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Abstract. We deal with an optimal matching problem, that is, we want to transport
two measures to a given place (the target set), where they will match, minimizing the
total transport cost that in our case is given by the sum of two different multiples of the
Euclidean distance that each measure is transported. We show that such a problem has a
solution with an optimal matching measure supported in the target set. This result can
be proved by an approximation procedure using a p−Laplacian system. We prove that any
optimal matching measure for this problem is supported on the boundary of the target set
when the two multiples that affect the Euclidean distances involved in the cost are different.
Moreover, we present simple examples showing uniqueness or nonuniqueness of the optimal
measure.
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1. Introduction

We are interested in an optimal matching problem (see [6], [5]) that consists in

transporting two commodities (say nuts and screws, we assume that we have the

same total number of nuts and screws) to a prescribed location, the target set (say

factories where we ensemble the nuts and the screws) in such a way that they match

there (each factory receive the same number of nuts and of screws) and the total

cost of the operation, measured in terms of multiples of the Euclidean distance that

the commodities are transported, is minimized. That is, for one unit of mass of nuts
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that is transported from x to z and one unit of mass of screws from y to z, we pay

the cost

A|x− z|+B|y − z|,
here z is a point where we match the unit of nuts with the unit os screws and belongs

to the target set, A, B are positive constants and we denoted by | · | the Euclidean

distance. With the occurrence of the multiplicative constants we are taking into

account that the cost of transporting nuts and screws can be different (for example

due to different weights).

This problem, that we describe in mathematical precise terms in Section 2, was first

treated in [14] where the authors prove the following results (that we also describe

more precisely in Section 2):

(1) This optimal matching problems has a solution, that is, an optimal matching

measure supported on the target set and a pair of optimal transport maps

that send each of the commodities to the optimal matching measure. This

solution can be obtained by two different methods. One can use directly

classical Monge-Kantorovich’s mass transport theory or one can approxi-

mate a pair of Kantorovixh potentials with solutions to a system of PDEs of

p−Laplacian type taking the limit as p → ∞.

(2) One can always obtain a solution of the optimal matching problem with a

matching measure supported on the boundary of the target set.

When one considers the sum of two Euclidean distances as cost (taking both

multiplicative constants equal to one) one can find simple examples, see [14] and

Section 4 in this paper, that show that there are configurations for which there are

optimal measures supported in the interior of the target set. We reproduce these

examples in Section 4. Our main goal here is to show that this is not possible when

we have two different multiplicative constants.

Theorem 1.1. Let A ̸= B, then any optimal matching measure is supported on

the boundary of the target set.

For the sum of two Euclidean distances there are examples of non-uniqueness for

the optimal matching measure and also examples of uniqueness, see [14]. Here we

also provide examples that show that, even for two different multiplicative constants

we may have non-uniqueness of the optimal matching measure, but we also include

examples of uniqueness.

Let us end this introduction with some remarks concerning the previous bibliog-

raphy. Optimal matching problems for uniformly convex cost where analyzed in [3],

[4], [5], [6] and have implications in economic theory (hedonic markets and equilib-

ria), see [6], [7], [8], [9], [5] and references therein. However, when one considers the
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Euclidean distance as cost new difficulties appear since we deal with a non-uniformly

convex cost. The method to solve the problem taking limit as p → ∞ in a system of

PDE’s of p−Laplacian type relies on a procedure to solve mass transport problems

introduced by Evans and Gangbo in [11] and that proves to be quite fruitful, see

[2], [13], [12]. We have to remark that the limit as p → ∞ in the system requires

some care since the system is nontrivially coupled and therefore the estimates for one

component are related to the ones for the other, and we believe that it is interesting

in its own right, see [14].

2. A description of the optimal matching problem and its p−Laplacian

approximation

To write the optimal matching problem in mathematical terms, we fix two non-

negative compactly supported functions f+, f− ∈ L∞, with supports X+, X−,

respectively, satisfying the mass balance condition M0 :=
∫
X+

f+ =
∫
X−

f−. We

also consider a compact set D (the target set). Then we take a large bounded

domain Ω such that it contains all the relevant sets, the supports of f+ and f−, X+,

X− and the target set D. For simplicity we will assume that Ω is a convex C1,1

bounded open set. We also assume that

X+ ∩ X− = ∅,
(
X+ ∪X−

)
∩D = ∅ and

(
X+ ∪X−

)
∪D ⊂⊂ Ω.

Whenever T is a map from a measure space (X,µ) to an arbitrary space Y ,

we denote by T#µ the pushforward measure of µ by T . Explicitly, (T#µ)[B] =

µ[T−1(B)]. When we write T#f = g, where f and g are nonnegative functions, this

means that the measure having density f is pushed-forward to the measure having

density g.

For Borel functions T± : Ω → Ω such that T+#f+ = T−#f−, we consider the

functional

FA,B(T+, T−) :=

∫
Ω

A|x− T+(x)|f+(x)dx+

∫
Ω

B|y − T−(y)|f−(y)dy,

where, as in the introduction, | · | denotes the Euclidean norm and A, B are positive

constants. With the constants A and B we are taking into account that the cost of

transporting nuts and screws can be different (for example due to a difference in the

weight).

The optimal matching problem can be stated as the minimization problem

(2.1) min
(T+,T−)∈AD(f+,f−)

F(T+, T−),
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where AD(f+, f−) :=
{
(T+, T−) : T±(X±) ⊂ D, T+#f+ = T−#f−

}
.

If (T ∗
+, T

∗
−) ∈ AD(f+, f−) is a minimizer of the optimal matching problem (2.1),

we shall call the measure µ∗ := T ∗
+#f+ = T ∗

−#f− a matching measure to the

problem. Note that there is no reason why a matching measure should be absolutely

continuous with respect to the Lebesgue measure. In fact we shall see examples of

matching measures that are singular (see Example 4.1).

Let us denote by M(D,M0) := {µ ∈ M+(Ω) : supp(µ) ⊂ D, µ(Ω) = M0} the

set of all possible matching measures. Given µ ∈ M(D,M0), we have that

(2.2)
inf

(T+,T−)∈AD(f+,f−)
FA,B(T+, T−) = inf

µ∈M(D,M0)
inf

(T+,T−)∈A(f+,f−,µ)
FA,B(T+, T−)

= inf
µ∈M(D,M0)

{
AW1(f+, µ) +BW1(f−, µ)

}
.

where A(f+, f−, µ) := {(T+, T−) : T+ ∈ A(f+, µ), T− ∈ A(f−, µ)}, and where

W1(·, ·) denotes the 1-Wasserstein distance (its definition is given in [18]). Indeed,

observe that given (T+, T−) ∈ AD(f+, f−), if we define µ := T+#f+, we have that

µ ∈ M(D,M0) and (T+, T−) ∈ A(f+, f−, µ).

Note that on the right-hand side of (2.2) we are considering all possible measures

supported in D with total mass M0 and then we minimize the total transport cost.

This is probably the most natural way of looking at the optimal matching problem

and it is equivalent to our previous formulation. We have the following existence

theorem, for the proof we refer to [14].

Theorem 2.1. The optimal matching problem (2.1) has a solution, that is, there

exist Borel functions (T ∗
+, T

∗
−) ∈ AD(f+, f−) such that

FA,B(T
∗
+, T

∗
−) = inf

(T+,T−)∈AD(f+,f−)
FA,B(T+, T−).

Moreover, we can obtain a solution (T̃+, T̃−) of the optimal matching problem (2.1)

with a matching measure supported on the boundary of D.

2.1. The limit as p → ∞ in a p−Laplacian system. In this section we show

that we can follow the ideas of Evans-Gangbo, [11], to get the matching measure and

Kantorovich potentials for the transports involved at the same time, we refer to [14]

for details. Let us begin with the following statement:

WD
f± := inf

(T+,T−)∈AD(f+,f−)
FA,B(T+, T−) = sup

v, w ∈ W1,∞(Ω)
|∇v|∞ ≤ A, |∇w|∞ ≤ B

v ≤ w in D

∫
Ω

vf+ − wf− .

4



This result is the starting point of our variational approach to the problem via a

p−Laplacian system in this section. Take p > N in this section and recall that, for

simplicity, we assumed that Ω is a convex C1,1 bounded open set. Let us consider

the following variational problem

(2.3) min
(v, w) ∈ W1,p(Ω) × W1,p(Ω)

v ≤ w in D

1

p

∫
Ω

1

Ap
|Dv|p + 1

p

∫
Ω

1

Bp
|Dw|p −

∫
Ω

vf+ +

∫
Ω

wf−.

Standard tools from variational analysis show that there exists a minimizer (vp, wp)

of (2.3). In addition any two minimizers differ by a constant, that is, if (vp, wp) and

(ṽp, w̃p) are minimizers then there exists a constant c with vp = ṽp+c and wp = w̃p+c.

We can pass to the limit as p → ∞ in the sequence of minimizer functions. In

fact, up to a subsequence,

lim
p→∞

(vp, wp) = (v∞, w∞) uniformly,

where (v∞, w∞) is a solution of the variational problem

(2.4) max
v, w ∈ W1,∞(Ω)

|∇v|∞ ≤ A, |∇w|∞ ≤ B
v ≤ w in D

∫
Ω

vf+ − wf−.

Note that the constraint |∇v|∞ ≤ A, |∇w|∞ ≤ B is equivalent to

|v(x)− v(y)| ≤ A|x− y|, |w(x)− w(y)| ≤ B|x− y|.

The limit (v∞, w∞) gives a pair of Kantorovich potentials for our optimal matching

problem. But in fact this limit procedure gives much more since it allows us to

identify the optimal matching measure (see [14]).

Concerning the PDE that is solved in this limit procedure we have: Let (vp, wp) be

minimizer functions of problem (2.3). Then, there exists a positive Radon measure

hp of mass M0 such that −div( 1
Ap∇vp|p−2∇vp) = f+ − hp in Ω,

1
Ap |∇vp|p−2∇vp · η = 0 on ∂Ω, −div( 1

Bp∇wp|p−2∇wp) = hp − f− in Ω,

1
Bp |∇wp|p−2∇wp · η = 0 on ∂Ω.

This positive measure hp is supported on {x ∈ D : vp(x) = wp(x)}.
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Moreover, we have that up to a subsequence,

hp ⇀ h∞ as p → ∞, weakly∗ as measures,

with h∞ a positive Radon measure of mass M0 supported on {x ∈ D : v∞(x) =

w∞(x)}. And (v∞, w∞) satisfies:

Av∞ is a Kantorovich potential for the transport of f+ to h∞,

Bw∞ is a Kantorovich potential for the transport of h∞ to f−,

with respect to the Euclidean distance.

We conclude that the measure h∞ is an optimal matching measure for the optimal

matching problem (2.1).

3. Localizing the support of optimal matching measures in the

nonsymmetric case A ̸= B.

Let us show that, in any space dimension, and for any configuration of the data

f+, f− and D, any possible optimal measure is supported on ∂D when A ̸= B.

This has to be contrasted with the case in which A = B where we can have optimal

measures supported in the interior of D (see Example 4.1 in the next section).

Proof of Theorem 1.1. We argue by contradiction. Hence, assume that there exists

an optimal measure µ0 with a nontrivial part of it supported in the interior of D.

Then there exists z0 a point in Do in the support of µ and then two points x0 ∈ X+

and y0 ∈ X− such that T ∗
+(x0) = z0 and T ∗

−(y0) = z0 (we can choose x0 and y0 to

be Lebesgue points of T ∗
± respectively).

Now, computing the derivative of

G(z) = A|x0 − z|+B|y0 − z|

with respect to z at z0 we get

DG(z0) = −A
x0 − z0
|x0 − z0|

−B
y0 − z0
|y0 − z0|

.

Since A ̸= B and x0−z0
|x0−z0| and

y0−z0
|y0−z0| are unitary vectors, we conclude that

(3.1) DG(z0) ̸= 0.

Therefore, the main idea of the proof is that we can move same mass of µ near z0
such that the cost diminishes. Note that since we have z0 ∈ Do, such change moving
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mass to a nearby point is possible since we remain in D. So, let us fix δ > 0 such

that Bδ(z0) ⊂ D.

By (3.1) an a continuity argument, there exists a positive number η, and a point

z1 ∈ Bδ(z0), such that

A|x0 − z1|+B|y0 − z1| < A|x0 − z0|+B|y0 − z0| − η.

Now, using again a continuity argument we can find an small r0 > 0 such that

A|x− z1|+B|y − z1| < A|x− z0|+B|y − z0| −
η

2
,

for every x ∈ Br0(x0), every y ∈ Br0(y0). Therefore, we can choose r ≤ min{r0, δ},
satisfying

(3.2) r <
η

2(A+B)
.

and such that

(3.3) A|x− z1|+B|y − z1| < A|x− z0|+B|y − z0| −
η

2
,

for every x ∈ Br(x0), every y ∈ Br(y0).

Since x0 and y0 are Lebesgue points of T ∗
+ and T ∗

−, respectively, inside these two

balls Br(x0) and Br(y0) we can find two sets E1 and E2 of positive measure such

that

(3.4) T ∗
+(E1) ⊂ Br(z0) and T ∗

+(E2) ⊂ Br(z0).

Also we can assume that

(3.5)

∫
E1

f+(x) dx =

∫
E2

f−(y) dy = k > 0.

Note that, thanks to the mass balance condition (3.5), we have an optimal trans-

port map x = S(y) that sends f−χE2 to f+χE1 . In particular S satisfies∫
E1

H(x)f+(x) dx =

∫
E2

H(S(y))f−(y) dy

for every continuous function H. Hence,∫
E1

A|x− zi|f+(x)dx =

∫
E2

A|S(y)− zi|f−(y)dy, i = 0, 1.
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Using this together with (3.3) we obtain that

(3.6)

∫
E1

A|x− z1|f+(x)dx+

∫
E2

B|y − z1|f−(y)dy

=

∫
E2

(A|S(y)− z1|+B|y − z1|)f−(y)dy

≤
∫
E2

(A|S(y)− z0|+B|y − z0|)f−(y)dy − kη/2

=

∫
E1

A|x− z0|f+(x)dx+

∫
E2

B|y − z0|f−(y)dy − kη/2.

Now let us define

T̃+(x) =

{
T ∗
+(x), x ∈ X+ \ E1,

z1, x ∈ E1,
and T̃−(y) =

{
T ∗
−(y), y ∈ X− \ E2,

z1, y ∈ E2.

This pair corresponds to the transport of f+ and f− to the measure (M0−k)µ+kδz1
that is supported in D.

Using (3.4), (3.6) and (3.2), for such choice of transport maps we have∫
Ω

A|x− T̃+(x)|f+(x)dx+

∫
Ω

B|y − T̃−(y)|f−(y)dy

=

∫
X+\E1

A|x− T ∗
+(x)|f+(x)dx+

∫
X−E2

B|y − T ∗
−(y)|f−(y)dy

+

∫
E1

A|x− z1|f+(x)dx+

∫
E2

B|y − z1|f−(y)dy

≤
∫
X+\E1

A|x− T ∗
+(x)|f+(x)dx+

∫
X−\E2

B|y − T ∗
−(y)|f−(y)dy

+

∫
E1

A|x− z0|f+(x)dx+

∫
E2

B|y − z0|f−(y)dy − kη/2

=

∫
X+\E1

A|x− T ∗
+(x)|f+(x)dx+

∫
X−\E2

B|y − T ∗
−(y)|f−(y)dy

+

∫
E1

A|x− T ∗
+(x) + T ∗

+(x)− z0|f+(x)dx

+

∫
E2

B|y − T ∗
−(y) + T ∗

−(y)− z0|f−(y)dy − k
η

2

≤
∫
X+

A|x− T ∗
+(x)|f+(x)dx+

∫
X−

B|y − T ∗
−(y)|f−(y)dy

+

∫
E1

A|T ∗
+(x)− z0|f+(x)dx+

∫
E2

B|T ∗
−(y)− z0|f−(y)dy − k

η

2
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≤
∫
X+

A|x− T ∗
+(x)|f+(x)dx+

∫
X−

B|y − T ∗
−(y)|f−(y)dy

+

∫
E1

Arf+(x)dx+

∫
E2

Brf−(y)dy − k
η

2

=

∫
X+

A|x− T ∗
+(x)|f+(x)dx+

∫
X−

B|y − T ∗
−(y)|f−(y)dy

+Ark +Brk − k
η

2

<

∫
X+

A|x− T ∗
+(x)|f+(x)dx+

∫
X−

B|y − T ∗
−(y)|f−(y)dy,

which is a contradiction with the fact that µ is an optimal matching measure. �

Remark 3.1. A possible strategy to show that there is an optimal matching

measure supported on ∂D in the case A = B can be to take a sequence An ̸= B

such that An → A = B and consider the limit of corresponding optimal matching

measures µn (that are supported on ∂Ω). This limit would give an optimal measure

for A = B supported on ∂D. In [14] the fact that there is always (regardless A = B

or not) an optimal measure supported on ∂D was proved directly using techniques

from optimal mass transport theory.

To end this section, we observe that, as it was done for the case A = B in [14] (we

refer to that reference for the proof) we can characterize when the optimal matching

measure is a delta in the general case.

Theorem 3.1. Assume that there is a point z0 ∈ D such that for any pair of

points x ∈ X+ and y ∈ X− we have

(3.7) min
z∈D

{A|x− z|+B|y − z|} = A|x− z0|+B|y − z0|,

then the measure M0δz0 is an optimal matching measure.

Conversely, if M0δz0 is an optimal matching measure, then for any pair of points

x ∈ X+ and y ∈ X− we have (3.7).

It is easy to see that, for D convex, condition (3.7) is equivalent to

⟨
A

x− z0
|x− z0|

+B
y − x0

|y − z0|
, z − z0

⟩
≤ 0 for all x ∈ X+, y ∈ X− and z ∈ D

(note that z0 must belong to ∂D when A ̸= B).
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4. Examples

Let us now show uniqueness and nonuniqueness of the optimal matching measure.

Example 4.1. Consider the optimal matching problem for the data: Ω =]−4, 4[,

f+ = bχ]−3,−2[+(1− b)χ]2,3[, f
− = χ

]−2,−1[ and D = [0, 1], where 0 ≤ b ≤ 1 is fixed.

• A symmetric cost. First, let us describe in detail what happens when A = B

(we can assume that A = B = 1). In this case any matching measure in D is of the

form µ = bδ0 + ν, for any positive Radon measure ν, of mass 1− b, supported on D.

Indeed, it is easy to see that, for

T ∗
+(x) =

{
0 if − 3 < x < −2
t∗+(x) in other case,

where t∗+ is any optimal transport map transporting (1− b)χ]2,3[ to ν, and

T ∗
−(x) =

{
0 if − 2 < x < −2 + b
t∗−(x) in other case,

where t∗− is any optimal transport map transporting χ
]−2+b,−1[ to ν,

F1,1(T
∗
+, T

∗
−) = 4.

Also, for

v∗(x) :=

{
−x if x ≤ 0
x if x ≥ 0,

and

w∗(x) = x,

we have ∫
Ω

v∗(x)f+(x) dx− w∗(x)f−(x) dx = 4.

Then, our assertion follows from∫
Ω

v∗(x)f+(x) dx− w∗(x)f−(x) dx ≤ sup
v, w ∈ W1,∞(Ω)

|∇v|∞, |∇w|∞ ≤ 1
v ≤ w in D

∫
Ω

vf+ − wf−

= inf
(T+,T−)∈AD(f+,f−)

F1,1(T+, T−) ≤ F1,1(T
∗
+, T

∗
−).

We distinguish three cases:

1. If b = 1, δ0 is the unique matching measure.

2. If 0 < b < 1, there are infinitely many matching measures but all of them with

singular part.
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3. If b = 0, we have that any positive Radon measure of mass 1 supported on D is

a matching measure. Moreover, only in this case, the cost of the matching problem

is the same as the cost of the classical transport problem of f+ to f−.

So we can not expect uniqueness of matching measure in general in general, but it

may hold for some special configurations of the masses and the target set. Uniqueness

of matching measure holds in one-dimension if and only if the target set D is located

to the left or to the right from the supports of f+ and f−, while if there is some

mass of f+ to the left of D and some mass of f− to the right (or viceversa) then

there are infinitely many optimal measures matching measures.

Moreover, in one dimension there is necessarily a singular part in an optimal

measure if the masses f+ and f− has some part of both of them to the left or to the

right of D, while if f+ is completely on the right and f− completely on the left of

D then there are optimal matching measures without singular part (note the these

measures without singular part are not supported on ∂D.

Now, let us come back to the symmetric situation given in the case b = 0. In

this case we can also compute optimal pairs (vp, wp) (we leave this to the reader,

details can be found in [14]). For this sequence (vp, wp) we obtain in the limit of the

measures hp is the matching measure h∞ = 1
2δ0 +

1
2δ1. Remark that this measure

is supported on ∂D. Note that (vp, wp) is unique, up to a constant, that is, any

other minimizer is of the form (vp + c, wp + c), c constant. Therefore, this example

shows that not every possible optimal matching measure can be obtained using this

approximation procedure.

• A non symmetric cost. Now consider A ̸= B, for example, we take, A = 1 and

B > 1, then the unique matching measure (for any b) is µ = δ0.

Indeed, in this case, the optimal transport maps are easy to find. We have

T ∗
+(x) = 0 and T ∗

−(x) = 0.

To compute the total cost with these two maps we have to compute∫
Ω

|x− T ∗
+(x)|f+(x)dx = b

∫ −2

−3

−xdx+ (1− b)

∫ 3

2

xdx =
5

2

and

B

∫
Ω

|y − T ∗
−(y)|f−(y)dy = B

∫ −1

−2

−ydy = B
3

2
.

Hence, for these T ∗
± we have,

F1,B(T
∗
+, T

∗
−) =

5

2
+B

3

2
.
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Now, let us compute a pair of potentials. In this case, we need to impose |v′|∞ ≤ 1

and |w′|∞ ≤ B. Let us take

v∗(x) :=

{
−x if x ≤ 0
x if x ≥ 0,

and

w∗(x) = Bx.

With these two potentials we get∫
Ω

v∗(x)f+(x) dx− w∗(x)f−(x) dx =
5

2
+B

3

2
.

Then, our assertion follows again from the duality argument,∫
Ω

v∗(x)f+(x) dx− w∗(x)f−(x) dx ≤ sup
v, w ∈ W1,∞(Ω)

|∇v|∞ ≤ 1, |∇w|∞ ≤ B
v ≤ w in D

∫
Ω

vf+ − wf−

= inf
(T+,T−)∈AD(f+,f−)

F1,B(T+, T−) ≤ F1,B(T
∗
+, T

∗
−).

Hence in this case we have uniqueness of matching measure regardless the value

of b. In fact, if b ̸= 0 it is clear that the part of f+ that is on the left of 0 must be

taken there and the rest of it also goes to zero since as B > A it is more expensive

to take mass to the right from zero. When b = 0 the same argument applies.

In the general case, uniqueness of the optimal matching measure holds in 1−d for

A ̸= B for any possible configuration of f+ and f− when the target set is an interval,

[a, b]. To see this fact just argue as in the proof of Theorem 1.1 in the previous

section using the fact that the function

G(z) = A|x− z|+B|y − z|

has a unique minimum in [a, b], that is given by b for x, y ≥ b, by a for x, y ≤ a, by

b if x ≤ a, y ≥ b and by a if y ≤ a, x ≥ b (to describe the location of the minimum

we assumed that A < B).

Therefore, to obtain a nonuniqueness example with A ̸= B we have to go up to

dimension two.

Example 4.2. Let us take in R2 the two measures

f+ = δ(0,0) and f− = δ(1,0),
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and consider A > B = 1. Now we will choose a target set D for which there are

infinitely many optimal matching measures. Let 1 < k < A and consider the curve

Γ = {z : A|z|+ |z − (1, 0)| = k}.

On the x-axe the unique point in this curve is given by ( k−1
A−1 , 0). Now we consider

the equation G(z) = A|z|+ |z − (1, 0)| = k and compute the derivative with respect

to z1 at the point ( k−1
A−1 , 0) obtaining Gz1((

k−1
A−1 , 0)) = A − 1 ̸= 0. Therefore, by

the Implicit Function Theorem we have that the curve Γ passes trough ( k−1
A−1 , 0) and

near this point is a smooth arc that we call γ. With this in mind we choose D any

smooth small domain such that D ⊂ {z : A|z|+ |z − (1, 0)| ≥ k} and the boundary

of D contains a piece of the smooth arc γ of Γ near ( k−1
A−1 , 0). Then it is easy to check

that for any point z̃ on ∂D ∩ γ the measure δz̃ is an optimal matching measure for

our problem.
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Universitaria, Pab 1 (1428), Buenos Aires, Argentina. julio.rossi@ua.es
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