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1. Optimal matching problems

We want to transport two commodities (modeled by two
measures that encode the spacial distribution of each com-
modity) to a given location,

the target set,

where they will match, minimizing the total transport cost,
given in terms of the Euclidean distance.



commodity 1 commodity 2tarjet set



In mathematical terms.

We fix two non-negative compactly supported functions
f1, f2 ∈ L∞, with supports X1, X2, respectively, satisfying

M0 :=

∫
X1

f1 =

∫
X2

f2 > 0.

We also consider a compact set Γ (the target set).

We take a large bounded smooth domain Ω. We assume

X1 ∩ X2 = ∅,(
X1 ∪X2

)
∩ Γ = ∅,(

X1 ∪X2
)
∪ Γ ⊂⊂ Ω.



Given a measure µ ∈ M+(X) (say X = Ω or X = Ω × Ω) and
H : X → Y measurable, we define

H#µ(E) = µ(H−1(E)) for Borelian sets E ⊂ Y.

The Wasserstein distance

for µ, ν ∈M+(Ω), µ(Ω) = ν(Ω),

W1(µ, ν) := inf
γ ∈M+(Ω× Ω)

πx#γ = µ

πy#γ = ν

∫
Ω×Ω
|x− y|dγ(x, y).

gives the optimal cost of transporting µ to ν.



Kantorovich Theorem

W1(µ0, µ1) = sup

{∫
Ω
u d(µ0 − µ1) : u ∈ K1

}
,

where

K1 := {u : Ω→ R : |u(x)− u(y)| ≤ |x− y| ∀x, y ∈ Ω}.

A maximizer is called a Kantorovich potential.



The optimal matching problem consist in solving

min

(γ1, γ2) ∈M+(Ω× Ω)2

πx#γi = fi
πy#γ1 = πy#γ2

supp(πy#γi) ⊂ Γ

{∫
Ω×Ω
|x− y|dγ1(x, y) +

∫
Ω×Ω
|x− y|dγ2(x, y)

}
.

(1.1)

πx#γ1 = f1 πx#γ2 = f2Γ

γ1 γ2
πy#γ1 = πy#γ2

If (γ1, γ2) is a minimizer of (1.1), we shall call an
optimal matching measure to:

ρ = πy#γ1 = πy#γ2.



Consider

M(Γ,M0) := {µ ∈M+(Ω) : supp(µ) ⊂ Γ, µ(Ω) = M0}

the set of all possible matching measures, then

min
···

{∫
Ω×Ω
|x− y|dγ1(x, y) +

∫
Ω×Ω
|x− y|dγ2(x, y)

}
= inf
µ ∈M(Γ,M0)

{
W1(f1, µ) + W1(f2, µ)

}
=: WΓ

f1,f2
.



Using the weakly lower semi-continuity of

ν 7→ W1(µ, ν)

one proves that there exist an optimal matching measure.
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Using the weakly lower semi-continuity of

ν 7→ W1(µ, ν)

one proves that there exist an optimal matching measure.

Uniqueness of matching measures is not true in general.

There exist optimal matching measures supported on the
boundary of the target set.



Evans and Gangbo approach

For µ0 = f+LN and µ1 = f−LN , f+, f− ∈ L1(Ω) smooth,
Evans and Gangbo find a Kantorovich potential as a limit,
as p → +∞, of solutions to a p−Laplace equation with
Dirichlet boundary conditions in a large ball,

{
−∆pup = f+ − f− in B(0, R),

up = 0 on ∂B(0, R)



They prove:

up converge uniformly to u∗ ∈ K1 as p→ +∞;

u∗ is a Kantorovich potential;

and there exists 0 ≤ a ∈ L∞(Ω) (the transport density) such
that

f+ − f− = −div(a∇u∗) in D′(Ω).

Furthermore |∇u∗| = 1 a.e. in the set {a > 0}.



We give a p-Laplacian approach (following E-G) of the
OMP.

We get a matching measure
(that also encodes the location for the matching) and
a pair of Kantorovich potentials

by

taking limit as p → ∞ in a variational p−Laplacian type
system, which is nontrivially coupled.



For p > N consider the variational problem

min
(v, w) ∈ W 1,p(Ω)×W 1,p(Ω)

v + w ≥ 0 in Γ

1

p

∫
Ω
|∇v|p +

1

p

∫
Ω
|∇w|p +

∫
Ω
vf1 +

∫
Ω
wf2.

(1.2)



Theorem 1.1 (MRT).

1. There exists a minimizer (vp, wp) of (1.2).

2. There exists a positive Radon measure hp of mass M0,
supported on {x ∈ Γ : vp(x) + wp(x) = 0}, such that−div

(
|∇vp(x)|p−1∇vp(x)

)
= hp − f1 in Ω,

|∇vp(x)|p−1∇vp(x) · η = 0 on ∂Ω.

and −div
(
|∇wp(x)|p−1∇wp(x)

)
= hp − f2 in Ω,

|∇wp(x)|p−1∇wp(x) · η = 0 on ∂Ω,

where η is the exterior normal vector on ∂Ω.



Theorem 1.2 (MRT). There exists a subsequence pi→ +∞:

1. limi→∞ vpi = v∞ and limi→∞wpi = w∞ uniformly, where
(v∞, w∞) is a solution of the variational problem

max
v, w ∈ W 1,∞(Ω)

|∇v(x)|, |∇w(x)| ≤ 1 a.e.
v + w ≥ 0 in Γ

−
∫

Ω
vf1 −

∫
Ω
wf2 =: KWΓ

f1,f2
.

Observe:

−
∫
vf1 −

∫
wf2 = −

∫
vdπx#γ1 −

∫
wπx#γ2

= −
∫ ∫

v(x)dγ1(x, y)−
∫ ∫

w(x)dγ2(x, y)

≤
∫ ∫

(v(y)− v(x))dγ1(x, y) +

∫ ∫
(w(y)− w(x))dγ2(x, y)

≤
∫ ∫

|x− y|dγ1(x, y) +

∫ ∫
|x− y|dγ2(x, y)



Theorem 1.2 (MRT). For a subsequence pi→ +∞,
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2. KWΓ
f1,f2

= WΓ
f1,f2

.

3. limi→∞ hpi = ρ weakly∗ as measures, with ρ a positive
Radon measure of mass M0 supported on

{x ∈ Γ : v∞(x) + w∞(x) = 0}.

4. ρ is an optimal matching measure for the matching
problem.

5. We also have:
v∞ is a Kantorovich potential for the transport of f1 to ρ

and
w∞ is a Kantorovich potential for the transport of f2 to ρ;



2. Optimal matching with constrains

Consider a more realistic case:

there are some constraints on the amount of material we
can transport to points in the target.

This amount is represented with a nonnegative Radon
measure Θ in Ω (with support Γ).

The restriction says:

for any set E ⊂ Ω, the amount of material matched there

does not exceeds
∫
E
dΘ,

We need the condition
∫

Ω
dΘ > M0.



f1 f2Θ



Our aim now is to study

inf
µ∈M(Θ,M0)

{
W1(f1, µ) + W1(f2, µ)

}
=: WΘ

f1,f2
,

where

M(Θ,M0) := {µ ∈M+(Ω) : µ(Ω) = M0, µ ≤ Θ}

is now the set of all possible optimal matching measures.
Ω will be a large convex domain.



Theorem 2.1 (MRT).

WΘ
f1,f2

= max
v, w ∈ W 1,∞(Ω)

|∇v|(x), |∇w|(x) ≤ 1 a.e.

{
−
∫

Ω
vf1 −

∫
Ω
wf2 −

∫
Ω

(v + w)−dΘ

}
.

(2.3)

We can obtain a pair of maximizers by taking limits as p

goes to +∞ of a pair of minimizers (vp, wp) of

min
v, w ∈ W 1,p(Ω)

1

p

∫
Ω
|∇v|p +

1

p

∫
Ω
|∇w|p +

∫
Ω
vf1 +

∫
Ω
wf2 +

∫
Ω

(v +w)−dΘ,

(2.4)

and, also, a matching measure.



Theorem 2.2 (MRT).
Let (vp, wp) be minimizer functions of (2.4).

Set Vp := |∇vp|p−2∇vp and Wp := |∇wp|p−2∇wp.

Then:

1. The distributions Vηp , Wη
p in RN given by

〈Vηp , ϕ〉 :=

∫
Ω
Vp · ∇ϕ +

∫
Ω
f1ϕ ∀ϕ ∈ D(RN ),

〈Wη
p , ϕ〉 :=

∫
Ω
Wp · ∇ϕ +

∫
Ω
f2ϕ ∀ϕ ∈ D(RN ).

are equal and are positive Radon measures supported on
{vp + wp ≤ 0} ∩ Γ.



Formally:


−div

(
|∇vp(x)|p−1∇vp(x)

)
= Vηp − f1 ,

−div
(
|∇wp(x)|p−1∇wp(x)

)
= Vηp − f2 .

Vηp is a positive Radon measure supported on

{vp + wp ≤ 0} ∩ Γ.



2. There exist Radon measures V, W in Ω and ρ in Γ, and a
sequence pi→ +∞, such that

(vpi, wpi)→ (v∞, w∞) uniformly in Ω,

Vpi → V weakly* in the sense of measures in Ω,

Wpi →W weakly* in the sense of measures in Ω,

Vηpi → ρ weakly* in the sense of measures in Γ,
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2. There exist Radon measures V, W in Ω and ρ in Γ, and a
sequence pi→ +∞, such that

(vpi, wpi)→ (v∞, w∞) uniformly in Ω,

Vpi → V weakly* in the sense of measures in Ω,

Wpi →W weakly* in the sense of measures in Ω,

Vηpi → ρ weakly* in the sense of measures in Γ,

3. (v∞, w∞) is a solution of (2.3) and ρ is an optimal match-
ing measure.
Moreover,

0 ≤ ρ ≤ Θ {v∞ + w∞ ≤ 0},

and ∫
Ω

(v∞ + w∞)−dρ =

∫
Ω

(v∞ + w∞)−dΘ.



From the above result we can infer that

−div(V) = ρ− f1 ,

−div(W) = ρ− f2 ,

and ∫
Ω
∇v∞ dV +

∫
Ω
∇w∞ dW

= −
∫

Ω
f1 v∞ −

∫
Ω
f2w∞ +

∫
Γ

(w∞ + v∞)dρ.



Theorem 2.3 (INT).

WΘ
f1,f2

= min
Φ1,Φ2 ∈Mb(Ω)N

ν ∈M+
b (Ω)

−∇ · Φi = Θ− ν − fi

{
|Φ1|(Ω) + |Φ2|(Ω)

}
,

Let us call this minimizing problem as

minimal matching flow problem (MMF).



Theorem 2.4 (INT).
Let (Φ1,Φ2, ν) be an optimal solution for (MMF).
If ν ≤ Θ then Θ− ν is an optimal matching measure and
Φi is an optimal flow for transporting fi onto ρ, i = 1, 2.

Then, the connection between both approaches lies in the
condition ν ≤ Θ for an optimal solution (Φ1,Φ2, ν) of (MMF).
Unfortunately, this does not hold in general.



However, consider the assumption

S(f1, f2) ∩ supp(Θ) = ∅, (H)

where S(f1, f2) := {[x, y] : x ∈ supp(f1), y ∈ supp(f2)} .

Theorem 2.5 (INT).
Let f1, f2,Θ be such that (H) holds.
Let (Φ1,Φ2, ν) be an optimal solution for (MMF).
Then Θ− ν ≥ 0 and it is an optimal matching measure.



However, consider the assumption

S(f1, f2) ∩ supp(Θ) = ∅, (H)

where S(f1, f2) := {[x, y] : x ∈ supp(f1), y ∈ supp(f2)} .

Theorem 2.5 (INT).
Let f1, f2,Θ be such that (H) holds.
Let (Φ1,Φ2, ν) be an optimal solution for (MMF).
Then Θ− ν ≥ 0 and it is an optimal matching measure.

Theorem 2.6 (INT).
Let f1, f2,Θ be such that (H) holds, and Θ ∈ L1.
Then there exists a unique optimal matching measure:

Θ [u1 + u2 < 0],

for any maximizer (u1, u2) of the dual problem



To solve numerically the above problem:

For any u = (u1, u2) ∈ V := C1(Ω)× C1(Ω), set

F(u) :=

∫
u1df1 +

∫
u2df2 −

∫
(u1 + u2)dΘ

Λ(u) := (∇u1,∇u2, u1 + u2),

and, for any (p, q, s) ∈ Z := C(Ω)N × C(Ω)N × C(Ω), set

G(p, q, s) :=

{
0 if |p(x)| ≤ 1, |q(x)| ≤ 1, s(x) ≤ 0 ∀x ∈ Ω

+∞ otherwise.

Fenchel–Rockafellar:

inf
u∈V
F(u) + G(Λu) = sup

σ∈Z∗
(−F∗(−Λ∗σ)− G∗(σ)) . (2.5)



Consider a regular triangulation Th of Ω.

For an integer k ≥ 1, consider Pk the set of polynomials of
degree less or equal than k.

Take Eh ⊂ H1(Ω), the space of continuous functions on Ω

and belonging to Pk on each triangle of Th.

Denote by Yh the space of vectorial functions such that
their restrictions belong to (Pk−1)N on each triangle of Th.

Set Vh := Eh × Eh and Zh := Yh × Yh × Eh.



Let f1,h, f2,h,Θh ∈ Eh be such that

f1,h(Ω) = f2,h(Ω) < Θh(Ω) ,

f1,h ⇀ f1, weakly* inMb(Ω),

f2,h ⇀ f2, weakly* inMb(Ω),

Θh ⇀ Θ weakly* inMb(Ω).



For any (u1, u2) ∈ Vh, set

Λh(u1, u2) := (∇u1,∇u2, u1 + u2) ∈ Zh,

Fh(u1, u2) := 〈u1, f1,h〉 + 〈u2, f2,h〉 − 〈u1 + u2,Θh〉,

and for any (p, q, s) ∈ Zh,

Gh(p, q, s) :=

{
0 if |p(x)| ≤ 1, |q(x)| ≤ 1, s(x) ≤ 0 a.e. x ∈ Ω,

+∞ otherwise.



Theorem 2.7 (INT). Let (u1,h, u2,h) ∈ Vh be an optimal solu-
tion to the finite-dimensional approximation problem

inf
(u1,u2)∈Vh

Fh(u1, u2) + Gh(Λh(u1, u2)). (2.6)

such that
∫
Ω

u1,h =

∫
Ω

u2,h,

and let (Φ1,h,Φ2,h, νh) be an optimal dual solution to (2.6).
Then, up to a subsequence,
(u1,h, u2,h) converges uniformly to (u∗1, u

∗
2) an optimal solu-

tion of the dual maximization problem,
and (Φ1,h,Φ2,h, νh) converges weakly* to (Φ1,Φ2, ν) an optimal
solution of (MMF).

We solve the finite-dimensional problem (2.6) by using the
ALG2 method.



f1 = 4χ[(x−0.2)2+(y−0.8)2<0.01], f2 = 4χ[(x−0.2)2+(y−0.2)2<0.01],

Θ = 4χ[(x−0.8)2+(y−0.2)2<0.04].



f1 = 4χ[(x−0.1)2+(y−0.9)2<0.01], f2 = 4χ[(x−0.7)2+(y−0.3)2<0.01],

Θ = 4χ[(x−0.2)2+(y−0.2)2<0.04] + 4χ[(x−0.6)2+(y−0.6)2<0.0064].(2.5)
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