,
e.g. Ref. 4).

Let us remark that since β may be multivalued, this allows to study many non-
linear fluxes on the boundary that occur in some problems in Mechanics and Physics
(see, e.g. Ref. 13 or 8). For instance, in the Signorini problem (see, e.g. Refs. 12, 14
and 15) which appears in elasticity and corresponds to the monotone graph

β(r) =




∅ if r < 0,

]−∞, 0] if r = 0,

0 if r > 0,

in problems of optimal control of temperature and in the modelling of semiperme-
ability (see Ref. 13), which corresponds in some cases to the monotone graph

β(r) =




∅ if r < a,

]−∞, 0] if r = a,

0 if r ∈ ]a, b [,

[0,+∞[ if r = b,

∅ if r > b,

where a < 0 < b.
Observe that if D(γ) is not bounded, we are dealing with a one-obstacle problem

and with a two-obstacle problem if D(γ) is bounded. These problems are also called
unilateral problems in the literature. Obstacle problems appear in different physical
context, for instance, in deformation of membrane constrained by an obstacle, in
bending of elastic isotropic homogeneous plat over an obstacle and in cavitation
problems in hydrodynamic lubrication. Notice also that some free boundary prob-
lems fall into this scope by using Baiocchi transformation (see Ref. 5), for more
details concerning physical applications we refer to Ref. 17 or 13. We want to stress
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that for this kind of problems the existence of weak solution, in the usual sense,
fails to be true for nonhomogeneous boundary conditions.

In the particular case a(x, ξ) = ξ, the problem (Sγ,βφ,ψ) reads

(Lγ,βφ,ψ)

{
−∆u+ γ(u) � φ in Ω,

∂ηu+ β(u) � ψ on ∂Ω,

where ∂ηu simply denotes the outward normal derivative of u. In the homogeneous
case, ψ ≡ 0, the pioneering works are the paper by Brezis,8 in which problem (Lγ,βφ,0 )
is studied for γ the identity, β a maximal monotone graph and φ ∈ L2(Ω), and the
paper by Brezis and Strauss,9 in which problem (Lγ,βφ,0 ) is studied for φ ∈ L1(Ω)
and γ, β continuous nondecreasing functions from R into R with γ′ ≥ ε > 0. These
works were extended by Bénilan, Crandall and Sacks6 to the case of any γ and β

maximal monotone graphs in R2 such that 0 ∈ γ(0)∩β(0). Among other results, in
Ref. 6 it is proved that for any φ ∈ L1(Ω) satisfying some natural range condition
(see (2.1)) there exists a unique, up to a constant for u, weak solution of (Lγ,βφ,0 ),
i.e. [u, z, w] ∈ W 1,1(Ω)×L1(Ω)×L1(∂Ω), z(x) ∈ γ(u(x)) a.e. in Ω, w(x) ∈ β(u(x))
a.e. in ∂Ω, such that∫

Ω

Du ·Dv +
∫

Ω

zv +
∫
∂Ω

wv =
∫

Ω

φv, (1.1)

for all v ∈ W 1,∞(Ω). In particular, if φ ∈ L2(Ω), then z ∈ L2(Ω), w ∈ L2(∂Ω),
u ∈ H1(Ω), and (1.1) is fulfilled for any v ∈ H1(Ω).

In Refs. 2 and 3, we extend the results of Ref. 6 by proving the existence and
uniqueness of weak (or entropy) solutions, for the general nonhomogeneous problem
(Sγ,βφ,ψ) in the following two cases:

(a) D(γ) = R and, D(β) = R or div a(x,Du) = ∆p(u),
(b) ψ ≡ 0 and, D(β) = R or div a(x,Du) = ∆p(u).

Recall that in these papers the concept of weak solution, for which existence and
uniqueness are proved, is a triple of functions [u, z, w] ∈W 1,p(Ω)×L1(Ω)×L1(∂Ω)
such that z(x) ∈ γ(u(x)) a.e. in Ω, w(x) ∈ β(u(x)) a.e. in ∂Ω, and∫

Ω

a(x,Du) ·Dv +
∫

Ω

zv +
∫
∂Ω

wv =
∫

Ω

φv +
∫
∂Ω

ψv,

for all v ∈ L∞(Ω) ∩W 1,p(Ω).
We want to point out that the nonhomogeneous problem, ψ �≡ 0, is quite dif-

ferent from the homogeneous one, because even if the range condition is satisfied,
(Sγ,βφ,ψ) may be ill-posed. For instance, let us consider the obstacle problem

(Lγ,0φ,ψ)

{
−∆u+ γ(u) � φ in Ω,

∂ηu = ψ on ∂Ω,

where γ is a maximal monotone graph with D(γ) = [0, 1] and 0 ∈ γ(0), φ ∈ L1(Ω),
φ ≤ 0 a.e. in Ω, and ψ ∈ L1(∂Ω), ψ ≤ 0 a.e. in ∂Ω. If we assume there exists a weak
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solution [u, z, w] of problem (Lγ,0φ,ψ), then w = 0 and z ∈ γ(u). Therefore 0 ≤ u ≤ 1
a.e. in Ω, and for any v ∈ H1(Ω) ∩ L∞(Ω),∫

Ω

Du ·Dv +
∫

Ω

zv =
∫

Ω

φv +
∫
∂Ω

ψv.

Taking v = u, since u ≥ 0, we get

0 ≤
∫

Ω

|Du|2 +
∫

Ω

zu =
∫

Ω

φu +
∫
∂Ω

ψu ≤ 0.

Hence,
∫
Ω
|Du|2 = 0, so u is constant and∫

Ω

zv =
∫

Ω

φv +
∫
∂Ω

ψv,

for any v ∈ H1(Ω)∩L∞(Ω), in particular for any v ∈ H1
0 (Ω)∩L∞(Ω). Consequently,

φ = z a.e. in Ω, and ψ must be 0 a.e. in ∂Ω. Hence in this case, where D(γ) =
[0, 1] � D(β) = R, the domain of γ creates some obstruction phenomena for the
existence of weak solutions when ψ ≤ 0, ψ �≡ 0.

In order to overcome the above problem, the main goal of this paper is to get
a new notion of solution for which the existence and uniqueness can be obtained
for nonhomogeneous boundary conditions in the case D(γ) �= R. This new notion
of solution coincides with the concept of weak solution introduced in Ref. 3 in the
cases (a) and (b).

To give an idea of this new concept of solution, let us consider again the problem
(Lγ,0φ,ψ) introduced above with φ ∈ Lp

′
(Ω) and ψ ∈ Lp

′
(∂Ω) and D(γ) = [0, 1]. In

order to get existence it is usual to use the approximate problems

(Lγr,0
φ,ψ )

{
−∆ur + γr(ur) = φ in Ω,

∂ηur = ψ on ∂Ω,

where γr is the Yosida approximation of γ. Now, thanks to Ref. 3, the estimates we
can obtain for γr(ur) are essentially in L1(Ω) (see Theorem 3.1) and in H1(Ω) for
ur. Therefore we have to pass to the limit weakly-star in the space of measures for
γr(ur) and weakly in H1(Ω) for ur. So that the standard analysis for this kind of
problems allows us to obtain a couple [u, µ], where u ∈ H1(Ω), µ is a diffuse Radon
measure in RN concentrated in Ω and∫

Ω

Du ·Dv +
∫

Ω

v dµ+
∫
∂Ω

v dµ =
∫

Ω

φv +
∫
∂Ω

ψv ∀ v ∈ H1(Ω) ∩ L∞(Ω).

In a first step, we prove that the Radon–Nykodym decomposition of µ relatively
to the Lebesgue measure, µ = µa + µs, is such that µa ∈ γ(u) a.e. in Ω and µs is
concentrated on {x ∈ Ω; u(x) = 0} ∪ {x ∈ Ω; u(x) = 0} with

µs ≤ 0 on {x ∈ Ω; u(x) = 0} and µs ≥ 0 on {x ∈ Ω; u(x) = 1}.
Then, an accurate analysis allows us to prove moreover that µs is concentrated on
∂Ω and it is absolutely continuous with respect to an integrable function on the
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boundary, which implies that µs ∈ L1(∂Ω). So, [u, µa, µs] is a weak solution, in the
usual sense, of the problem{

−∆u+ γ(u) � φ in Ω,

Du · η + ∂II[0,1](u) � ψ on ∂Ω,

where, for an interval I ⊂ R, ∂III denotes the subdifferential of the indicator func-
tion of I,

III(r) =

{
0 if r ∈ I,

+∞ if r /∈ I,

which is the maximal monotone graph defined by D(∂III) = I and ∂III(r) = 0
for r ∈ int(I). For instance, if D(γ) = [a, b], then

∂IID(γ)
(r) =




]−∞, 0] if r = a,

0 if a < r < b,

[0,+∞[ if r = b.

In other words, the boundary condition needs to be fulfilled in the following sense

∂ηu = ψ on [0 < u < 1],

∂ηu ≥ ψ on [u = 1],

∂ηu ≤ ψ on [u = 0].

(1.2)

The last two conditions of (1.2) disappear whenever the data φ and ψ are such that
the sets [u = 1] and [u = 0] are negligible. This is the case, for instance, if ψ ≡ 0
(see Proposition 2.1 for more general cases).

After a complete analysis of the general problem (Sγ,βφ,ψ) when D(γ) ⊂ D(β), we
get the right notion of solution which coincides with the concept of weak solution
for the problem {−div a(x,Du) + γ(u) � φ in Ω,

a(x,Du) · η + β(u) + ∂IID(γ)(u) � ψ on ∂Ω.

Definition 1.1. Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). A triple of functions [u, z, w] ∈
W 1,p(Ω)×L1(Ω)×L1(∂Ω) is a generalized weak solution of problem (Sγ,βφ,ψ) if z(x) ∈
γ(u(x)) a.e. in Ω, w(x) ∈ β(u(x)) + ∂IID(γ)(u(x)) a.e. on ∂Ω, and∫

Ω

a(x,Du) ·Dv +
∫

Ω

zv +
∫
∂Ω

wv =
∫

Ω

φv +
∫
∂Ω

ψv,

for all v ∈ L∞(Ω) ∩W 1,p(Ω).

It is clear that a weak solution is a generalized weak solution. Moreover, thanks
to the results in Ref. 3, the two concepts coincide in cases (a) and (b).

The aim of this paper is to prove the existence and uniqueness of solutions in
the sense of Definition 1.1 for (Sγ,βφ,ψ) in the case R �= D(γ) ⊂ D(β).
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Let us briefly summarize the content of the paper. In Sec. 2, we establish the
main results. In Sec. 3.1 we fix the notation and give some preliminaries. Finally,
in the last section we give the proofs of the results.

2. Main Results

As in Ref. 3, in order to get the existence of a generalized weak solution, let us
introduce the following spaces:

V 1,p(Ω) :=
{
φ ∈ L1(Ω) : ∃M > 0 s.t.

∫
Ω

|φv| ≤M‖v‖W 1,p(Ω) ∀ v ∈W 1,p(Ω)
}

and

V 1,p(∂Ω) :=
{
ψ ∈ L1(∂Ω) : ∃M > 0 s.t.

∫
∂Ω

|ψv| ≤M‖v‖W 1,p(Ω)∀ v∈ W 1,p(Ω)
}

V 1,p(Ω) is a Banach space endowed with the norm

‖φ‖V 1,p(Ω) := inf
{
M > 0 :

∫
Ω

|φv| ≤M‖v‖W 1,p(Ω) ∀ v ∈W 1,p(Ω)
}

and V 1,p(∂Ω) is a Banach space endowed with the norm

‖ψ‖V 1,p(∂Ω) := inf
{
M > 0 :

∫
∂Ω

|ψv| ≤M‖v‖W 1,p(Ω) ∀ v ∈ W 1,p(Ω)
}
.

Observe that, Sobolev embeddings and Trace theorems imply, for 1 ≤ p < N ,

Lp
′
(Ω) ⊂ L(Np/(N−p))′(Ω) ⊂ V 1,p(Ω)

and

Lp
′
(∂Ω) ⊂ L((N−1)p/(N−p))′(∂Ω) ⊂ V 1,p(∂Ω).

Also,

V 1,p(Ω) = L1(Ω) and V 1,p(∂Ω) = L1(∂Ω) when p > N,

Lq(Ω) ⊂ V 1,N(Ω) and Lq(∂Ω) ⊂ V 1,N (∂Ω) for any q > 1.

Let us state the following notation. For a maximal monotone graph θ in R×R
we shall denote, with the agreement that inf A = −∞ if A is a set unbounded from
below and supA = +∞ if A is unbounded from above,

θ(i) = inf D(θ), θ(s) = supD(θ),

where D(θ) is the domain of θ, and

θ− = inf R(θ), θ+ = supR(θ),

R(θ) being the range of θ.
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Moreover, as shown in Ref. 3, in order to obtain the existence of weak solutions
of (Sγ,βφ,ψ), φ and ψ must necessarily satisfy the following range condition:

R−
γ,β ≤

∫
Ω

φ+
∫
∂Ω

ψ ≤ R+
γ,β , (2.1)

where

R+
γ,β := γ+|Ω| + β+|∂Ω|, R−

γ,β := γ−|Ω| + β−|∂Ω|.
In the case R−

γ,β < R+
γ,β, we write Rγ,β := ]R−

γ,β,R+
γ,β[.

Our main result about existence is divided in two statements. Statement (i)
corresponds to the existence of generalized weak solutions for one- or two-obstacle
problem and regular data. Observe that for the one-obstacle problem, Rγ,β can be
different from R and for the two-obstacle problem, Rγ,β = R. Statement (ii) is for
the two-obstacle problem and L1-data.

Theorem 2.1. Assume R �= D(γ) ⊂ D(β). Then,

(i) for any φ ∈ V 1,p(Ω) and ψ ∈ V 1,p(∂Ω) such that∫
Ω

φ+
∫
∂Ω

ψ ∈ Rγ,β, (2.2)

there exists a generalized weak solution [u, z, w] of problem (Sγ,βφ,ψ);
(ii) if D(γ) is bounded, the existence of a generalized weak solution [u, z, w] of prob-

lem (Sγ,βφ,ψ) holds true for any φ ∈ L1(Ω) and ψ ∈ L1(∂Ω).

Remark 2.1. The case in which condition (2.2) is attained at the boundary for
the one-obstacle problem with Rγ,β �= R was treated in Ref. 6 in a particular case.
For our problem, a similar treatment could be done. Nevertheless the aim of this
paper is to deal with the interaction between the imposed constraints in the domain
of γ and the boundary condition.

In the case where the obstacle also depends on the space variable, i.e. γ = γ(x, .),
the problem could be treated with the same techniques. However, in this case, we
cannot expect z and w to be L1 functions. They should be diffuse measures such
that the singular parts of their Radon–Nikodym decomposition are concentrated
on the boundary of the domain of γ. Since the results are of different nature, and
in order to keep the presentation simple, we will not deal with that case here, and
we shall consider it separately in a forthcoming paper. Some particular cases, like
Dirichlet boundary conditions, may be found in Refs. 18 and 1.

With respect to uniqueness, we recall the following result which was obtained
in Ref. 3.

Theorem 2.2. (Ref. 3) Let φ ∈ L1(Ω), ψ ∈ L1(∂Ω). If [u1, z1, w1] and
[u2, z2, w2] are weak solutions of (Sγ,βφ,ψ), then there exists a constant c ∈ R
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such that
u1 − u2 = c a.e. in Ω,

z1 − z2 = 0 a.e. in Ω,

and

w1 − w2 = 0 a.e. in ∂Ω.

Moreover, if c �= 0, z1 = z2 is constant.

In Ref. 3, under the assumptions of Theorem 3.1, see below, a contraction prin-
ciple for weak solutions of problem (Sγ,βφ,ψ) is also given. Now here in order to prove
the main result we need a more general contraction principle between sub- and
super-weak solutions. As usual, we understand weak-sub and supersolution in the
following way. A triple of functions [u, z, w] ∈ W 1,p(Ω)×L1(Ω)×L1(∂Ω) is a weak
subsolution (resp. supersolution) of problem (Sγ,βφ,ψ) if z(x) ∈ γ(u(x)) a.e. in Ω,
w(x) ∈ β(u(x)) a.e. on ∂Ω, and∫

Ω

a(x,Du) ·Dv +
∫

Ω

zv +
∫
∂Ω

wv ≤ (resp. ≥)
∫

Ω

φv +
∫
∂Ω

ψv

for all v ∈ L∞(Ω) ∩W 1,p(Ω), v ≥ 0.

Theorem 2.3. Let φ1, φ2 ∈ L1(Ω), ψ1, ψ2 ∈ L1(∂Ω). If [u1, z1, w1] is a weak sub-
solution of (Sγ,βφ1,ψ1

) and [u2, z2, w2] is a weak supersolution of (Sγ,βφ2,ψ2
), then∫

Ω

(z1 − z2)+ +
∫
∂Ω

(w1 − w2)
+ ≤

∫
Ω

(φ1 − φ2)+ +
∫
∂Ω

(ψ1 − ψ2)+.

For the uniqueness of a generalized solution, observe that [u, z, w] is a generalized
weak solution of problem (Sγ,βφ,ψ) if and only if [u, z, w] is a weak solution of problem

(Sγ,βγ

φ,ψ ), where βγ := β + ∂IID(γ), that is, βγ is the maximal monotone graph in R2

defined by

βγ(r) =



]−∞, β0(γ(i))

]
if r = γ(i) (when γ(i) is finite),

β(r) if γ(i) < r < γ(s),[
β0(γ(s)),+∞[ if r = γ(s) (when γ(s) is finite).

Consequently, by Theorems 2.2 and 2.3, we obtain the following result about unique-
ness of generalized weak solutions.

Theorem 2.4. Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). Let [u1, z1, w1] and [u2, z2, w2] be
generalized weak solutions of (Sγ,βφ,ψ). Then, there exists a constant c ∈ R such that

u1 − u2 = c a.e. in Ω,

z1 − z2 = 0 a.e. in Ω,

and

w1 − w2 = 0 a.e. in ∂Ω.

If c �= 0, z1 = z2 is constant.
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Moreover, given [u1, z1, w1] a generalized weak solution of (Sγ,βφ1,ψ1
) and

[u2, z2, w2] a generalized weak solution of (Sγ,βφ2,ψ2
), then∫

Ω

(z1 − z2)+ +
∫
∂Ω

(w1 − w2)
+ ≤

∫
Ω

(φ1 − φ2)+ +
∫
∂Ω

(ψ1 − ψ2)+.

By the above theorem, we have that [0, φ, ψ] is the unique generalized weak
solution of (Lγ,0φ,ψ).

Thanks to the example (Lγ,0φ,ψ) it is clear that, for a generalized weak solution,
w /∈ β(u) in general. In the next result we show that for the homogeneous case
ψ ≡ 0, w ∈ β(u).

Proposition 2.1. Assume R �= D(γ) ⊂ D(β). Let φ ∈ L1(Ω), ψ ∈ L1(∂Ω) and
[u, z, w] be a generalized weak solution of (Sγ,βφ,ψ).

(i) If esssup (ψ) ≤ supβ(γ(s)), then w ≤ supβ(γ(s)) a.e. on ∂Ω.
(ii) If essinf (ψ) ≥ inf β(γ(i)), then w ≥ inf β(γ(i)) a.e. on ∂Ω.

Consequently, if inf β(γ(i)) ≤ essinf(ψ) ≤ esssup(ψ) ≤ supβ(γ(s)), then w ∈ β(u)
a.e. on ∂Ω, and therefore [u, z, w] is, in fact, a weak solution of (Sγ,βφ,ψ).

3. Preliminaries and Proofs

3.1. Preliminaries

Throughout the paper, Ω ⊂ R is a bounded domain with Lipschitz boundary ∂Ω,
p > 1, γ and β are maximal monotone graphs in R2 such that 0 ∈ γ(0) ∩ β(0) and
the Carathéodory function a : Ω × RN → RN satisfies

(H1) there exists Λ > 0 such that a(x, ξ) · ξ ≥ Λ|ξ|p for a.e. x ∈ Ω and for all
ξ ∈ RN ,

(H2) there exists σ > 0 and � ∈ Lp
′
(Ω) such that |a(x, ξ)| ≤ σ(�(x) + |ξ|p−1) for

a.e. x ∈ Ω and for all ξ ∈ RN , where p′ = p
p−1 ,

(H3) (a(x, ξ1)−a(x, ξ2))·(ξ1−ξ2) > 0 for a.e. x ∈ Ω and for all ξ1, ξ2 ∈ RN , ξ1 �= ξ2.

The hypotheses (H1 − H3) are classical in the study of nonlinear operators in
divergence form (cf., Ref. 16). The model example of a function a satisfying these
hypotheses is a(x, ξ) = |ξ|p−2ξ. The corresponding operator is the p-Laplacian
operator ∆p(u) = div (|Du|p−2Du).

We denote by LN the N -dimensional Lebesgue measure of RN and by HN−1

the (N − 1)-dimensional Hausdorff measure.
For an open bounded set U of RN , we define the p-capacity relative to U ,

Cp(., U), in the following classical way. For any compact subset K of U ,

Cp(K,U) = inf
{∫

U

|Du|p ; u ∈ C∞
c (U), u ≥ χK

}
,
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where χK is the characteristic function of K; we will use the convection that
inf ∅ = +∞. The p-capacity of any open subset O ⊂ U is defined by

Cp(O,U) = sup {Cp(K); K ⊂ O compact} .
Finally, the p-capacity of any Borel set A ⊂ U is defined by

Cp(A,U) = inf {Cp(O); O ⊂ A open} .
A function u defined on U is said to be capp-quasi-continuous in A ⊂ U if

for every ε > 0, there exists an open set Bε ⊆ U with Cp(Bε, U) < ε such that
the restriction of u to A\Bε is continuous. It is well known that every function
in W 1,p(U) has a capp-quasi-continuous representative, whose values are defined
capp-quasi everywhere in U , i.e. up to a subset of U of zero p-capacity. When we
are dealing with the pointwise values of a function u ∈ W 1,p(U), we always identify
u with its capp-quasi-continuous representative.

We denote by Mb(U) the space of all Radon measures in U with bounded total
variation. We recall that for a measure µ ∈ Mb(U), and a Borel set A ⊂ U , the
measure µ A is defined by (µ A)(B) = µ(B ∩ A) for any Borel set B ⊂ U . If a
measure µ ∈ Mb(U) is such that µ = µ A for a certain Borel set A, the measure µ
is said to be concentrated on A. For µ ∈ Mb(U), we denote by µ+, µ− and |µ| the
positive part, negative part and the total variation of the measure µ, respectively.
By µ = µa + µs we denote the Radon–Nykodym decomposition of µ relatively
to LN . For simplicity, we also write µa for its density respect to LN , i.e. for the
function f ∈ L1(U) such that µa = fLN U .

We denote by Mp
b(U) the space of all diffuse Radon measures in U , i.e. mea-

sures which do not charge sets of zero p-capacity. In Ref. 7 it is proved that
µ ∈ Mb(U) belongs to Mp

b(U) if and only if it belongs to L1(U) + W−1,p′(U),
where W−1,p′(U) = [W 1,p

0 (U)]∗. Moreover, if u ∈ W 1,p(U) and µ ∈ Mp
b(U), then u

is measurable with respect to µ. If u further belongs to L∞(Ω), then u belongs to
L∞(U, dµ), hence to L1(U, dµ).

From now on UΩ will be a fix open bounded subset of RN such that Ω ⊂ UΩ.
If u ∈W 1,p(Ω), 1 < p ≤ ∞, it is possible to give a pointwise definition of the trace
τ(u) of u on ∂Ω in the following way (see Ref. 19). Since Ω is an extension domain,
there exists ũ ∈ W 1,p(UΩ) an extension of u to all of UΩ. Consequently, every point
of UΩ except possibly a set of zero p-capacity is a Lebesgue point of ũ. Since p > 1,
the sets of zero p-capacity are of HN−1-measure zero and therefore ũ is defined
HN−1-almost everywhere on ∂Ω, and we have τ(u) = ũ on ∂Ω. We denote τ(u) by
u in the rest of the paper. This definition is independent of the open set UΩ and
also of the extension ũ.

We define

Mp
b(Ω) := {µ ∈ Mb(UΩ) ∩W−1,p′(UΩ) : µ is concentrated on Ω}.

For u ∈W 1,p(Ω) and µ ∈ Mp
b(Ω), we have

〈µ, ũ〉 =
∫

Ω

u dµ+
∫
∂Ω

u dµ.



November 13, 2008 10:44 WSPC/103-M3AS 00322

Obstacle Problems for Degenerate Elliptic Equations 1879

This definition is independent of the open set UΩ. Observe also that if µ ∈ Mp
b(Ω)

then µ ∈ Mp
b(UΩ).

We denote

sign0(r) :=




1 if r > 0,

0 if r = 0,

−1 if r < 0,

and sign+
0 (r) :=

{
1 if r > 0,

0 if r ≤ 0.

We need to use the truncation functions

Tk(r) := [k − (k − |r|)+]sign0(r) and

T+
k (r) := [k − (k − |r|)+]sign+

0 (r), k > 0, r ∈ R.
Let θ be a maximal monotone graph in R×R. For r ∈ N, the Yosida approximation
θr of θ is given by θr = r(I − (I + 1

r θ)
−1). The function θr is maximal monotone

and Lipschitz. We recall the definition of the main section θ0 of θ

θ0(s) :=




the element of minimal absolute value of θ(s) if θ(s) �= ∅
+∞ if [s,+∞[ ∩D(θ) = ∅
−∞ if ]−∞, s] ∩D(θ) = ∅.

We have that, |θr| is increasing in r, if s ∈ D(θ), θr(s) → θ0(s) as r → +∞, and if
s /∈ D(θ), |θr(s)| → +∞ as r → +∞.

If 0 ∈ D(θ), jθ(r) =
∫ r
0
θ0(s)ds defines a convex lower semi-continuous function

such that θ = ∂jθ. If j∗θ is the Legendre transformation of jθ then θ−1 = ∂j∗θ .
Finally, let us recall the existence result given in Ref. 3 that will be useful for

the proof of the main results of this paper.

Theorem 3.1. (Ref. 3) Assume D(γ) = R = D(β). For any φ ∈ V 1,p(Ω) and
ψ ∈ V 1,p(∂Ω) with ∫

Ω

φ+
∫
∂Ω

ψ ∈ Rγ,β,

there exists a weak solution [u, z, w] ∈W 1,p(Ω)×V 1,p(Ω)×V 1,p(∂Ω) of (Sγ,βφ,ψ) such
that ∫

Ω

a(x,Du) ·Dv +
∫

Ω

zv +
∫
∂Ω

wv =
∫

Ω

φv +
∫
∂Ω

ψv, ∀ v ∈W 1,p(Ω),

‖z±‖L1(Ω) + ‖w±‖L1(∂Ω) ≤ ‖φ±‖L1(Ω) + ‖ψ±‖L1(∂Ω),∫
Ω

|zv| +
∫
∂Ω

|wv| ≤
∫

Ω

|φv| +
∫
∂Ω

|ψv| + σ
(
‖�‖Lp′(Ω) + ‖Du‖p−1

Lp(Ω)

)
‖Dv‖Lp(Ω),

∀ v ∈W 1,p(Ω),

‖Du‖p−1
Lp(Ω) ≤

c(Ω, N, p)
Λ

(‖φ‖V 1,p(Ω) + ‖ψ‖V 1,p(∂Ω)

)
,
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and ∥∥∥∥u− 1
|Ω|
∫

Ω

u

∥∥∥∥
W 1,p(Ω)

≤ c(Ω, N, p)
(‖φ‖V 1,p(Ω) + ‖φ‖V 1,p(∂Ω)

)
for some c(Ω, N, p) > 0.

3.2. Proofs

In this section we give the proof of Theorems 2.1 and 2.3. In order to prove
Theorem 2.1, we first obtain an existence result for which we need the following
definition.

Definition 3.1. Let u ∈ W 1,p(Ω) and µ ∈ Mp
b(Ω). We say that

µ ∈ γ(u)

if the following conditions are satisfied,

(i) µa ∈ γ(u)LN -a.e. in Ω,
(ii) µs is concentrated on the set {x ∈ Ω : u = γ(i)} ∪ {x ∈ Ω : u = γ(s)},
(iii) µs ≤ 0 on {x ∈ Ω : u = γ(i)} and µs ≥ 0 on {x ∈ Ω : u = γ(s)}.

Let us point out the similitude of the above concept with the definition of
µ ∈ γ(u) for µ ∈ Mp

b(Ω) given in Ref. 11, from which we have taken some ideas for
the proof of Proposition 3.1.

Remark 3.1. Let u ∈ W 1,p(Ω) and µ ∈ Mp
b(Ω). Recalling that the set {x ∈ Ω :

u = ±∞} has zero p-capacity relative to UΩ and that µ ∈ Mp
b(UΩ), we have that

µs = 0 on {x ∈ Ω : u = ±∞}.
In particular, if D(γ) = R, then

µ ∈ γ(u) if and only if µ ∈ L1(Ω) and µ ∈ γ(u) a.e. in Ω.

Proposition 3.1. Assume R �= D(γ) ⊂ D(β). Then, for any φ ∈ V 1,p(Ω) and
ψ ∈ V 1,p(∂Ω) such that ∫

Ω

φ+
∫
∂Ω

ψ ∈ Rγ,β, (3.1)

there exists [u, µ, w] ∈ W 1,p(Ω) ×Mp
b (Ω) × V 1,p(∂Ω) such that w ∈ β(u) a.e. in

∂Ω, µ ∈ γ(u) and∫
Ω

a(x,Du) ·Dv + 〈µ, ṽ〉 +
∫
∂Ω

wv =
∫

Ω

φv +
∫
∂Ω

ψv ∀ v ∈ W 1,p(Ω). (3.2)

Proof. We divide the proof into three steps.
Step 1. Approximation and uniform estimates. In order to apply Theorem 3.1,
we have to approximate the nonlinearities γ and β by maximal monotone graphs
everywhere defined.
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Let β̃ be the maximal monotone graph with defined by

β̃(s) =



β(s) if s ∈ ] γ(i), γ(s)[,

β0(γ(i)) if s < γ(i) (when γ(i) is finite),

β0(γ(s)) if s > γ(s) (when γ(s) is finite).

On the other hand, the approximation γr of γ depends on the domain of γ. In the
case domain of γ is bounded, i.e. γ(i) and γ(s) are both finite, for every r ∈ N, we
take γr = γr to be the Yosida approximation of γ. And in the case D(γ) is not
bounded, we consider that γ(i) = −∞ and γ(s) is finite (the other case, γ(i) finite
and γ(s) = +∞, being similar), for every r ∈ N, we take γr the maximal monotone
graph defined by

γr(s) =

{
γ(s) if s < 0,

γr(s) if s > 0.

It is clear that in the last case we are regularizing just the positive part, the regu-
larization of the negative part is not necessary since it is everywhere defined. Now,
since D(γr) = R = D(β̃), by Theorem 3.1, problem (Sγr ,β̃

φ,ψ ) has a weak solution,
i.e. there exists a triple of functions [ur, zr, wr] ∈ W 1,p(Ω) × L1(Ω) × L1(∂Ω) such
that zr(x) ∈ γr(ur(x)) a.e. in Ω, wr ∈ β̃(ur) a.e. in ∂Ω, and∫

Ω

a(x,Dur) ·Dv +
∫

Ω

zrv +
∫
∂Ω

wrv =
∫

Ω

φv +
∫
∂Ω

ψv, (3.3)

for all v ∈W 1,p(Ω). Moreover, for any r, we have

‖w±
r ‖L1(∂Ω) + ‖z±r ‖L1(Ω) ≤ ‖φ±‖L1(Ω) + ‖ψ±‖L1(∂Ω), (3.4)

∫
∂Ω

|wrv| +
∫

Ω

|zrv|

≤
∫

Ω

|φv| +
∫
∂Ω

|ψv|+σ
(
‖g‖Lp′(Ω)+‖Dur‖p−1

Lp(Ω)

)
‖Dv‖Lp(Ω), ∀ v∈W 1,p(Ω),

(3.5)

‖Dur‖p−1
Lp(Ω) ≤

c(Ω, N, p)
Λ

(‖φ‖V 1,p(Ω) + ‖ψ‖V 1,p(∂Ω)

)
(3.6)

and ∥∥∥∥ur − 1
|Ω|
∫

Ω

ur

∥∥∥∥
W 1,p(Ω)

≤ c(Ω, N, p)
(‖φ‖V 1,p(Ω) + ‖φ‖V 1,p(∂Ω)

)
. (3.7)

Let us prove that {∫
Ω

ur

}
r

is bounded. (3.8)

Indeed, if there exists a subsequence, denoted equal, such that
∫
Ω
ur → +∞, by

(3.7), there exists another subsequence, still denoted equal, such that ur → +∞
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a.e. in Ω and ur → +∞ a.e. in ∂Ω. Now, since zr ∈ γ(ur) a.e. in Ω and wr ∈ β̃(ur)
a.e. in ∂Ω, in the case γ(s) is finite, limr z

+
r = +∞ a.e. in Ω, which contradicts

that
∫
∂Ω w

+
r +

∫
Ω z

+
r ≤ ∫Ω φ+ +

∫
∂Ω ψ

+, and in the case γ(s) = +∞, limr z
+
r = γ+

a.e. in Ω and limr w
+
r = β+ a.e. in Ω, which contradicts that

∫
∂Ω
w+
r +

∫
Ω
z+
r ≤∫

Ω
φ+ +

∫
∂Ω
ψ+ < R+

γ,β. A similar argument shows that there is not a subsequence
such that

∫
Ω
ur → −∞.

Step 2. Convergences. By (3.7) and (3.8), we obtain that {ur} is bounded in
W 1,p(Ω). Thus, we can assume that, as r goes to +∞

ur → u in W 1,p(Ω)-weak,

in Lp(Ω),

in Lp(∂Ω).

(3.9)

Let us prove now that {wr}r is convergent. Observe that, for the two-obstacle
problem, for any r,

β0(γ(i)) ≤ wr ≤ β0(γ(s)). (3.10)

On the other hand, for the one-obstacle problem, the choice of γr implies that, for
any r,

wr ≥ wr+1. (3.11)

Indeed, letting

zr(x) =

{
zr(x) if ur(x) < 0,

γr+1(ur) if ur(x) ≥ 0,

we have that, since γr+1 is nondecreasing in r,∫
Ω

a(x,Dur) ·Dv +
∫

Ω

zrv +
∫
∂Ω

wrv ≥
∫

Ω

φv +
∫
∂Ω

ψv, ∀ v ∈W 1,p(Ω)+.

From here we obtain, by Theorem 2.3, that

wr ≥ wr+1. (3.12)

In the two-obstacle problem, thanks to (3.10), we can assume that there exists
w ∈ L∞(∂Ω) such that

wr ⇀ w L∞(∂Ω)-weak∗ as r goes to +∞. (3.13)

In the one-obstacle problem, thanks to (3.11) and (3.4), we can assume that there
exists w ∈ L1(∂Ω) such that

wr → w in L1(∂Ω) as r goes to +∞. (3.14)

Observe that, by (3.5), w ∈ V 1,p(∂Ω).
As a consequence of (3.9) and (3.13) or (3.14), we have

w ∈ β̃(u) a.e. in ∂Ω. (3.15)
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Taking now

ẑr(x) =

{
zr(x) if x ∈ Ω,

0 if x ∈ UΩ\Ω,

thanks to (3.4), we can assume there exists µ ∈ Mb(UΩ), such that

ẑr ⇀ µ Mb(UΩ)-weak∗ as r goes to +∞. (3.16)

Moreover, µ is concentrated on Ω. Now, by (3.5) and (3.6), if we define Ψr as

〈Ψr, v〉 :=
∫
UΩ

ẑrv dx, ∀ v ∈W 1,p
0 (UΩ),

{Ψr : r > 0} is bounded in [W 1,p
0 (UΩ)]∗. Then, we can assume that µ ∈ [W 1,p

0 (UΩ)]∗

and

〈µ, v〉 =
∫
UΩ

v dµ ∀ v ∈W 1,p
0 (UΩ).

Consequently, µ ∈ Mp
b (Ω), and

lim
r→+∞

∫
Ω

zrv dx = 〈µ, ṽ〉 ∀ v ∈ W 1,p(Ω). (3.17)

Having in mind (H2), since {Dur} is bounded in Lp(Ω), we can assume that
there exists χ ∈ Lp

′
(Ω) such that

a(x,Dur) ⇀ χ in Lp
′
(Ω)-weak, as r → +∞. (3.18)

By (3.9), (3.17), (3.18) and (3.13) in the two-obstacle problem or (3.12) and
(3.14) in the one-obstacle problem, passing to the limit in (3.3) we get,∫

Ω

χ ·Dv + 〈µ, ṽ〉 +
∫
∂Ω

wv =
∫

Ω

φv +
∫
∂Ω

ψv, ∀ v ∈W 1,p(Ω). (3.19)

Step 3. Identification of the nonlinearities. Let ξ ∈ D(RN ), ξ ≥ 0. Using (u− ur)ξ
as test function in (3.3), by (H3), we obtain∫

∂Ω

wr(u− ur)ξ +
∫

Ω

zr(u− ur)ξ ≥
∫

Ω

φ (u− ur)ξ +
∫
∂Ω

ψ (u− ur)ξ

−
∫

Ω

ξa(x,Du) ·D(u− ur) −
∫

Ω

(u− ur)a(x,Dur) ·Dξ,

which implies, on account of the above convergence and using Fatou’s Lemma in
the first integral, that

lim inf
r→+∞

∫
Ω

zr(u− ur)ξ ≥ 0. (3.20)
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For simplicity, we set j = jγ and jr = jγr . Since zr ∈ ∂jr(ur), we have, for all
v ∈ W 1,p(Ω),

jr(v) ≥ jr(ur) + zr(v − ur) LN -a.e. in Ω.

Now, using the fact that jr is increasing, for any r > s > 0, we have∫
Ω

j(v)ξ dx ≥
∫

Ω

jr(v)ξ dx

≥
∫

Ω

jr(ur)ξ dx+
∫

Ω

zr(v − ur)ξ dx

≥
∫

Ω

js(ur)ξ dx+
∫

Ω

zr(v − ur)ξ dx

≥
∫

Ω

js(ur)ξ dx+
∫

Ω

zr(v − u)ξ dx +
∫

Ω

zr(u − ur)ξ dx.

Letting r → +∞ and using Fatou’s Lemma, we deduce that∫
Ω

j(v)ξ dx ≥
∫

Ω

js(u)ξ dx+ 〈µ, (ṽ − ũ)ξ〉 + lim inf
r→+∞

∫
Ω

zr(u− ur)ξ dx.

Passing to the limit as s→ +∞, we get∫
Ω

j(v)ξ dx ≥
∫

Ω

j(u)ξ dx+ 〈µ, (ṽ − ũ)ξ〉 + lim inf
r→+∞

∫
Ω

zr(u − ur)ξ dx, (3.21)

consequently, u ∈ D(γ) a.e. and j(u) ∈ L1(Ω). Moreover, by (3.15),

w ∈ β(u) a.e. in ∂Ω. (3.22)

By (3.20), (3.21) implies that∫
Ω

j(v)ξ dx ≥
∫

Ω

j(u)ξ dx+ 〈µ, (ṽ − ũ)ξ〉. (3.23)

Taking v = u in (3.21) we obtain that

lim inf
r→+∞

∫
Ω

zr(u − ur)ξ ≤ 0,

and by (3.20),

lim inf
r→+∞

∫
Ω

zr(u − ur)ξ = 0.

Therefore, passing to a subsequence if necessary,

lim
r→+∞

∫
Ω

zr(u − ur) = 0.
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Let us see that χ = a(x,Du). To do that we apply the Minty–Browder’s method.
In order to do this, let us see first that

lim sup
r→+∞

∫
Ω

a(x,Dur) ·Dur ≤
∫

Ω

χ ·Du. (3.24)

Using ur as test function in (3.3), by (3.19) we get∫
Ω

a(x,Dur) ·Dur =
∫

Ω

φur +
∫
∂Ω

ψur −
∫

Ω

zrur −
∫
∂Ω

wrur

=
∫

Ω

χ ·Dur + 〈µ− zr, ũr〉 −
∫
∂Ω

(wr − w)ur

=
∫

Ω

χ ·Dur + 〈µ− zr, ũ〉 + 〈µ, ũr − ũ〉

−
∫

Ω

zr(ur − u) −
∫
∂Ω

(wr − w)ur.

From here, having in mind the above convergence and using Fatou’s Lemma in the
last integral, it follows (3.24).

Now, by (H3), for any ρ ∈ (Lp(Ω))N we have∫
Ω

a(x, ρ) · (Dur − ρ) ≤
∫

Ω

a(x,Dur) · (Dur − ρ).

Passing to the limit and using (3.24), we get∫
Ω

a(x, ρ) · (Du − ρ) ≤
∫

Ω

χ · (Du− ρ).

Then taking ρ = Du− λξ, for λ > 0 and ξ ∈ (Lp(Ω))N , we get∫
Ω

a(x,Du − λξ) · ξ ≤
∫

Ω

χ · ξ.

From here, letting λ→ 0, we obtain∫
Ω

a(x,Du) · ξ ≤
∫

Ω

χ · ξ, for any ξ ∈ (Lp(Ω))N ,

which implies that

a(x,Du) = χ a.e. in Ω.

Therefore, (3.19) can be rewritten as∫
Ω

a(x,Du) ·Dv + 〈µ, ṽ〉 +
∫
∂Ω

wv =
∫

Ω

φv +
∫
∂Ω

ψv, ∀ v ∈W 1,p(Ω). (3.25)

From (3.23), by density, we have that for all ξ ∈ C(Ω), ξ ≥ 0,∫
Ω

j(v)ξ dx ≥
∫

Ω

j(u)ξ dx+ 〈µ, (ṽ − ũ)ξ〉 ∀ v ∈W 1,p(Ω). (3.26)
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Therefore, if we take in (3.26) v(x) = t for all x ∈ Ω, t ∈ ]γ(i), γ(s)[, we obtain

(j(t) − j(u))LN ≥ (t− u)µ as measures. (3.27)

Consequently, the absolutely continuous part with respect to the Lebesgue measure
LN of (3.27) satisfies

(j(t) − j(u)) ≥ (t− u)µa,

i.e. µa ∈ γ(u) a.e. in Ω. On the other hand, taking the singular part in (3.27), it
follows that

(t− u)µs ≤ 0 ∀ t ∈ ]γ(i), γ(s)[,

which implies

µs ≤ 0 on {x ∈ Ω : u(x) < t} and µs ≥ 0 on {x ∈ Ω : u(x) > t}.
Since t ∈ ]γ(i), γ(s)[ is arbitrary, we deduce that

µs is concentrated on the set {x ∈ Ω : u(x) = γ(i)} ∪ {x ∈ Ω : u(x) = γ(s)},

µs ≤ 0 on {x ∈ Ω : u(x) = γ(i)} and µs ≥ 0 on {x ∈ Ω : u(x) = γ(s)},
so µ ∈ γ(u) and the proof is complete.

In order to be more precise about the singular part µs obtained in the above
proposition, we establish the following technical result.

Lemma 3.1. Let η ∈ W 1,p(Ω), ν ∈ Mp
b (Ω) and λ ∈ R be such that η ≤ λ (resp.

η ≥ λ) a.e. Ω. If

−diva(x,Dη) = ν

in the sense that
∫
Ω a(x,Dη) ·Dξ =

∫
Ω ξ dν, for any ξ ∈W 1,p(Ω), then∫

{x∈Ω:η(x)=λ}
ξ dν ≥ 0 (3.28)

(resp. ∫
{x∈Ω:η(x)=λ}

ξ dν ≤ 0, (3.29)

for any ξ ∈W 1,p(Ω), ξ ≥ 0).

Proof. For n ≥ 1, let ϕn(r) = inf(1, (nr + 1 − n λ)+). Since ϕn(η) converges to
χ{x∈Ω:η(x)=λ}, ν-a.e. in Ω (indeed, ϕn(r) converges to χ[λ,∞)(r) for every r ∈ R, so
ϕn(η(x)) converges to χ[λ,∞)(η(x)) at every x where η(x) is defined. As η is defined
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quasi everywhere and χ[λ,∞) ◦ η = χ{x∈Ω:η(x)=λ}, then the convergence of ϕn(η) to
χ{x∈Ω:η(x)=λ} is quasi everywhere; finally, since ν is diffuse then the convergence is
also ν-a.e. in Ω) then

∫
{x∈Ω:η(x)=λ}

ξ dν = lim
n→∞

∫
Ω

ξ ϕn(η) dν

= lim
n→∞

∫
Ω

a(x,Dη)D(ξ ϕn(η))

≥ lim
n→∞

∫
Ω

a(x,Dη)Dξ ϕn(η)

≥ −‖Dξ‖∞ lim
n→∞

∫
{x∈Ω:λ−1/n≤η(x)≤λ]

|a(x,Dη)| = 0.

Finally, if η ≥ λ, then it is enough to do the same with η̂ = −η, λ̂ = −λ, µ̂ = −µ
and â(x, z) = −a(x,−z).

Proof of Theorem 2.1. (i) By Proposition 3.1, given φ ∈ V 1,p(Ω) and ψ ∈
V 1,p(∂Ω) satisfying the range condition (2.2), there exists [u, µ, σ] ∈ W 1,p(Ω) ×
Mp
b (Ω) × V 1,p(∂Ω) such that σ ∈ β(u) a.e. in ∂Ω, µ ∈ γ(u) and

∫
Ω

a(x,Du) ·Dv + 〈µ, ṽ〉 +
∫
∂Ω

σv =
∫

Ω

φv +
∫
∂Ω

ψv ∀ v ∈W 1,p(Ω). (3.30)

Now, applying (3.28) of Lemma 3.1 with η = u, ν := −µ+ φLN Ω + (ψ − σ)
HN−1 ∂Ω, we get that for any ξ ∈ C1

c (Ω), ξ ≥ 0,

∫
{x∈Ω:u(x)=γ(s)}

ξ dν ≥ 0,

which implies that

∫
Ω

ξ dµ+
s ≤

∫
{x∈Ω:u(x)=γ(s)}

ξ (φ − µa) dx.

Consequently µ+
s Ω = 0. Similarly, applying (3.29) of Lemma 3.1, it holds that

∫
Ω

ξ dµ−
s ≤

∫
{x∈Ω:u(x)=γ(i)}

ξ (µa − φ) dx,

and therefore µ−
s Ω = 0.

Let now Γ be an open subset of ∂Ω. For n ∈ N large enough, consider Ωn =
{x ∈ RN : d(x,Γ) < 1/n}, and let ξ ∈ C1

c (Ωn), ξ ≥ 0 and ξ = 1 in Γ. Applying
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Lemma 3.1, we obtain∫
Γ

dµ+
s ≤

∫
Ωn

ξ (φ − µa)χ{x∈Ω:u(x)=γ(s)} +
∫

Ωn

ξ (ψ − σ)χ{x∈∂Ω:u(x)=γ(s)}.

Letting n go to +∞, we obtain that∫
Γ

dµ+
s ≤

∫
Γ

(ψ − σ)χ{x∈∂Ω:u(x)=γ(s)}.

Consequently,

µ+
s ∂Ω ≤ (ψ − σ)χ{x∈∂Ω:u(x)=γ(s)}HN−1 ∂Ω. (3.31)

Similarly, we obtain that∫
Γ

dµ−
s ≤

∫
Γ

(σ − ψ)χ{x∈∂Ω:u(x)=γ(i)},

and therefore

µ−
s ∂Ω ≤ (σ − ψ)χ{x∈∂Ω:u(x)=γ(i)}HN−1 ∂Ω.

Therefore µs = gHN−1 ∂Ω, g ∈ L1(∂Ω) and g(x) ∈ ∂IID(γ)(u(x)) a.e. on ∂Ω.
Hence, if we set z = µa and w = σ + g, we have that [u, z, w] is a generalized weak
solution of problem (Sγ,βφ,ψ).

(ii) Given L1-data φ ∈ L1(Ω) and ψ ∈ L1(∂Ω), we take φm := Tm(φ) and ψm :=
Tm(ψ), respectively. Then, by the first part, there exists [um, zm, wm] a generalized
weak solution of (Sγ,βφm,ψm

), that is, zm(x) ∈ γ(um(x)) a.e. in Ω, wm(x) ∈ β(um(x))+
∂IID(γ)(um(x)) a.e. on ∂Ω, and∫

Ω

a(x,Dum) ·Dv +
∫

Ω

zmv +
∫
∂Ω

wmv =
∫

Ω

φmv +
∫
∂Ω

ψmv, (3.32)

for all v ∈ W 1,p(Ω) ∩ L∞(Ω). Now, since D(γ) is bounded, we can take v = um in
(3.32), to obtain

Λ
∫

Ω

|Dum|p ≤M(‖φ‖1 + ‖ψ‖1).

Hence, {um} is bounded in W 1,p(Ω). On the other hand, by Theorem 2.4, we have∫
Ω

|zm − zn| +
∫
∂Ω

|wm − wn| ≤
∫

Ω

|φn − φm| +
∫
∂Ω

|ψn − ψm|.

Therefore, there exists a subsequence, denoted equal, [u, z, w] ∈ W 1,p(Ω)×L1(Ω)×
L1(∂Ω) and χ ∈ Lp(Ω) such that

um converges to u weakly in W 1,p(Ω),

um converges to u in Lp(Ω),

um converges to u in Lp(∂Ω),

a(., Dum) converges to χ weakly in Lp(Ω),

zm → z in L1(Ω)
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and

wm → w in L1(∂Ω).

Since zm ∈ γ(um) a.e. in Ω and wm ∈ βγ(um) a.e. on ∂Ω, by monotonicity, we
have z(x) ∈ γ(u(x)) a.e. in Ω and w(x) ∈ βγ(u(x)) a.e. on ∂Ω. Finally, it is not
difficult to see that χ = a(x,Du) using again Minty–Browder’s method, therefore
passing to the limit in (3.32), we obtain that [u, z, w] is a generalized weak solution
of problem (Sγ,βφ,ψ).

Let us now prove Proposition 2.1.

Proof of Proposition 2.1. Let us see the proof of (i), is the proof of (ii) similar.
Take φn ∈ L∞(Ω) and ψn ∈ L∞(∂Ω) such that esssup (ψn) ≤ esssup (ψ), φn and
ψn satisfy (2.2) and converge in L1 to φ and ψ, respectively. Then, by Theorem 2.1,
there exists a generalized weak solution [un, zn, wn] of problem (Sγ,βφn,ψn

) and more-
over, by (3.31), wnχ{x∈∂Ω:un(x)=γ(s)} ≤ ψnχ{x∈∂Ω:un(x)=γ(s)}. Therefore, since ess-
sup (ψn) ≤ esssup (ψ) ≤ supβ(γ(s)), wn ≤ supβ(γ(s)) a.e. on ∂Ω. Finally, by
Theorem 2.4, wn → w in L1(∂Ω), and we deduce that w ≤ supβ(γ(s)) a.e.
on ∂Ω.

Finally we prove the contraction principle given in Theorem 2.3.

Proof of Theorem 2.3. Consider ϕ ∈ D(Ω), 0 ≤ ϕ ≤ 1, and ρ ∈ W 1,p(Ω),
0 ≤ ρ ≤ 1. Then,∫

Ω

a(x,Du1) ·D
(
T+
k

k
(u1 − u2 + kρ)ϕ

)
+
∫

Ω

z1
T+
k

k
(u1 − u2 + kρ)ϕ

≤
∫

Ω

φ1
T+
k

k
(u1 − u2 + kρ)ϕ

and ∫
Ω

a(x,Du2) ·D
(
T+
k

k
(u1 − u2 + kρ)ϕ

)
+
∫

Ω

z2
T+
k

k
(u1 − u2 + kρ)ϕ

≥
∫

Ω

φ2
T+
k

k
(u1 − u2 + kρ)ϕ.

Therefore,∫
Ω

(z1 − z2)
T+
k

k
(u1 − u2 + kρ)ϕ

+
∫

Ω

(a(x,Du1) − a(x,Du2)) · T
+
k

k
(u1 − u2 + kρ)Dϕ

+
∫

Ω

(a(x,Du1) − a(x,Du2)) · (T+
k )

′

k
(u1 − u2 + kρ)(Du1 −Du2)ϕ
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+
∫

Ω

(a(x,Du1) − a(x,Du2)) · (T+
k )

′
(u1 − u2 + kρ)Dρϕ

≤
∫

Ω

(φ1 − φ2)
T+
k

k
(u1 − u2 + kρ)ϕ.

Now, since the third term is positive,

∫
Ω

(z1 − z2)
T+
k

k
(u1 − u2 + kρ)ϕ

+
∫

Ω

(a(x,Du1) − a(x,Du2)) · T
+
k

k
(u1 − u2 + kρ)Dϕ

+
∫

Ω

(a(x,Du1) − a(x,Du2)) · (T+
k )

′
(u1 − u2 + kρ)Dρϕ

≤
∫

Ω

(φ1 − φ2)
T+
k

k
(u1 − u2 + kρ)ϕ.

Taking limit when k goes to 0 in the above expression, having in mind that Du1 =
Du2 where u1 = u2, we obtain that∫

Ω

(z1 − z2)sign+
0 (u1 − u2)ϕ+

∫
Ω

(z1 − z2)ρχ{u1=u2}ϕ

+
∫

Ω

(a(x,Du1) − a(x,Du2)) · sign+
0 (u1 − u2)Dϕ

≤
∫

Ω

(φ1 − φ2)sign+
0 (u1 − u2)ϕ+

∫
Ω

(φ1 − φ2)ρχ{u1=u2}ϕ.

Since

sign+
0 (u1 − u2) = sign+

0 (z1 − z2)χ{u1 �=u2} + sign+
0 (u1 − u2)χ{z1=z2}, (3.33)

∫
Ω

(z1 − z2)+ϕ+
∫

Ω

(z1 − z2)(ρ− sign+
0 (z1 − z2))χ{u1=u2}ϕ

+
∫

Ω

(a(x,Du1) − a(x,Du2)) · sign+
0 (u1 − u2)Dϕ ≤

∫
Ω

(φ1 − φ2)+ϕ.

By approximation, we can take ρ = sign+
0 (z1 − z2) in the above expression, then∫

Ω

(z1 − z2)+ϕ+
∫

Ω

(a(x,Du1) − a(x,Du2)) · sign+
0 (u1 − u2)Dϕ

≤
∫

Ω

(φ1 − φ2)+ϕ. (3.34)
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Now, ∫
Ω

(a(x,Du1) − a(x,Du2)) · sign+
0 (u1 − u2)Dϕ

=
∫

Ω

(a(x,Du1) − a(x,Du2)) · sign+
0 (u1 − u2)D(ϕ − 1).

Then, since

sign+
0 (u1 − u2) = lim

k→0

T+
k

k
(u1 − u2 + kρ̂) − ρ̂χ{u1=u2},

ρ̂ ∈W 1,p(Ω), 0 ≤ ρ̂ ≤ 1, we have that∫
Ω

(a(x,Du1) − a(x,Du2)) · sign+
0 (u1 − u2)Dϕ

= lim
k→0

(∫
Ω

(a(x,Du1) − a(x,Du2)) ·D
(
T+
k

k
(u1 − u2 + kρ̂)(ϕ − 1)

)

−
∫

Ω

(a(x,Du1) − a(x,Du2)) · (T+
k )

′

k
(u1 − u2 + kρ̂)

× (Du1 −Du2 + kDρ̂)(ϕ− 1)

)

≥ lim
k→0

(∫
Ω

(a(x,Du1) − a(x,Du2)) ·D
(
T+
k

k
(u1 − u2 + kρ̂)(ϕ − 1)

)

−
∫

Ω

(a(x,Du1) − a(x,Du2)) · (T+
k )

′
(u1 − u2 + kρ̂)Dρ̂(ϕ− 1)

)

= lim
k→0

(∫
Ω

(a(x,Du1) − a(x,Du2)) ·D
(
T+
k

k
(u1 − u2 + kρ̂)(ϕ − 1)

))

≥ lim
k

(
−
∫

Ω

(z1 − z2)
T+
k

k
(u1 − u2 + kρ̂)(ϕ− 1)

+
∫
∂Ω

(w1 − w2)
T+
k

k
(u1 − u2 + kρ̂)

+
∫

Ω

(φ1− φ2)
T+
k

k
(u1−u2 + kρ̂)(ϕ−1)−

∫
∂Ω

(ψ1− ψ2)
T+
k

k
(u1 − u2 + kρ̂)

)
.

Therefore, by (3.34),∫
Ω

(z1 − z2)+ϕ−
∫

Ω

(
z1 − z2)(sign+

0 (u1 − u2) + ρ̂χ{u1=u2}
)
(ϕ− 1)

+
∫
∂Ω

(w1 − w2)
(
sign+

0 (u1 − u2) + ρ̂χ{u1=u2}
)
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+
∫

Ω

(φ1 − φ2)
(
sign+

0 (u1 − u2) + ρ̂χ{u1=u2}
)
(ϕ− 1)

≤
∫

Ω

(φ1 − φ2)+ϕ+
∫
∂Ω

(ψ1 − ψ2)
(
sign+

0 (u1 − u2) + ρ̂χ{u1=u2}
)

≤
∫

Ω

(φ1 − φ2)+ +
∫
∂Ω

(ψ1 − ψ2)+. (3.35)

Now, it is easy to see that

sign+
0 (u1 − u2) = sign+

0 (w1 − w2)χ{u1 �=u2} + sign+
0 (u1 − u2)χ{w1=w2},

and consequently,∫
∂Ω

(w1 − w2)
(
sign+

0 (u1 − u2) + ρ̂χ{u1=u2}
)

=
∫
∂Ω

(w1 − w2)sign+
0 (w1 − w2) +

∫
∂Ω

(w1 − w2)sign+
0 (u1 − u2)χ{w1=w2}

+
∫
∂Ω

(w1 − w2)(ρ̂− sign+
0 (w1 − w2))χ{u1=u2}

=
∫
∂Ω

(w1 − w2)+ +
∫
∂Ω

(w1 − w2)(ρ̂− sign+
0 (w1 − w2))χ{u1=u2}.

Therefore, using the above expression in (3.35), and letting ϕ→ 1, we obtain∫
Ω

(z1 − z2)+ +
∫
∂Ω

(w1 − w2)+ +
∫
∂Ω

(w1 − w2)(ρ̂− sign+
0 (w1 − w2))χ{u1=u2}

≤
∫

Ω

(φ1 − φ2)+ +
∫
∂Ω

(ψ1 − ψ2)+. (3.36)

Finally, taking, by approximation, ρ̂ = sign+
0 (w1 − w2) in (3.36) we obtain the

contraction principle.
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