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Chapter 1

Temporal Random Sets

In this chapter, we introduce the Temporal Random Closed Sets (TRACS).
In particular, we define the Temporal Boolean Model (TBM) in R2 ×R+ (see [1,7]) for further

details on the definition and statistical analysis).

1.1 Temporal Random Closed Set

Intuitively, a random closed set Φ is a random mechanism producing random (closed) subsets in
space (see [2] for further details).

We model each binary image of the sequence as a realization of a random set in R2 and the whole
image sequence as a random set in R2×R+. Let us denote by Φ(t) the random set corresponding to
the random binary image at the observation time t, with t ≥ 0. If we stack the observed temporal
cross-sections for every time t, we define the temporal random set in R2 × R+ as

Φ = ∪t≥0Φ(t). (1.1)

This model can be considered as a particular case of a non-isotropic three dimensional random set.

1.2 Boolean model

Let us give some notation: νd will denote the Lebesgue measure in Rd (the area in R2 and the
volume in R3); A⊕B = {a + b : a ∈ A, b ∈ B} will be the Minkowski addition of the sets A and B

and Ǎ = {−x : x ∈ A} is the symmetric of A with respect to the origin.
Let Ψ = {y1, y2, . . .} be a stationary Poisson point process in Rd with intensity λ [3]. Let

Ξ1, Ξ2, . . . be a sequence of independent and identically distributed (as Ξ0) random compact sets in
Rd such that they are independent of the Poisson point process and Eνd(Ξ0 ⊕ Ǩ) < +∞ for every
compact set K. A Boolean model is defined as

Φ = ∪∞n=1(Ξn + yn). (1.2)
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The points yn are called the germs and the sets Ξn are the grains. The random set Ξ0 is called the
primary grain. The distribution of a random closed set is completely characterized by its capacity
functional defined as T (K) = P (Φ∩K 6= ∅) (with K an arbitrary compact subset). For a Boolean
model, this functional is given by T (K) = 1 − exp{−λEνd(Ξ0 ⊕ Ǩ)}. In particular, if K = {0},
the value T ({0}) = P (0 ∈ Φ) is known as the area fraction, the mean area in R2 (mean volume in
R3) covered by the random set per unit area (respectively, per unit volume). The area fraction in
a d-dimensional Boolean model is given by

p = 1− exp{−γEνd(Ξ0)}. (1.3)

Some problems of the statistical analysis of Boolean models are the estimation of: the intensity of
the germ process, the mean area of the primary grain, a0, and the mean perimeter, u0.

1.3 Temporal Boolean Model

Let Ψ = {(xi, ti)}i≥1 be a stationary Poisson point process in R2×R+ with intensity λ (the locations
and birth times). Let {Ai}i≥1 be a sequence of independent and identically distributed (as A0)
random compact sets in R2. Let {di}i≥1 be a sequence of independent and identically distributed
(as D) positive random variables (the durations). We assume that Ψ, {Ai}i≥1 and {di}i≥1 are
independent and that Eν3(A0 × [0, D]⊕ Ǩ) < +∞ for any compact subset K of R3. The temporal
Boolean model is the random set defined as

Φ = ∪i≥1(Ai + xi)× [ti, ti + di]. (1.4)

The set (Ai + xi)× [ti, ti + di] is a rectangle in R2 ×R+, the i-th event. Fig. 1.1 (a) displays a
realization of a temporal Boolean model where A0 is a random disc. The temporal cross-sections
are (static) 2D Boolean models.

Our data consist of a discrete set of temporal cross-sections corresponding to the observation
times s1 ≤ . . . ≤ sk. Let us denote the temporal cross-section at time s as Φs = Φ ∩ (R2 × {s}).
Each Φsi is contained in the product space W×[0, T ], where W is the observation window and [0, T ]
is the total time interval observed. The projection of Φs over R2 (that with an abuse of notation
will be denoted Φs) is given by Φs = ∪{i:ti≤s≤ti+di}(Ai + xi). Φs is the binary image observed at
time s.

Proposition 1 If Φ is a temporal Boolean model with intensity λ and primary grain A0 × [0, D],
then the temporal cross-section Φs is a 2D Boolean model with primary grain A0 and intensity

γ = λED. (1.5)
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Figure 1.1: A three dimensional reconstruction of a TBM with cylindrical grains

Let us consider the estimation of the distribution of the random duration for the events, D. For
s1 ≤ s2, we will consider the following three random sets:

Φs1,s2 = ∪i:ti≤s1≤s2≤ti+diAi + xi, (1.6)

Φs1,s−2
= ∪i:ti≤s1≤ti+di<s2Ai + xi, (1.7)

Φs−1 ,s2
= ∪i:s1<ti≤s2≤ti+diAi + xi. (1.8)

Φs1,s2 corresponds to the union of the grains which are in Φs1 and Φs2 , Φs1,s−2
to the grains in Φs1

but not in Φs2 , and Φs−1 ,s2
to the grains in Φs2 but not in Φs1 .

Theorem 1 Let Φ be a temporal Boolean model. The random sets Φs1,s2, Φs1,s−2
and Φs−1 ,s2

are
then independent 2D Boolean models. Let us denote β(s2 − s1) the intensity of Φs1,s2 (the mean
number of germs that are alive in the time interval [s1, s2]), which is given by

β(s2 − s1) = λp(s2 − s1), (1.9)

where p(s) =
∫ +∞
s P (D ≥ v)dv. Moreover, under stationarity, Φs1,s−2

and Φs−1 ,s2
have the same

intensity, α(s2 − s1) (the mean number of germs that died in a time interval [s1, s2]) given by

α(s2 − s1) = λED − λp(s2 − s1) = γ − β(s2 − s1). (1.10)

Proposition 2

P (0 ∈ Φs1 |0 /∈ Φs2) = P (0 ∈ Φs2 |0 /∈ Φs1) = 1− exp{−α(s2 − s1)a0}. (1.11)
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Let φsi be the binary image observed at time si, then P (0 ∈ Φs1 |0 /∈ Φs2) will be estimated as

P̂ (0 ∈ Φs1 |0 /∈ Φs2) =
P̂ (0 ∈ Φs1 \ Φs2)

P̂ (0 /∈ Φs2)
=

ν2(φs1 ∩ φc
s2
∩W )

ν2(φc
s2
∩W )

, (1.12)

and by using (1.11) and (1.12), we will estimate δ(s2 − s1) = α(s2 − s1)a0 by solving the equation

1− exp{−δ̂(s2 − s1)} =
1
2

(
ν2(φs1 ∩ φc

s2
∩W )

ν2(φc
s2
∩W )

+
ν2(φs2 ∩ φc

s1
∩W )

ν2(φc
s1
∩W )

)
. (1.13)

The mean area (a0) and the mean perimeter (u0) of A0 and γ were estimated from each image in
the sequence by using the minimum contrast method [5]. The different estimates are correlated
values of the same parameters since the model is stationary, therefore the estimates over the image
sequence were then combined by using the batch-mean method [4]. Let â0 and γ̂ be the estimates,
the functions α(s) and β(s) can be estimated as

α̂(s) =
δ̂(s)
â0

, (1.14)

and
β̂(s) = γ̂ − α̂(s). (1.15)

From (1.10), it follows that α′(s) = λ(1 − FD(s)) and α′′(s) = −λfD(s) where α′ and α′′ are the
first and second derivatives of α, whereas FD and fD are the cumulative distribution function and
the density function of the random variable D, respectively. The function α(s) is estimated at the
observation points {s1, . . . , sn}. The spatial-temporal intensity λ is obtained by taking into account
that α′(0) = −λp′(0) = λP (D ≥ 0) = λ, yielding

λ̂ = α̂′(0). (1.16)

The probability density of D, fD, is calculated as

f̂D(s) = − 1
λ̂

α̂′′(s). (1.17)

1.4 Simulation of Temporal Boolean Models

To obtain further details of each function of the Toolbox, you can type help functionname.m in
the Matlab command window. See chapter 4 for installation details.

1.4.1 Function tbmsimulation.m

MOV = TBMSIMULATION(S,WO,T,LAMBDA,SHAPE,TYPESIZE,PARAMSIZE,TYPEDURATION,PARAMDURATION)
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Description
This function generates a realization of temporal Boolean model.

Arguments
S vector of sampling times (seconds).
W0 binary image corresponding to the observation window.
T length of the time interval (seconds).
LAMBDA mean number of points per unit area and unit time.
SHAPE shape of the primary grain. Possible values are: ’disk’, ’square’.
TYPESIZE distribution of the grain sizes. Possible values are: ’uniform’ (PARAMSIZE is a
vector with the minimum and maximum values), ’gaussian’ (PARAMSIZE is a vector with the
mean and standard deviation).
TYPEDURATION distribution of the grains durations (seconds). Possible values are: ’exponen-
tial’ (PARAMDURATION is the mean), ’uniform’ (PARAMDURATION is a vector with
inferior and superior limits of the interval), ’gaussian’ (PARAMDURATION is a vector with
the mean and standard deviation), ’gamma’ (PARAMDURATION is a vector with the shape
and scale parameter).

Value
MOV . This function returns an AVI file with a realization of the temporal Boolean model at the
specified observation window W and time interval T.

Details
The observation window is assumed to have no holes. The avi movie is a binary image with two
gray-levels: 0 corresponds to the background and 1 is the model. In a TBM the locations and
birth time are independent. We assume spatial-temporal stationarity. If the grains sizes follow a
Gaussian distribution, we truncate the Gaussian, in this way, we only consider positive radii.

The strel(’disk’,R) function of the Image Processing Toolbox generates a disk with diameter
2 ∗R + 1, it contributes to the error in the estimation of the area of the primary grain. Moreover,
this function does not generate perfect circular grains, specially in case of small radii. It may
influence on the error in the estimation of the area and perimeter of the primary grain. See [1] for
further information about the errors in the estimation.

1.4.2 Function tbmgerms.m

[XN,YN,TN] = TBMGERMS(W,T,LAMBDA,TYPEGRAIN,PARAMGRAIN,TYPEDUR,PARAMDUR)
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Description
This function generates the germs, a spatial-temporal Poisson point process.

Arguments
W binary image that defines the observation window.
T length of the time interval (seconds).
LAMBDA mean number of points per unit area and unit time.
TYPEGRAIN distribution of grain sizes. Possible values are: ’uniform’ (PARAMGRAIN is
a vector with the inferior and superior limits of the interval), ’gaussian’ (PARAMGRAIN is a
vector with the mean and standard deviation). Values are given in pixels.
TYPEDUR is the distribution of the grain durations. Possible values are: ’exponential’ (PARAM-
DUR is the mean), ’uniform’ (PARAMDUR is a vector with the inferior and superior limit of the
interval), ’gaussian’ (PARAMDUR is a vector with the mean and standard deviation), ’gamma’
(PARAMDUR is a vector with the shape and scale parameter). Values are given in seconds.

Value
[XN, Y N, TN ]. This function returns three vectors of size 1×N with the N points i.i.d. uniformly
distributed in |W | × T . (XN,Y N) are the locations of the germs and TN are the birth times of
the germs. Locations and birth times are independent.

Details
The observation window is assumed to have no holes. If TYPEGRAIN is ’gaussian’, a truncated
Gaussian is generated. Only positive values are considered.

1.4.3 Function tbmgrains.m

[SIZESGR N, ANGLESGR N] = TBMGRAINS(N,TYPEPDF,PARAM)

Description
This function generates the sizes and orientations of the grains.

Arguments
N number of grains.
TYPEPDF distribution of the grains sizes. Possible values: ’uniform’ (PARAM is a vector with
the inferior and superior limit of the interval, ’gaussian’ (PARAM is a vector with the mean and
standard deviation).
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Value
[SIZESGR N, ANGLESGR N ]. This function returns two vectors SIZESGR N,ANGLESGR N

with size 1 × N which correspond to the grains sizes and the grains orientations, respectively.
SIZESGR N are distributed as TYPEPDF with parameters PARAM. Discrete values are gen-
erated. ANGLESGR N are distributed in 0, 45, 90, 135, 180, 225, 270, 315.

Details
If TYPEPDF is ’gaussian’, a truncated Gaussian is generated. Only positive values are considered.

1.4.4 Function tbmdurations.m

DN = TBMDURATIONS(N,TYPEPDF,PARAM)

Description
This function generates the grains durations.

Arguments
N number of grains.
TYPEPDF distribution of the grains durations. Possible values: ’exponential (PARAM is the
mean), ’uniform’ (PARAM is a vector with the inferior limit and superior limit of the interval),
’gaussian’ (PARAM is a vector with the mean and standard deviation) and ’gamma’ (PARAM
is a vector with the shape parameter and scale parameter).

Value
D N , this function returns a vector of size 1 ×N . The durations are distributed as TYPEPDF
with parameters PARAM.

Details
If TYPEPDF is ’gaussian’, a truncated Gaussian is generated. Only positive values are considered.

1.5 Estimation of Temporal Boolean Models

1.5.1 Function tbmcontminT.m

[GAMMA,PERIM,AREA,FV] = TBMCONTMINT(BW,W,KTYPE)

Description
Estimation of the parameters of a two-dimensional Boolean model by applying the Minimun Con-
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trast Method using the capacity functional T .

Arguments
BW a realization of a two-dimensional Boolean model (logical).
W the observation window (logical).
Ktype the type of convex set: ’disk’ or ’square’.

Value
[gamma, perimeter, area, volfrac]. This function returns the parameters of the two-dimensional
boolean model. It provides a four-dimensional vector, being gamma: number of germs per unit
area; perimeter: mean perimeter of the primary grain; area: mean area of the primary grain and
volfrac: the volume fraction.

Details
W is assumed to have no holes. The capacity functional TK(t) takes values in the interval [0, 1]
since it represents the cumulative distribution function and, as a consequence, the empirical values
of log(1−TK(t)) tend to infinite. Hence, only values of 1−TK(t) in the interval [0, 0.8] are used in
the fitting of the second order polynomial derived from the Steiner formula. The square structuring
element is recommended to be used because its digital approximation is more accurate than the
corresponding approximation of the disk.

1.5.2 Function tbmcontminH.m

[GAMMA,PERIMETER,FV] = TBMCONTMINH(BW,W,KTYPE)

Description
Estimation of the parameters of a two-dimensional Boolean model by applying the Minimun Con-
trast Method using the contact distribution function H.

Arguments
BW a realization of a two-dimensional Boolean model (logical).
W the observation window (logical).
Ktype the type of convex set: ’disk’ or ’square’.

Value
[gamma, perimeter, volfrac]. This function returns the parameters of the two-dimensional Boolean
model: a three-dimensional vector, being gamma: number of germs per unit area; perimeter: mean
perimeter of the primary grain and volfrac the volume fraction.
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Details
W is assumed to have no holes. Only values of 1 − HK(t) in the interval [0, 0.7] are used in the
fitting of the second order polynomial derived from the Steiner formula. Function tbmcontminT.m

led to better results than tbmcontminH.m in our simulation study.

1.5.3 Function tbmmoments.m

[GAMMA,PERIM,AREA,FV] = TBMMOMENTS(BW,W,TYPE,DIR)

Description
Estimation of the parameters of a two dimensional Boolean model using the method of the moments.

Arguments
BW a realization of a two-dimesnional Boolean model.
W the observation window.
TYPE a string with the set of moments to be used: ’pNL’ | ’pNX’.
DIR direction to be use to calculate the specific convexity number: ’top-down’ | ’bottom-up’ |
’left-right’ | ’right-left’.

Value
[gamma, perimeter, area, volfrac]. This function returns the parameters of the two-dimensional
boolean model. It provides a four-dimensional vector, being gamma: number of germs per unit
area; perimeter: mean perimeter of the primary grain; area: mean area of the primary grain and
volfrac: the volume fraction.

Details
The method of moments is based on the area fraction p,the specific boundary length L, the Euler-
Poincare characteristic χ and the specific convexity number N+. The convexity number is calculated
using the configuration The convexity number is defined as the number of first entries in the model

Table 1.1: Calculation of the convexity number N+

0 0 0 ... 0 0 0
0 1 1 ... 1 1 0

in a given direction
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1.5.4 Function tbmblockcorr.m

[DATAM,INTERVAL] = TBMBLOCKCORR(TAMINI,DATA,ALPHA)

Description
Estimation of the mean and confidence interval using the batch-mean method.

Arguments
TamIni initial size of the blocks. A value of 2 is used by default.
Data vector with the data.
alpha p-value for the inverse of Student’s T cumulative distribution function. A value of alpha =
1 - 0.05/2 = 0.975 is used.

Value
A vector with two elements [DataM, Interval]. DataM is the batch-mean and Interval is the
confidence interval.

Dependencies
This function depends on the autocorr function of the Garch Matlab Toolbox.

1.5.5 Function tracs2dtangentpoints.m

NPOINTS = TRACS2DTANGENTPOINTS(BM,W,DIR)

[NPOINTS,X,Y] = TRACS2DTANGENTPOINTS(BM,W,DIR)

Description
Tangent points in a two dimensional random set in a given direction.

Arguments
BM a realization of a two-dimensional random set.
W the observation window.
DIR direction: ’top-down’ |’bottom-up’ |’ left-right’ | ’right-left’.

Details
The tangent points are defined as the first entries in the model in a given direction and are calculated
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using rotations of the configuration given in Table 1.2.

(a) (b)

(c) (d)

Figure 1.2: Tangent points in a two-dimensional Boolean model in red. (a) top-down; (b)
bottom-up; (c) left-right and (d) right-left

1.5.6 Function tracs3dtangentpoints.m

NPOINTS = TRACS3DTANGENTPOINTS(MOV,W,DIR)

[NPOINTS,X,Y,FRAME,MOVRES] = TRACS3DTANGENTPOINTS(MOV,W,DIR)

Description
Tangent points of a Temporal Random Set

Arguments
MOV a realization of a Temporal Random Set.
W the observation window.

11



DIR direction: ’top-down’ |’bottom-up’ |’ left-right’ | ’right-left’.

X,Y,FRAME are row vectors. MOVRES is a movie with the tangent points overlapped on the
model in red color.

Details
The tangent points are defined as the first entries in the model in a given direction and are calculated
using the transpose and/or flips in the direction left-right of the three-dimensional configuration

Table 1.2: Calculation of the tangent points in 3d

conf(:, :, 1)= [ 0 0 0 ... 0 0 0;
0 0 0 ... 0 0 0;]

conf(:, :, 2)= [ 0 0 0 ... 0 0 0;
0 1 1 ... 1 1 0;]

Note this configuration cannot be applied to the first frame.

1.5.7 Function tbmspatialestimation.m

RES = TBMSPATIALESTIMATION(MOV,W,METHOD,TYPE)

RES = TBMSPATIALESTIMATION(MOV,W,METHOD,TYPE, DIR)

Description
Estimation of the spatial parameters of a Temporal Boolean model.

Arguments
MOV a realization of a Temporal Boolean Model.
W the observation window (logical).
METHOD minimum contrast method using the capacity functional T or the contact distribution
function H. Values are: ’ContMinH’, ’ContMinT’.
TYPE if METHOD is ’ContMinH’|’ContMinT’, TYPE is the type of the convex set used in the
minimum contrast method ’disk’|’square’. If METHOD is ’Moments’, TYPE is the set of moments
to be used ’pNL’|’pNX’.
DIR direction used to calculate the specific convexity number: ’top-down’|’bottom-up’|’left-right’|’right-
left’.
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Value
A structure with the estimation of the mean value and the confidence interval of the number of
germs per unit area, of the mean perimeter, of the mean area of the primary grain and of the
volume fraction. The fields of the structure are denoted as Gamma, Perimeter, Area, V f . Each
field is a two-dimensional vector with the the mean and the confidence interval.

Details
W is assumed to have no holes.

1.5.8 Function tbmalphaestimation.m

ALPHAEST = TBMALPHAESTIMATION(MOV,W,A0,TFIN,FPS)

Description
Estimation of the α-function of a Temporal Boolean Model (the mean number of germs that died/are
given born in a time interval).

Arguments
mov a movie with a realization of a Temporal Boolean Model.
W the observation window.
a0 area of the primary grain.
tfin estimation range for the α-function is [0 : 1/fps : tfin].
fps frames per seconds.

Value
It returns a matrix with the number of rows defined by length of [0 : 1/fps : tfin] and two columns.
The first column is the value of the α-function and the second column is the confidence interval
provided by the batch-mean method.

Details
tfin must be high enough to stabilize the value of the α-function.

1.5.9 Function tbmtemporalestimation.m

RES = TBMTEMPORALESTIMATION(MOV,W,FPS,TFIN,A0,GAMMA)

Description
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Estimation of the temporal parameters of a Temporal Boolean model.

Arguments
mov a movie with a realization of a Temporal Boolean Model.
W the observation window.
Fps frames per seconds.
Tfin estimation range for the α-function is [0 : 1/fps : Tfin].
a0 area of the primary grain.
gamma mean number of germs per unit area in any frame.

Value
It returns a structure with the estimation of the of λ, α(s), p(s), β(s), the probability density
function of the durations and the time interval. The fields of the structure are denoted as Lambda,
Alpha, Beta, Ps, Durationspdf and Time.

Details
The value of λ (mean number of germs per unit area and time) is estimated by fitting a first order
polynomial at α(0) and calculating its slope using the first four points, see [1].

1.5.10 Function tracsvolumefraction.m

F = TRACSVOLUMEFRACTION(MOV)

Description
Estimation of the spatial-temporal volume fraction of a realization of a Temporal Random Closed
Sets (TRACS).

Arguments
MOV the movie.

Value
This function returns a scalar, the spatial-temporal volume fraction.

1.5.11 Function tracsisolatedclumps.m

DATA = TRACSISOLATEDCLUMPS(MOV,THECC)
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Description
This function segments the isolated circular clumps, i.e. clumps which boundary is not covered by
any other clump/grain.

Arguments
MOV the movie.
THECC threshold for the eccentricity that is applied to filter the circular shapes.

Value
This function returns a structure with two fields. DATA.POINTS is a structure with the infor-
mation of each isolated clump: X,Y is the location of the center, RAD is the radius of the disk,
LIFE is a vector with the frames in which the grain is alive and N is the grain duration (in frames).
DATA.MOV is a movie in which the isolated grains segmented are represented in light grey.

1.6 Visualization of a TRACS

1.6.1 Function tracs3dplot.m

TRACS3DPLOT(MOV,TIME,COLOR)

Description
This functions plots a three-dimensional reconstruction of a Temporal Random Set.

Arguments
mov a movie with a realization of a Temporal Random Set.
Time observation time interval.
Color a vector with the red, green and blue components.

Value
None.

1.6.2 Function tracs2dplot.m

TRACS2DPLOT(MOV,FRAME)

Description
This functions plots a frame (section) of a Temporal Random Set.
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Figure 1.3: A spatial-temporal reconstruction of a TBM using function tracs3dplot

Arguments
mov a movie with a realization of a Temporal Random Set.
frame frame to be visualized.

Value
None.

1.7 A demo

An example of simulation and estimation of the parameters of a TBM.

W = ones ( 256 , 256 ) ;
T = 30 ;
Fps = 2 ;
S = [ 0 : 1 / Fps :T ] ;
lambda = 0 . 0002 ;
shape = ’ disk ’ ;
t yp e s i z e = ’ uniform ’ ;
paramsize = [8 1 2 ] ;
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typedurat ion = ’ uniform ’ ;
paramduration = [6 1 2 ] ;
mov = . . .
tbmsimulation (S ,W,T, lambda , shape , type s i z e , paramsize , typedurat ion , paramduration )
movie2avi (mov , ’ temporalBM . avi ’ , ’ FPS’ , 1 , ’COMPRESSION’ , ’ none ’ ) ;

method = ’ContMinT ’ ;
Ktype =’ square ’ ;
resSpa = tbmspat i a l e s t imat i on (mov ,W, method , Ktype ) ;

Tf in = 20 ; % in seconds , to c a l c u l a t e alpha−f unc t i on
resTemp = tbmtemporalest imation (mov ,W, Fps , Tfin , resSpa . Area ( 1 ) , resSpa .Gamma( 1 ) ) ;

%Showing r e s u l t s
resSpa .Gamma(1)
resSpa . Per imeter (1 )
resSpa . Area (1 )
resSpa . Vf (1 )

%smoothing the pdf o f the durat ions
resTemp . Durat ionspdf = smooth ( resTemp . Durationspdf , ’ r lowess ’ ) ;

f i g u r e ( 1 ) ;
p l o t ( resTemp . Time , resTemp . Durationspdf , ’ LineWidth ’ , 2 ) ;
x l ab e l ( ’ Time ( seconds ) ’ , ’ FontSize ’ , 1 4 ) ;
y l ab e l ( ’ pdf durat ions ’ , ’ FontSize ’ , 1 4 ) ;
f i g u r e ( 2 ) ;
p l o t ( resTemp . Time , resTemp . Alpha ( : , 1 ) , ’ b ’ , ’ LineWidth ’ , 2 ) ;
hold on ;
p l o t ( resTemp . Time , resTemp . Beta ( : , 1 ) , ’ r ’ , ’ LineWidth ’ , 2 ) ;
p l o t ( resTemp . Time , resTemp . Beta ( : , 1 )+ resTemp . Alpha ( : , 1 ) , ’ g ’ , ’ LineWidth ’ , 2 ) ;
l egend ( ’\ alpha ( t ) ’ , ’\ beta ( t ) ’ , ’\gamma’ )
x l ab e l ( ’ Time ( seconds ) ’ , ’ FontSize ’ , 1 4 ) ;

%es t imat ing the mean durat ion
ED = trapz ( resTemp . Time , resTemp . Time .∗ resTemp . Durat ionspdf )

%value o f the spat io−temporal i n t e n s i t y o f the germ proce s s :
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%the mean number o f germs per un i t area and time
resTemp . Lambda

%to v i s u a l i z e the f i r s t frame o f the sequence
image (mov ( 1 ) . cdata ) , colormap ( gray ( 2 ) ) ;
ax i s o f f

(a) (b) (c)

Figure 1.4: Several consecutive frames of a simulated TBM with cylindrical grains
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Figure 1.5: (a) Estimation of α(t), β(t) and γ. (b) Estimated pdf of the durations
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Chapter 2

Temporal Boolean Functions

Let {(xi, ti, di)}i≥1 be such that {(xi, ti)}i≥1 is a spatial-temporal point process (the locations and
the birth times) and {di}i≥1 a sequence of positive random variables (the durations). Let {fi}i≥1

be a sequence of random functions (from R2 to R) independent and identically distributed (as f0)
almost surely upper semicontinuous and such that {x : fi(x) = z} is almost surely compact. Then
we can consider

f(x, t) = supi:ti≤t≤ti+difi(x− xi). (2.1)

We call this function a random temporal germ-grain function, where {fi}i≥1 are the primary grains,
{(xi, ti)}i≥1 the germs and {di}i≥1 the durations.

We can define a pair (f, g) of such kind of random functions by considering
[
{(xi, ti, di)}i≥1; {(yj , sj , ej)}j≥1

]

where f is defined in (2.1) and g(x, t) = supj:sj≤t≤sj+ejgj(x− yj). We introduce dependencies be-
tween the random functions f and g by generating dependencies between the germs and the birth
times.

2.1 Simulation of Temporal Boolean Functions

2.1.1 Function tbfsimulation.m

TBF = TBFSIMULATION(S,WO,T,LAMBDA,SHAPE,TYPESIZE,PARAMSIZE,TYPEDURATION,PARAMDURATION)

Description
Simulation of a Temporal Boolean Function (TBF).

Arguments
S vector with the sampling times (seconds).
W0 binary image which defines the observation window (pixels).
T length of the time interval (seconds).

19



(a) (b) (c)

Figure 2.1: A realization of a simulated bivariate temporal Boolean function . (a)-(c)
Three consecutive temporal cross-sections. The red color corresponds to events of type 1, the
green color to events of type 2. A linked-pairs model for the germs was used in order to generate
spatial-temporal dependencies between germs types.

LAMBDA mean number of germs per unit area and unit time, i.e, intensity of the Poisson process.
SHAPE shape of the grains. Possible values are: ’ball’ semi-ellipsoids are generated with radii
and heights specified by TYPESIZE and PARAMSIZE.
TYPESIZE the probability density function of the grains sizes and heights. Possible values are:
’uniform’ sizes and heights of the grains are uniformly distributed; ’gaussian’ sizes and heights of
the grains are normally distributed. Truncated Gaussian.
PARAMSIZE parameters of TYPESIZE. If TYPESIZE is uniform, it is a 4-element vector
with [minradius maxradius minheight maxheight]. If TYPESIZE is gaussian, it is a 4-element
vector [meanradius stdradius meanheight stdheight].
TYPEDURATION is the distribution of the grains durations. Possible values are: ’exponential’
(PARAMDURATION is the mean); ’uniform’ (PARAMDURATION is a vector with the
inferior and superior limit of the interval); ’gaussian’ (PARAMDURATION is a vector with the
mean and standard deviation). Truncated Gaussian.

Value
TBF . This function returns an AVI file with the frames corresponding to a realization of a Tem-
poral Boolean Function at times given in S.

Details
See also tbmsimulation.
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2.1.2 Function tbfgrains.m

[SIZESGR N, HEIGHTSGR N] = TBFGRAINS(N, TYPEPDF, PARAM)

Description
Generation of the grains sizes and heights of a Temporal Boolean Function.

Arguments
N number of grains.
TYPEPDF the distribution of the grains sizes and heights. Possible values are: ’uniform’
(PARAM is a 4-element vector [minradius maxradius minheight maxheight]); ’gaussian’ (PARAM
is a 4-element vector [meanradius stdradius meanheight stdheight]). Truncated Gaussian.

Value
This function returns two vectors SIZESGR N, HEIGHTSGR N with N elements each. SIZESGR N
and HEIGHTSGR N are distributed as TYPEPDF with parameters PARAM. Grains are semi-
ellipsoids.

Details
See also tbmgrains.

2.1.3 Function tbfbivariatesimulation.m

BITBF = TBFBIVARIATESIMULATION(S, Wo, T, LAMBDA, SHAPE, TYPESIZE, PARAMSIZE, ... TYPEDURATION,

PARAMDURATION, TYPEMODEL,PARAMMODEL, TYPEDEPENDENCIES,PARAMDEPENDENCIES)

Description
Generation of a bivariate Temporal Boolean Function.

Arguments
S vector with the sampling times (seconds).
Wo binary image with the observation window (pixels).
T length of the time interval (seconds).
LAMBDA mean number of germs per unit area and unit time, i.e, intensity of the Poisson process
(the parents process in the case of a cluster Poisson).
SHAPE shape of the grain. Possible values are: ’ball’ semi-ellipsoids are generated with parame-
ters specified by TYPESIZE and PARAMSIZE.
TYPESIZE probability density function of the grain sizes. Possible values are: ’uniform’ grain
sizes and heights are uniformly distributed; ’gaussian’ grain sizes and heights are normally dis-
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tributed. Truncated Gaussian.
PARAMSIZE parameters of TYPESIZE. If TYPESIZE is uniform, PARAMSIZE is a 8-
element vector [minradius maxradius mingreylevel maxgreylevel] for component-1 and component-
2. If TYPESIZE is gaussian, PARAMSIZE is a 8-element vector [meanradius stdradius mean-
heights stdheights] for component-1 and component-2. Truncated Gaussian.
TYPEDURATION the distribution of the duration of the grains (seconds). Possible values are:
’exponential’ (PARAMDURATION is the mean); ’uniform’ (PARAMDURATION is a vec-
tor with the inferior and superior limits of the interval); ’gaussian’ (PARAMDURATION is a
vector with the mean and standard deviation, truncated Gaussian); ’gamma’ (PARAMDURA-
TION is a vector with the shape and scale parameter).
TYPEMODEL the type of interaction model for the germs. Possible values are: ’linked-pairs’
(also known as Neymann-Scott process); ’clusterPoisson’ parents are the type-1 events and the
offsprings are the type-2 events.
PARAMMODEL if ’linked-pairs’ PARAMMODEL is null [ ], if clusterPoisson PARAM-
MODEL is a 2-element vector with the maximun size of a cluster and the number of offsprings.
TYPEDEPENDENCIES type of dependencies between components. PARAMDEPENDEN-
CIES gives the parameters to uniformly shift the type-1 germs with respect to type-2 germs.
Possible values are: ’spatial’ (if the model is ’linked-pairs’ PARAMDEPENDENCIES is a
2-element vector with [rmin, rmax] (in pixels) and if the model is ’clusterPoisson’ PARAMDE-
PENDENCIES is null [], since the the spatial dependencies are given in PARAMMODEL);
’spatial-temporal’ (if the model is ’linked-pairs’ PARAMDEPENDENCIES is a 4-element vec-
tor [rmin, rmax, tmin, tmax]) and if the model is ’clusterPoisson’ PARAMDEPENDENCIES is
a 2-element vector [tmin, tmax] since the the spatial dependencies are given in PARAMMODEL).

Value
This function returns a struct with three fields (three AVI movies): MOV1, MOV2, MOV12. MOV1
is type-1, MOV2 type-2 and MOV12 is the union (type-1 events are in red and type-2 events are
in green).

Dependencies
R software (http://cran.r-project.org/) and spatstats package. See chapter 4 for details.
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Chapter 3

Bivariate Temporal Random Sets

3.1 Bivariate Temporal Random Sets

3.1.1 Definition

If Φ1 and Φ2 are the temporal random sets associated with the first and second event types re-
spectively, then the random set defined as Φ = (Φ1, Φ2) is a bivariate temporal random set, where
Φi is the i-th component. The distribution of Φ = (Φ1, Φ2) is characterized by the probability
P (Φ1 ↑ K1, Φ2 ↑ K2), i.e. the probability that the temporal random set Φ1 hits K1 and the tem-
poral random set Φ2 hits K2 simultaneously, being K1 and K2 compact subsets of R2 × R+. Fig.
3.1 shows a realization of a bivariate temporal random set.

Our data consist of a pair of sequences of binary images which have been simultaneously cap-
tured, i.e. two discrete sets of equally spaced temporal cross-sections observed through a sampling
time interval T and within a fixed sampling window W . Let φ denote the corresponding realization
of Φ and φ(ti), the area covered at time ti . If t1, t2, . . . , tn are the sampling times, then we will
observe φ(ti) ∩W , where i = 1, . . . , n.

Throughout this paper we assume that (Φ1, Φ2) is jointly stationary, i.e. its joint distribution
is invariant against spatial-temporal translations in R2 × R+. This implies that Φ1 and Φ2 are
marginally stationary. This assumption is a natural and pragmatic simplification, which is tenable
in many real applications and justifies the use of relatively simple non-parametric summaries.

Under stationarity the volume fractions can be considered separately for each component pi =
P (0 ∈ Φi(0)), for i = 1, 2, where the spatial origin 0 denotes an arbitrary location and the temporal
origin 0 denotes an arbitrary time. Note that pi gives the probability that an arbitrary point at
an arbitrary time belongs to the i-th component of the random set and can be interpreted as the
mean volume covered by the i-th temporal random set per area and unit time.
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(a) (b) (c)

Figure 3.1: A realization of a simulated bivariate temporal random set. (a)-(c) Three
consecutive temporal cross-sections. The white color corresponds to events of type 1, the light grey
to events of type 2, and the dark grey to overlapping regions.

Figure 3.2: A spatial-temporal reconstruction: the red color corresponds to type-1 events and
the green color to type-2 events
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3.1.2 Summary statistics for bivariate temporal random sets

We define a generalized version of the Ripley K-function, the covariance and the pair correlation
functions for a bivariate temporal random set, Φ = (Φ1, Φ2). For a given h ∈ R2 and a given time
t ∈ R+, we define the spatial-temporal covariance function as

Cij(h, t) = P (0 ∈ Φi(0),h ∈ Φj(t)), (3.1)

where i, j = 1, 2. This is a natural and direct generalization of the covariance of a random set
(details of various theoretical aspects can be found in [6, 8, 9]). The spatial-temporal covariance
funtion gives us the probability that an arbitrary point observed at an arbitrary time belongs to the
i-th component of the temporal random set and its translation by a vector h and a time t belongs
to the j-th component.

Throughout this paper we assume that (Φ1, Φ2) are jointly spatial (but not temporal) isotropic,
i.e. their joint distribution is invariant against spatial rotations. Under spatial stationarity and
isotropy, the covariance function Cij only depends on the modulus of h, s =‖ h ‖, and on t.

The cross K-function of a bivariate temporal random set can be defined as

pjKij(s, t) = E[ volume covered by the j-th component within a cylinder of radius s and height 2t

centered at a randomly chosen point of the i-th component],

where pj is the volume fraction of Φj .
More formally, it can be expressed as pjKij(s, t) = E[ν3(Φj∩B(0, s)×[−t, t])|0 ∈ Φi(0)], with s, t ≥

0, where ν3 stands for the volume and B(0, s) is the disk centered at an arbitrary location of Φi

with radius s. From the covariance function, the cross K-function can be computed as

Kij(s, t) =
∫ t

−t

∫

B(0,s)

Cij(u, v)
pipj

dudv, (3.2)

with i, j = 1, 2. From (3.1) and (3.2), it holds that Kij(s, t) = Kji(s, t).
Finally, we define the pair correlation function of the bivariate temporal random set as

gij(s, t) =
Cij(s, t)

pipj
. (3.3)

3.1.3 Estimators

Essentially, we replace the (unknown) continuous versions of pi, Cij and Kij with the corresponding
(known) discrete versions. In order to simplify the notation, we assume that the sampling times
are t = 0, δ, 2δ, . . . , nδ; i.e. n + 1 equally spaced frames, where δ is the temporal delay between two
consecutive frames. Our sampling information consists of a sequence of sets {(φi(kδ)∩W,φj(kδ)∩
W )}k=0,...,n.
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A natural estimator for pi is the mean of the area fractions observed at each frame of the
sequence

p̂i =
1

n + 1

n∑

k=0

ν2[φi(kδ) ∩W ]
ν2[W ]

, (3.4)

where ν2 stands for the area. We will estimate the covariance as

Ĉij(h, vδ) =
1

n− v + 1

n−v∑

k=0

ν2

[(
φi(kδ) ∩W

) ∩ (
φj((k + v)δ) ∩W

)− h
]

ν2
[
W ∩W − h

] . (3.5)

We have adopted the minus sampling method [9] to correct edge effects. If the covariance function
does not depend on time, we can estimate it as

Ĉij(h, 0) =
1

n + 1

n∑

k=0

Ĉij(h, kδ). (3.6)

Likewise, if there is no spatial dependence, the following estimator can be used

Ĉij(0, kδ) =
1

ν2(W )

∫

W
Ĉij(h, kδ)dh. (3.7)

Finally, Kij(s, t) and gij(s, t) will be estimated by replacing the volume fraction and the covariance
function in (3.2) and (3.3) with their corresponding estimators given in (3.4) and (3.5).

3.2 Testing spatial and spatial-temporal dependencies

The functions Cij , gij and Kij are used to describe the joint distribution and to test different null
hypotheses. Firstly, we test whether there are spatial dependencies. Secondly, if locations and
times are jointly analyzed, we will test spatial-temporal interactions.

Under complete independence, the covariance function is

Cij(h, t) = P (0 ∈ Φi(0),h ∈ Φj(t)) = P (0 ∈ Φi(0))P (h ∈ Φj(t)) = pipj . (3.8)

In such a case, from (3.3) it holds that gij(s, t) = 1. Values of gij(s, t) greater than one represent a
positive dependence (attraction) and lesser than one represent a negative dependence (inhibition).
Likewise, from (3.2) we have Kij(s, t) = 2πs2t.

For temporally independent random sets, the covariance function does not depend on time and
can be computed as

Kij(s, t) = 4πt

∫ s

0

rCij(r, 0)
pipj

dr. (3.9)

If there is temporal dependence but no spatial association, the covariance function only depends
on time and is calculated as

Kij(s, t) = πs2
∫ t

−t

Cij(0, v)
pipj

dv. (3.10)
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Let us consider the following marginal function:

K(1)
ij (s) =

∫

B(0,s)

Cij(u, 0)
pipj

du. (3.11)

Then, under spatial independence K(1)
ij (s) = πs2.

3.2.1 Testing null hypotheses by using toroidal shift randomizations

Testing null hypotheses can be achieved by means of toroidal shift methods, which provide a non-
parametric way to test complete independence. For convenience, we assume that the sampling
window W is a rectangle. For a given h ∈ W , we denote by Th(A) the toroidal shift (with respect
to W ) of any subset A of W . A toroidal shift is a simultaneous, parallel shift of all points in the
set by the same randomly chosen shift vector h. The rectangle W is treated as a torus and the set
A is shifted within this torus. This method can be extended to the temporal dimension as follows.
Let us consider

T(h,dδ)(φi(kδ) ∩W ) =





Th(φi((k + d)δ) if d = 0, . . . , n− k,

Th(φi((k + d− n)δ) if d = n− k + 1, . . . , n,
(3.12)

where d = 0, . . . , n − 1, being n the total number of frames. Let us consider the random vector
(H, D) such that H (distance) and D (lag) are independent; H is uniform in W , H ∼ Unif(W ); and
D is uniform in {0, . . . , n− 1}. From the original observed image sequence {(φ1(kδ) ∩W,φ2(kδ) ∩
W )}k=1,...,n, we generate H = h and D = d obtaining a randomly modified sequence {(φ1(kδ) ∩
W,T(h,dδ)(φ2(kδ) ∩W )}k=1,...,n in which the second component has been spatially and temporally
shifted over the first one.

Let us see a short explanation of the testing procedure using the cross Kij-function. First, the
cross K-function is calculated for the original pair of binary image sequences, giving us K̂ij,0. Next,
for m randomized pairs in which we keep the original sequence of type 1 events and randomize
type 2 events, we obtain K̂ij,n with n = 1, . . . , m. A graphical analysis to test independence can
be performed by displaying K̂ij,0 along with the lower and upper envelopes obtained from the m

functions associated with the randomizations. The region delimited by both envelopes quantifies
the variability when independence between components is assumed. The function K̂ij,0 should be
contained within both envelopes under the null hypothesis of independence between event types.
A similar approach is used to test spatial independence. In this case, the random variable D is
chosen to degenerate at 0.

Apart from the graphical test, a p-value corresponding to a Monte Carlo test can be computed.
Independence would imply that the sampling distribution of K̂ij is invariant to random toroidal
shifts. We can conduct a Monte Carlo test of independence by computing a suitable test statistic
and comparing the value calculated for K̂ij,0 with the values obtained from the randomizations K̂ij,n,
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with n = 1, . . . ,m. This methodology was proposed in [3] and applied there to point processes.
Under the hypothesis of independence

P (Kij,0(s, t) > U(s, t)) = P (Kij,0(s, t) < L(s, t)) =
1

m + 1
, (3.13)

where the lower envelope is defined as L(s, t) = minn=1,...,m K̂ij,n(s, t) and the upper envelope is
U(s, t) = maxn=1,...,m K̂ij,n(s, t).

An exact test can be performed using the test statistic dn =
∫ +∞
0 (Kij,n(s, t)− K̄ij,n(s, t))2dsdt,

where K̄ij,n(s, t) =
∑m

r=0,r 6=n
Kij,r(s,t)

m . All the rankings of d0 are equiprobable under the null
hypothesis. If d(j) denotes the j-th largest among dn, with n = 0, . . . , m, then, P (d0 = d(j)) =

1
m+1 with j = 0, . . . , m, and rejection of the null hypothesis on the basis that d0 ranks the k-th
largest or higher gives an exact one-sided test with p-value equal to 1− k

m+1 .

3.2.2 Estimating the spatio-temporal interval of dependencies

Let us consider the random events {0 ∈ Φ1(0)} and {h ∈ Φ2(t)} and let us denote s =‖ h ‖.
Supposing that we have rejected the null hypothesis of complete independence, then from (3.8) it
holds that there is a pair of values (s, t) such that Cij(s, t) − pipj 6= 0 and therefore {0 ∈ Φ1(0)}
and {h ∈ Φ2(t)} are not independent. Note that this does not imply that the same statement is
true for any pair (s, t). In fact in many real applications there are only local dependencies in such a
way that for large s and t these two events {0 ∈ Φ1(0)} and {h ∈ Φ2(t)} will be independent. For
a given s it is expected that the events will be independent for t values larger than a fixed point
that depends on s.

Given (s0, t0), let (hn, tn) (with n = 1, . . . ,m) be a random sample uniformly distributed in[
B(0, s0 + δ1) \ B(0, s0 − δ1)

] × [t0 − δ2, t0 + δ2] where δ1, δ2 > 0. For every translation vector
(hn, tn), we perform a toroidal shift of φ1 over φ2 and estimate the covariance functions from these
new pair of sequences, Ĉij,n(hn, tn). Then, a two-sided Monte Carlo test applied to the difference
Ĉij,n(hn, tn) − p̂ip̂j provides us with a p-value. By applying this procedure to different values of
(s0, t0) we have a function p(s0, t0), a map of p-values. This map is a graphical representation of
the p-values providing at which distances and temporal lags the two components show significant
dependencies.

3.3 Functions for the analysis of dependencies between types in

bivariate TRACS

3.3.1 Function tbmbivariatesimulation

BITBM = TBMBIVARIATESIMULATION(S,Wo,T,LAMBDA,SHAPE,TYPESIZE,PARAMSIZE,...

TYPEDURATION,PARAMDURATION,TYPEMODEL,PARAMMODEL,TYPEDEPENDENCIES,PARAMDEPENDENCIES)
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Description
Generation of a bivariate temporal Boolean model.

Arguments
S vector with the sampling times (seconds).
Wo binary image with the observation window (pixels).
T length of the time interval (seconds).
LAMBDA mean number of germs per unit area and time, i.e, intensity of the Poisson process
(the parents process in the case of a cluster Poisson).
SHAPE shape of the primary grain. Possible values are: ’disk’ disks are generated with radii
distributed as TYPESIZE; ’square’ squares are generated with side length distributed as TYPE-
SIZE.
TYPESIZE the distribution of the grain sizes. Possible values are: ’uniform’ (PARAMSIZE
is a vector with the inferior and superior limits of the interval); ’gaussian’ (PARAMSIZE is a
vector with the mean and standard deviation, Ttruncated Gaussian).
TYPEDURATION the distribution of the duration of the grains (seconds). Possible values are:
’exponential’(PARAMDURATION is the mean); ’uniform’ (PARAMDURATION is inferior
and superior limits of the interval); ’gaussian’ (PARAMDURATION is the mean and standard
deviation, truncated Gaussian); ’gamma’ (PARAMDURATION is the shape and scale param-
eter).
TYPEMODEL the type of interaction model for the germs. Possible values are: ’linked-pairs’
(also known as Neymann-Scott process); ’clusterPoisson’ parents are the type-1 events and the
offsprings are the type-2 events.
PARAMMODEL if ’linked-pairs’ PARAMMODEL is NULL [], if clusterPoisson PARAM-
MODEL is a 2-element vector with the maximun size of a cluster and the number of offsprings.
TYPEDEPENDENCIES type of dependencies between components. PARAMDEPENDEN-
CIES gives the parameters to uniformly shift the type-1 germs with respect to type-2 germs. Possi-
ble values are: ’spatial’ (if the model is ’linked-pairs’ PARAMDEPENDENCIES is a 2-element
vector with [rmin, rmax] (in pixels) and if the model is ’clusterPoisson’ PARAMDEPENDENCIES
is null [], since the the spatial dependencies are given in PARAMMODEL), ’spatial-temporal’ (if
the model is ’linked-pairs’ PARAMDEPENDENCIES is a 4-element vector [rmin, rmax, tmin,
tmax]) and if the model is ’clusterPoisson’, PARAMDEPENDENCIES is a 2-element vector
[tmin, tmax] since the the spatial dependencies are given in PARAMMODEL).

Value
This function returns a struct with three fields (three AVI movies) denoted as: mov1, mov2, mov12.
MOV1 is type-1, MOV2 type-2 and MOV12 is the union. Type-1 events are in white, type-2 events
are in light-gray and overlapping areas in dark gray.
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Dependencies
R software http://cran.r-project.org/) and spatstat package. See chapter 4 for details.

3.3.2 Function tracsrandomization.m

MOVSHIFTED = TRACSRANDOMIZATION(MOV,H,T)

Description
Toroidal shift randomization of a TRACS.

Arguments
MOV a movie with the realization of a TRACS.
H a 2-dimensional vector with the spatial shift [hx hy] (pixels).
T the temporal shift (frames).

Value
This function returns an AVI file (binary or grey-level image sequence).

3.3.3 Function tracscrossC.m

C = TRACSCROSSC(S,T,MOV1,MOV2)

Description
Cross-covariance of a TRACS.

Arguments
S vector with the radii of disks where evaluate the cross-covariance.
T vector with the frames to evaluate the cross-covariance or an scalar with value T=0 (case in
which the covariance does not depend on time). T must have an odd number of elements and must
take the value 0, for example T=[-10:2:10]. We assume both sequences have the same length in
frames and size in pixels.

Value
This function returns the cross-covariance within a disk of radius given in S and time interval T
(in frames) for movies MOV1, MOV2. C is integrated over the angles [-pi:pi:pi].
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3.3.4 Function tracscrossCh0.m

C = TRACSCROSSCH0(H,MOV1,MOV2)

Description
Cross-covariance of a TRACS.

Arguments
H the spatial shift in polar coordinates (pixels, radians).
MOV1 movie of the first component of the bivariate TRACS.
MOV2 movie of the second component of the bivariate TRACS.

Value
This function returns the cross-covariance given a vector displacement H for movies MOV1, MOV2.
C is an scalar, the value of the cross-covariance at (H,0). C is integrated over the angles [-pi:pi:pi].
The estimation method depends on the type of dependencies: spatial or spatial-temporal. Here,
we assume there is only spatial dependencies.

Details
We assume both sequences have the same length in frames and size in pixels.

3.3.5 Function tracscrossCht.m

C = TRACSCROSSCHT(H,T,MOV1,MOV2)

Description
Cross-covariance of a TRACS.

Arguments
H the spatial shift in polar coordinates (pixels, radians).
T the temporal shift (frames).
MOV1 movie of the first component of the bivariate TRACS.
MOV2 movie of the second component of the bivariate TRACS.

Value
This function returns the cross-covariance given a vector displacement H and time T (frames) for
movies MOV1, MOV2. C is an scalar, the value of the cross-covariance at (H,T).

Details
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We assume that both sequences have the same length in frames and size in pixels.

3.3.6 Function tracscrossK1.m

K1 = TRACSCROSSK1(S,C,FVI,FVJ)

Description
The K1-function within a disk of radii given in S.

Arguments
S a vector with the radii of a disk where K1 is evaluated.
C the cross-covariance, a vector of size 1 × length(S)
FV1 the volume fraction of the 1st-component.
FV2 the volume fraction of the 2nd-component.

Value
K1, a vector of size length(S), with the values of K1 within a disk of radii given in S.

3.3.7 Function tracscrossK.m

K = TRACSCROSSK(S,T,C,FVI,FVJ)

Description
The K-function within a disk of radii given in S (pixels) and time interval given in T (frames).

Arguments
S vector with the radii of a disk (pixels) where K is evaluated.
T vector with the frames where K is evaluated, for example T=[-10:2:10].
C the cross-covariance.
FV1 the volume fraction of the 1st-component.
FV2 the volume fraction of the 2nd-component.

Value
This function returns a matrix with K.
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3.3.8 Function tracspvalueMC.m

pvalue = TRACSPVALUEMC(F, NREP, S)

Description
This function provides the p-value of the Monte Carlo test for descriptor F.

Arguments
F is a matrix with the value of the descriptors for the observed model and NREP replica. Rows
correspond to the replica. The observed model is assumed to be the first row.
NREP number of replica.
S the radii of disks (pixels) where F is evaluated.

pvalue = TRACSPVALUEMC(F, NREP, S,T)

T a vector with the frames where K is evaluated.

Value
The p-value.

3.3.9 Function tracspvaluemapMC.m

pvaluemap = TRACSPVALUEMAPMC(S,T,MOV1, MOV2, NREP)

Description
This function calculates and plots the p-values of the Monte Carlo test by applying a bootstrap
procedure to the cross-covariance.

Arguments
S vector with the radii of the disks where the cross-covariance is evaluated.
T vector with the frames where the cross-covariance is evaluated.
MOV1, MOV2 the movies.
NREP number of replica.

Value
A matrix with the maps of p-values for movies MOV1 and MOV2 evaluated within a disk with
radii given in S (pixels) and frames given in T for NREP replica for the cross-covariance.
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3.3.10 Demos

The scripts ScriptSpatial.m and ScriptSpatialTemporal.m show how to calculate the covariance
function, the K-function, L-function and the pair correlation functions.

Calculating the p-value map

W = ones (256 , 256 ) ;
T = 40 ;
fp s = 2 ;
s = [ 1 : 1 / fp s :T ] ;
lambda = 0 . 0001 ;
shape = ’ disk ’ ;
t yp e s i z e = ’ uniform ’ ;
paramsize = [5 5 ] ;
typedurat ion = ’ uniform ’ ;
paramduration = [6 6 ] ;
typemodel = ’ l inked−pa i r s ’ ;
parammodel = [ ] ;
typedependenc ies = ’ spa t i a l−temporal ’ ;
paramtypedependencies = [ 0 6 0 4 ] ;

bimov = tbmbivar i a t e s imu la t i on ( s ,W,T, lambda , shape , type s i z e , paramsize , . . .
typedurat ion , paramduration , . . .
typemodel , parammodel , typedependencies , . . .
paramtypedependencies ) ;

srad = [ 0 : 2 : 2 0 ] ;
t = [ 0 : 2 : 3 0 ] ;
nrep = 40 ;
v = [ 0 . 0 1 0 .025 0 .05 0 .1 0 .2 0 .3 0 .4 0 . 5 0 . 6 0 .7 0 .8 0 . 9 ] ;

pva lues=tracspvaluemapMC ( srad , t , bomov . mov1 , bimov . mov2 , nrep ) ;
f i g u r e ;
[ c , h ] = contour ( t , srad , pvalues , v ) ; c l a b e l ( c , h ) , c o l o rba r ;
y l ab e l ( ’ s ( p i x e l s ) ’ , ’ FontSize ’ , 1 8 ) ;
x l ab e l ( ’ t ( frames ) ’ , ’ FontSize ’ , 1 8 ) ;
dlmwrite ( ’ pva lues s t −1. txt ’ , pvalues , ’ ’ ) ;
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Figure 3.3:

3.4 Visualization of a bivariate-TRACS

3.4.1 Function tracsbi3dplot.m

TRACSBI3DPLOT(MOV1,MOV2,TIME,COLOR1, COLOR2)

Description
Plot a three-dimensional reconstruction of a bivariate TRACS.

Arguments
MOV1, MOV2 movies of a realization of a bivariate TRACS.
TIME observation time interval.
COLOR1, COLOR2 a vector with the red, green and blue components.

Value
None.

3.5 Functions for the analysis of dependencies between types in

bivariate fuzzy TRACS

3.5.1 Function tracsfuzzygetalpha.m

ALPHA = TRACSFUZZYGETALPHA(MOV,BETA)
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Description
This function provides the Vorobev alpha-cuts.

Arguments
MOV the movie, MOV is a grey-level image sequence.
BETA the Vorobev α-cuts are calculated as the mean + BETA times the standard deviation.

Value
This function returns the Vorobev α-cuts calculated as the mean + BETA times the standard
deviation. ALPHA is a matrix of size lenght(MOVIE) × length(BETA).

Dependencies
R software and fda and splines packages ttp://cran.r-project.org/}\subsection{Demos}Te
scripts ScriptSpatialFUZZY.m and ScriptSpatialTemporalFUZZY.m are the respective fuzzy ver-
sions of the covariance function, the K-function, L-function and the pair correlation function.
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Chapter 4

Installation

This package consists of a set of m-files compressed into a zip file. Unzip them to a folder and then
add this folder to Matlab’s path.

Any type of comments or bug reports are appreciated. Please send your comments to elena.diaz@uv.es.
Functions tracsfuzzygetalpha.m, tbmbivariatesimulation.m and tbfbivariatesimulation.m

depend on R package, edit the mcode and replace the string C : \Archivos de programa \R \R−
2.6.1 \ bin \R.exe with the path where R software is installed. http://cran.r-project.org/. Or
edit the file tracs.conf and modify the string named RPATH.

To obtain further details of each function of the Toolbox, you can type help functionname.m

in the Matlab command window.
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