A generalized single-channel method for retrieving land surface temperature from remote sensing data

Juan C. Jiménez-Muñoz and José A. Sobrino
Global Change Unit, Department of Thermodynamics, Faculty of Physics, University of Valencia, Burjassot, Spain

Received 3 February 2003; revised 27 June 2003; accepted 13 August 2003; published 18 November 2003.

[1] Many papers have developed algorithms to retrieve land surface temperature from at-sensor and land surface emissivity data. These algorithms have been specified for different thermal sensors on board satellites, i.e., the algorithm used for one thermal sensor (or a combination of thermal sensors) cannot be used for other thermal sensor. The main goal of this paper is to propose a generalized single-channel algorithm that only uses the total atmospheric water vapour content and the channel effective wavelength (assuming that emissivity is known), and can be applied to thermal sensors characterized with a FWHM (Full-Width Half-Maximum) of around 1 μm actually operative on board satellites. The main advantage of this algorithm compared with the other single-channel methods is that in-situ radiosoundings or effective mean atmospheric temperature values are not needed, whereas the main advantage of this algorithm compared with split-window and dual-angle methods is that it can be applied to different thermal sensors using the same equation and coefficients. The validation for different test sites shows root mean square deviations lower than 2 K for AVHRR channel 4 (λ ≈ 10.8 μm) and ATSR-2 channel 2 (λ ≈ 11 μm), and lower than 1.5 K for Landsat Thematic Mapper (TM) band 6 (λ ≈ 11.5 μm).

INDEX TERMS: 1640 Global Change: Remote sensing; 3359 Meteorology and Atmospheric Dynamics: Radiative processes; 3360 Meteorology and Atmospheric Dynamics: Remote sensing; KEYWORDS: land surface temperature, single-channel, remote sensing

1. Introduction

[2] The importance of land surface temperature (LST) for environmental studies has been highlighted by several authors: Barton [1992], Lagouarde et al. [1995], Qin and Karnieli [1999], Dash et al. [2002], Schmugge et al. [2002], etc. Various algorithms have been developed to retrieve LST from at-sensor and auxiliary data: single-channel methods, split-window technique and multi-angle methods. To apply the last two methods at least two thermal channels are required. The estimation of LST with only one thermal channel is the main advantage for single-channel methods. For example, this is the only method that can be applied to the Landsat platform, with one thermal channel (Thematic Mapper, band 6). Traditionally, the main disadvantage of this method is that some atmospheric parameters are needed, usually by mean of a radiosounding. Our main goal in this paper is to propose a generalized single-channel algorithm that can be applied to different sensors onboard a satellite. This algorithm uses the same minimum input data that the dual-channel and dual-angle algorithms and assumes that land surface emissivity is known: the effective wavelength of the sensor, the atmospheric water vapour content and the at-sensor data (brightness temperature or at-sensor radiance).

2. Theory

[3] On the basis of radiative transfer equation, the at-sensor radiance \(L_{\lambda \text{ at-sensor}} \) for a given wavelength \(\lambda \) can be written with a good approximation as

\[
L_{\lambda \text{ at-sensor}} = \left[\varepsilon_\lambda B(\lambda, T_a) + (1 - \varepsilon_\lambda) L_{\lambda \text{ atm}} \right] \tau_\lambda + L_{\lambda \text{ atm}}^{\text{upwelling}}
\]

(1)

where \(\varepsilon_\lambda \) is the surface emissivity, \(B(\lambda, T_a) \) is the radiance emitted by a blackbody at temperature \(T_a \) (It should be noted that \(T_a \) is the LST mentioned in the paper), \(L_{\lambda \text{ atm}} \) is the down-welling radiance, \(\tau_\lambda \) is the total transmission of the atmosphere (transmissivity) and \(L_{\lambda \text{ atm}}^{\text{upwelling}} \) is the up-welling atmospheric radiance. All these magnitudes also depend on the observation angle. The expression for \(B(\lambda, T_a) \) is given by the Planck’s law:

\[
B(\lambda, T_a) = \frac{c_1 \lambda^{-5}}{\exp \left(\frac{c_2}{\lambda T_a} \right) - 1}
\]

(2)

with \(c_1 = 1.19104 \cdot 10^8 \) w μm\(^{-4}\) m\(^{-2}\) sr\(^{-1}\) and \(c_2 = 1.43877 \cdot 10^4 \) μm K, \(B(\lambda, T_a) \) is given in w m\(^{-2}\) sr\(^{-1}\) μm\(^{-1}\) if \(\lambda \) is given in μm.
It is difficult to obtain from Equations (1) and (2) an operative expression for \(T_s \). However, a linear relationship between radiance and temperature can be found from the Taylor’s approximation around a certain temperature value \((T_0)\):

\[
B(\lambda, T_s) = B(\lambda, T_o) + \left[\frac{\partial B(\lambda, T_o)}{\partial T_s} \right]_{T_s=T_0} (T_s - T_o) \equiv \frac{\partial B(\lambda, T_o)}{\partial T_s} (T_s - T_o) + \beta(\lambda, T_o) T_s
\]

\((3)\)

where

\[
\alpha(\lambda, T_o) \equiv \frac{\partial B(\lambda, T_o)}{\partial T_s} (T_s - T_o)
\]

\((4a)\)

\[
T_o = B(\lambda, T_o) \left[1 - \frac{c_2 B(\lambda, T_o)}{c_1} (\frac{T_s - T_o}{T_s^2}) \right] + \frac{c_2 B(\lambda, T_o)}{c_1} (\frac{T_s - T_o}{T_s^2}) \left[\frac{x^4}{1} B(\lambda, T_o) + \frac{1}{x} \right]
\]

\((4b)\)

From Equations (1) and (3), and taking into account that the atmospheric parameters (\(\tau_\lambda, L_{\lambda}^{atmos} \) and \(L_{\lambda}^{atmos} \)) depend mainly on the atmospheric water vapour content \((w)\) in the thermal infrared region, it is possible to obtain the following equation:

\[
T_s = \gamma(\lambda, T_o) \left[\psi_1(\lambda, w) L_{\lambda}^{at-sensor} \right. \\
+ \psi_2(\lambda, w) + \psi_3(\lambda, w) \left. \right] + \delta(\lambda, T_o)
\]

\((5)\)

In this equation there is a dependence on two parameters obtained from the linear approximation of the Planck’s law, \(\gamma \) and \(\delta \), and a dependence on three functions obtained from the atmospheric parameters, \(\psi_1, \psi_2 \) and \(\psi_3 \) (hereinafter referred to as the atmospheric functions), given by

\[
\gamma(\lambda, T_o) \equiv \frac{1}{\beta(\lambda, T_o)}; \delta(\lambda, T_o) \equiv \frac{\alpha(\lambda, T_o)}{\beta(\lambda, T_o)}
\]

\((6)\)

\[
\psi_1(\lambda, w) \equiv \frac{1}{\tau(\lambda, w)}; \psi_2(\lambda, w) \equiv -L_{\lambda}^{atmos}(\lambda, w) - \frac{L_{\lambda}^{atmos}(\lambda, w)}{\tau(\lambda, w)}; \psi_3(\lambda, w) \equiv L_{\lambda}^{atmos}(\lambda, w)
\]

\((7)\)

In all the equations the radiances are given in \(\text{W m}^{-2} \text{sr}^{-1} \mu \text{m}^{-1} \), the temperatures in K, the wavelength in \(\mu \text{m} \) and the water vapour content in \(\text{g/cm}^2 \).

The dependence on the water vapour content is due to that this atmospheric component is the main absorber in the thermal infrared region. It should be noted that up-welling and down-welling radiances also depends on other parameters as mean atmospheric temperature, surface pressure, etc. However, in order to obtain an expression for the atmospheric functions, a simulation has been carried out, as will be explained in the next section (see section 3). In this simulation standard atmospheres has been considered. These atmospheres have been characterized by their atmospheric water vapour content. So the dependence on the other parameters are implicitly included in the numerical coefficients obtained from the simulation procedure.

To obtain LST from Equation (5), five input data are needed (assuming that the expressions for the atmospheric functions are known):

\(\gamma \) i) Land Surface Emissivity (\(\epsilon \)): can be obtained using different methods as the Becker and Li’s day/night method [Becker and Li, 1995], the Thermal SWIR Radiance Ratio Model and the \(\Delta \) day method [Goita and Rover, 1997], the NDVI thresholds method [Sobrino and Raissouni, 2000], the Temperature and Emissivity Separation method [Gillespie et al., 1998], etc.

\(\delta \) ii) At-sensor radiance (\(L_{\lambda}^{at-sensor} \)): this magnitude is known, so is the measurement carried out by the sensor (In fact, the measurement given by the sensor are the Digital Counts, and a calibration is needed in order to obtain the physical magnitude called radiance).

\(\psi \) iii) A temperature value near to the LST value \((T_o)\): this value can be chosen as an initial estimate of the surface temperature obtained with some methods (for example split-window or dual-angle algorithms) as is proposed by Gu and Gillespie [2000]. Other possibility is to choose \(T_o \) as the at-sensor brightness temperature \((B(\lambda, T_o) = L_{\lambda}^{at-sensor}) \) if the atmospheric effect in not so significant (low atmospheric water vapour content).

\(\tau \) iv) Atmospheric water vapour content \((w)\): can be obtained from satellite data using different methods [Gao and Goetz, 1990a, 1990b; Kaufman and Gao, 1992; Gao et al., 1993; Sobrino et al., 2003, etc.]. The atmospheric water vapour content can be also measured in situ using manual sunphotometers as Microtops II or photometric systems as CIMEL318-2 [P. Utrillas, personal communication, 2003] or Multi-Filter Rotating Shadowband Radiometer-MFRSR [Prata, 2000].

\(\psi \) v) Wavelength for the channel considered \((\lambda)\): this value must be calculated as an effective wavelength for the channel having the characteristic response function \(R(\lambda) \) with the following equation:

\[
\lambda_{eff} = \frac{\int f(\lambda) d\lambda}{\int f(\lambda) d\lambda}
\]

\((8)\)

If the filter response, \(f(\lambda) \), is not available, the central wavelength can be also used, but worse results will be expected. To sum up, to retrieve LST from Equation (5), land surface emissivity and water vapour content values are only needed.

3. Obtaining the Atmospheric Functions by Means of a Simulation

As has been commented in the previous section, the atmospheric functions \(\psi_1, \psi_2 \) and \(\psi_3 \) must be obtained by a simulation procedure. The MODTRAN 3.5 radiative transfer code [Abreu and Anderson, 1996] has been used to predict the atmospheric parameters \(\tau_\lambda, L_{\lambda}^{atmos} \) and \(L_{\lambda}^{atmos} \) for different atmospheric profiles. For this purpose,
a set of around 60 radiosoundings have been extracted from the TOVS Initial Guess Retrieval (TIGR) database [Scott and Chedin, 1981] and used as input data in the MODTRAN code. These radiosoundings cover the variability of surface temperature (from 250 K to 320 K) and atmospheric water vapour content (from 0.15 g/cm² to 6.71 g/cm²) on a world-wide scale. Two different types of attenuation of the surface radiance have been considered: 1) the attenuation produced by water vapour only with profiles given in TIGR radiosoundings, and 2) that produced by both the water vapour profile data and the uniformly mixed gases (CO₂, N₂O, O₃, CO and CH₄) included in the standard atmospheres of the MODTRAN 3.5 code [Sobrino et al., 1993a]. The MODTRAN 3.5 code has been executed in thermal radiance mode for a view angle of nadir and for clear-sky conditions (no aerosols effect).

[13] The results obtained with MODTRAN 3.5 are spectral values, while the sensor on board a satellite measures with finite banded radiometers having the characteristic response function f(λ), so the measurement carried out by the sensor is a weighted average value ⟨x⟩ given by

$$\langle x \rangle = \frac{\int x(\lambda)f(\lambda)d\lambda}{\int f(\lambda)d\lambda}$$ \hspace{1cm} (9)$$

where x is any spectral parameter considered as radiance and transmissivity. The main goal of the single-channel algorithm proposed in this paper is the general use for any sensor on board a satellite, so we propose a general response function (called Gaussian-Triangular filter and abbreviated as GT filter) with a full-width half-maximum (FWHM) value of 1 μm (see Table 1). The expression for the response function has been obtained taking into account a mixed function composed by a gaussian and a triangle function to avoid the infinite contribution of the guassian tails (see Figure 1):

$$f_{GT}(\lambda) = \begin{cases}
\lambda - \lambda_0 + 1 \Rightarrow \lambda_0 - 1 < \lambda < \lambda_0 - 0.5 \\
\text{exp} \left[-\frac{(\lambda - \lambda_0)^2}{0.3607}\right] \Rightarrow \lambda_0 - 0.5 < \lambda < \lambda_0 + 0.5 \\
\lambda - \lambda_0 + 1 \Rightarrow \lambda_0 + 0.5 < \lambda < \lambda_0 + 1
\end{cases}$$ \hspace{1cm} (10)$$

where λ₀ is the central wavelength (in μm).

Table 1. Effective Wavelength and Full-width-Half-maximum (FWHM) Values for Some Typical Thermal Sensors Used in Remote Sensing

<table>
<thead>
<tr>
<th>Platform</th>
<th>Sensor</th>
<th>FWHM, μm</th>
<th>λ_{effective}, μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANDSAT 5</td>
<td>TM-6</td>
<td>2.1</td>
<td>11.457</td>
</tr>
<tr>
<td>NOAA-14</td>
<td>AVHRR-4</td>
<td>1.0</td>
<td>10.789</td>
</tr>
<tr>
<td>NOAA-14</td>
<td>AVHRR-5</td>
<td>1.0</td>
<td>12.004</td>
</tr>
<tr>
<td>ERS 2</td>
<td>ATSR-2-12</td>
<td>1.0</td>
<td>12.065</td>
</tr>
<tr>
<td>ERS 2</td>
<td>ATSR-2-11</td>
<td>0.9</td>
<td>10.857</td>
</tr>
<tr>
<td>ENVISAT</td>
<td>AATSR-11</td>
<td>1.0</td>
<td>12.051</td>
</tr>
<tr>
<td>ENVISAT</td>
<td>AATSR-12</td>
<td>1.0</td>
<td>12.051</td>
</tr>
<tr>
<td>TERRA</td>
<td>ASTER-13</td>
<td>0.7</td>
<td>10.659</td>
</tr>
<tr>
<td>TERRA</td>
<td>ASTER-14</td>
<td>0.7</td>
<td>11.289</td>
</tr>
<tr>
<td>TERRA</td>
<td>MODIS-31</td>
<td>0.5</td>
<td>11.015</td>
</tr>
<tr>
<td>TERRA</td>
<td>MODIS-32</td>
<td>0.5</td>
<td>12.041</td>
</tr>
<tr>
<td>MOS</td>
<td>VTI</td>
<td>1.0</td>
<td>11.000*</td>
</tr>
<tr>
<td>MOS</td>
<td>VTI</td>
<td>2.0</td>
<td>11.500*</td>
</tr>
<tr>
<td>Nimbus 7</td>
<td>CZCS-6</td>
<td>2.0</td>
<td>11.500*</td>
</tr>
</tbody>
</table>

*Central wavelength.

Figure 1. Gaussian-Triangular (GT) filter centered at 11 μm with a full-width-half-maximum (FWHM) value of 1 μm.

[14] Once the simulated filter response has been obtained, a convolution has been applied to all the predicted atmospheric parameters (τλ, L^{atm}_λ and L^{atm}_w) according to the following equation:

$$\langle \tau \rangle = \int f(\lambda - \lambda')\tau(\lambda')d\lambda'$$ \hspace{1cm} (11)$$

(the same expression can be applied to L^{atm}_λ and L^{atm}_w).

Figure 2 illustrates the spectral transmissivity values (in the 8–13 μm region) simulated with MODTRAN 3.5 and the convolved ones using the Equation (11), in which a smoothed curve is observed.

[15] From convolved values of the atmospheric parameters and Equation (7), it is easy to obtain the atmospheric functions for every wavelength and for every atmospheric water vapour content. Once the atmospheric functions values have been obtained, the objective is to find the explicit dependence for these functions with the atmospheric water vapour content and the wavelength from the

Figure 2. Transmissivity spectrum obtained with MODTRAN 3.5 and convolved transmissivity using the GT filter for an atmosphere with a water vapour content of 0.75 g/cm².
three-degree dependence on the wavelength:

\[L = a_j x^j \]

The numerical coefficients \(a_j \) have been considered: \(a_j = 0.00032 \) for \(j = 0 \), \(a_j = 0.0348 \) for \(j = 1 \), \(a_j = 0.0986 \) for \(j = 2 \), \(a_j = 0.23672 \) for \(j = 3 \), \(a_j = 0.77133 \) for \(j = 4 \), and \(a_j = 3.2199 \) for \(j = 5 \).

4. Sensitivity Analysis

In order to apply the single-channel method proposed in the paper, land surface emissivity, atmospheric water vapour, effective wavelength and at-sensor brightness temperature (or at-sensor radiances) are needed. Errors on these parameters will lead to errors on the LST. To analyze the impact of these errors on the LST retrieved with the generalized single-channel method, the following equation is used:

\[
\delta T_{st} = |T_{st}(x + \delta x) - T_{st}(x)|
\]

where \(\delta T_{st} \) is the error on the LST, \(x \) is the parameter for which the sensitivity analysis is performed and \(\delta x \) is the error on this parameter. \(T_{st}(x + \delta x) \) and \(T_{st}(x) \) indicates the LST obtained with the single-channel algorithm when a value of \(x + \delta x \) and \(x \) is considered, respectively.

The sensitivity analysis is performed and \(\delta x \) is the error on this parameter. \(T_{st}(x + \delta x) \) and \(T_{st}(x) \) indicates the LST obtained with the single-channel algorithm when a value of \(x + \delta x \) and \(x \) is considered, respectively. The statistical fits for the whole thermal infrared region [8–14 \(\mu m \)] provide results not accurate enough, so two sub-regions have been considered: [8–10 \(\mu m \)] and [10–12 \(\mu m \)]. The numerical coefficients \(a_k, b_k, c_k, d_k \) obtained with statistical fits in the region [10–12 \(\mu m \)] are showed in Table 2. The numerical coefficients obtained for the region [8–10 \(\mu m \)] are not presented, so all the thermal sensors used in the validation do not work in this region (see section 5). From Equation (12), Equations (13a) to (13d) and the data showed in Table 2 it is possible to calculate the atmospheric functions using effective wavelength and atmospheric water vapour content as input data, and then retrieve the LST from Equation (5).

Table 2. Numerical Expression for the Atmospheric Functions

<table>
<thead>
<tr>
<th>AF</th>
<th>Spectral Functions</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_{k1})</td>
<td>(\eta_{k2})</td>
<td>0.00090 (\lambda^3 \times -0.01638 \lambda^2 + 0.04745 \lambda + 0.27436)</td>
</tr>
<tr>
<td>(\xi_{k1})</td>
<td>(\xi_{k2})</td>
<td>0.00032 (\lambda^3 \times -0.06148 \lambda^2 + 1.2021 \lambda - 6.2051)</td>
</tr>
<tr>
<td>(\chi_{k1})</td>
<td>(\chi_{k2})</td>
<td>0.00986 (\lambda^3 \times -0.23672 \lambda^2 + 1.7133 \lambda - 3.2199)</td>
</tr>
<tr>
<td>(\varphi_{k1})</td>
<td>(\varphi_{k2})</td>
<td>0.15431 (\lambda^3 \times +5.2757 \lambda^2 - 60.1170 \lambda + 229.3139)</td>
</tr>
</tbody>
</table>

where AF, Atmospheric function; R, correlation.

The simulated database. For this purpose, three-degree expressions are proposed in the following way:

\[
\psi_k = \eta_{k1} \lambda^3 + \xi_{k1} \lambda^2 + \chi_{k1} \lambda + \varphi_{k1} (k = 1, 2, 3)
\]

where \(\eta_{k1}, \xi_{k1}, \chi_{k1}, \varphi_{k1} \) are spectral functions with three-degree dependence on the wavelength:

\[
\theta_{k1} = a_{1} \lambda^3 + a_{2} \lambda^2 + a_{3} \lambda + a_{4} (k = 1, 2, 3)
\]

\[
\theta_{k2} = b_{1} \lambda^2 + b_{2} \lambda + b_{3} (k = 1, 2, 3)
\]

\[
\theta_{k3} = c_{1} \lambda^3 + c_{2} \lambda^2 + c_{3} \lambda + c_{4} (k = 1, 2, 3)
\]

\[
\theta_{k4} = d_{1} \lambda^3 + d_{2} \lambda^2 + d_{3} \lambda + d_{4} (k = 1, 2, 3)
\]

Figure 3. Errors on land surface temperature \(T_{st} \) due to the errors on the land surface emissivity.

Figure 4. Errors on land surface temperature \(T_{st} \) due to the errors on the atmospheric water vapour content, the effective wavelength and the at-sensor brightness temperature.
to an error on the LST between 0.1 K and 0.4 K. The ATSR sensor has a noise error less than 0.1 K, which leads to a negligible error on the LST.

5. Validation

[17] In order to validate the methodology proposed in this paper, the following thermal sensors and test sites with in-situ LST data set have been chosen:

[18] a) SENSORS: AVHRR channels 4 and 5 onboard NOAA-11 and NOAA-12 (called as AVHRR-4 and AVHRR-5), ATSR2 channels 1 and 2 onboard ERS-2 (called as ATSR2-12 and ATSR2-11), and Landsat Thematic Mapper band 6 onboard LANDSAT (called as TM-6).

[19] b) SITES: Hay, Walpeup and Uardry in Australia [Prata, 1994], Requena-Utiel in Spain [Sobrino et al., 1997b; Boluda et al., 1998] and central Canada [Sellers et al., 1995]. The results obtained for the Australian database are shown in Table 3, with standard deviations of 1.6 K, 1.9 K and 2 K for AVHRR-4, AVHRR-5, ATSR2-11 and ATSR2-12, respectively. For AVHRR-5 and ATSR2-12 high bias values have been also obtained: 1.4 K and 1.9 K, respectively. It should be noted that the in situ LST values have been obtained from vegetation and soil temperatures measured in situ according to the fraction of bare soil and vegetation inside the field of view of the field radiometer, as is explained in [Prata, 1994]. The comparison between the results obtained with the same sensor but different wavelengths allow us to extract the following remarks:

[20] 1) AVHRR-4 versus AVHRR-5: the LST retrieved with AVHRR-4 data gives lower bias and standard deviation values compared with AVHRR-5 ones. In terms of root mean square deviation (rmsd), a value of 1.6 K for AVHRR-4 and a value of 2.4 K for AVHRR-5 has been obtained. The results obtained with AVHRR-4 agree with typical split-window algorithms developed by NOAA-AVHRR and applied to the same data set [Sobrino et al., 1998]. For example, the algorithm proposed in this paper improves the results obtained using the split-window algorithms developed by Prata and Platt [1991], Price [1984], Ulivieri et al. [1992], Sobrino et al. [1993b] and May et al. [1992], with rmsd values of 2.1 K, 2.6 K, 1.9 K, 1.7 K and 2.9 K, respectively. The same rmsd value (1.6 K) is obtained from the Becker and Li’s algorithm [Becker and Li, 1990]. However, the algorithm developed by Sobrino and Raissouni [2000] gives a lower rmsd value, of around 1.3 K.

[21] 2) ATSR2-11 versus ATSR2-12: the LST retrieved with ATSR2-11 data gives a lower rmsd value, of around 2 K, compared with the ATSR2-12 one, of around 2.8 K. This result agrees with the one obtained with split-window algorithms developed for ATSR2 [Sobrino et al., 2003], of around 1.9 K. It is possible to improve the results using dual-angle algorithms, which provides rmsd values of 1.3 K and 1.1 K.

[22] According to the results obtained, sensors with effective wavelengths near to 11 μm are more adequate to retrieve LST with a single-channel method than sensors with effective wavelengths near to 12 μm. Although the LST should be theoretically the same for different wavelengths, the higher absorption at wavelengths near to 12 μm in comparison with wavelengths near to 11 μm introduces higher errors on the LST retrieval. In a similar way, it is expected to obtain higher errors when the atmospheric water vapour content is high, so in this case the atmospheric absorption is greater. This fact is observed in the validation of the BOREAS (BOReal forest Ecosystem Study) data. The BOREAS field measurements were collected during the summer of 1994 and encompassed a one million square kilometer region in central Canada. The measurements were carried out coinciding with the NOAA11-AVHRR overpass. In Table 4 it is shown the results obtained for the validation using the generalized single-channel method proposed in the paper for different atmospheric water vapour contents. As the region is a mixture of lakes, coniferous and deciduous forests, an emissivity equal to 0.99 has been chosen for each wavelength. The atmospheric water vapour content varies from 0.05 g/cm² to 5.4 g/cm². When all the data are considered, a rmsd value of 5 K for AVHRR-4 is obtained. However, a great improvement is achieved when only data with atmospheric water vapour content from 0.05 g/cm² to 3 g/cm² is considered. In this case, a rmsd value of 1.8 K is obtained for AVHRR-4. The deviation between LST measured in situ and the one obtained from the split-window algorithms proposed by Ulivieri et al. [1994] and Sobrino et al. [1997a] was less than 4 K for all the cases. This fact illustrates the influence of the atmospheric water vapour content on the error of the LST retrieved with a single-channel method.

[23] With regard to Landsat TM-6 data, only values of emissivity measured in situ and radiosounding data were available. From at-sensor data extracted from the Landsat image, emissivity values and atmospheric parameters obtained from the radiosounding and the MODTRAN 3.5 code, values of LST has been reproduced using Equation (1).

Table 3. Validation of the Generalized Single-Channel Equation

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Test Site</th>
<th>Number Data</th>
<th>w, g/cm²</th>
<th>Bias, K</th>
<th>σ, K</th>
<th>rmsd, K</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVHRR-4</td>
<td>Hay, Walpeup (Australia)</td>
<td>309</td>
<td>0.8–1.2</td>
<td>0.19</td>
<td>1.57</td>
<td>1.58</td>
</tr>
<tr>
<td>AVHRR-5</td>
<td>Hay, Walpeup (Australia)</td>
<td>309</td>
<td>0.8–1.2</td>
<td>1.36</td>
<td>1.92</td>
<td>2.35</td>
</tr>
<tr>
<td>ATSR2-11</td>
<td>Uardry (Australia)</td>
<td>36</td>
<td>0.6–2.1</td>
<td>0.66</td>
<td>1.87</td>
<td>1.98</td>
</tr>
<tr>
<td>ATSR2-12</td>
<td>Uardry (Australia)</td>
<td>36</td>
<td>0.6–2.1</td>
<td>1.88</td>
<td>2.02</td>
<td>2.76</td>
</tr>
</tbody>
</table>

a, standard deviation; rmsd, root mean square deviation.

Table 4. Validation of the Generalized Single-Channel Equation From the BOREAS Experiment and AVHRR Data

<table>
<thead>
<tr>
<th>w, g/cm²</th>
<th>Number Data</th>
<th>AVHRR-4</th>
<th>AVHRR-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05–5</td>
<td>110</td>
<td>2.33</td>
<td>5.03</td>
</tr>
<tr>
<td><4</td>
<td>100</td>
<td>1.41</td>
<td>3.16</td>
</tr>
<tr>
<td><3</td>
<td>82</td>
<td>0.51</td>
<td>1.72</td>
</tr>
<tr>
<td><2</td>
<td>57</td>
<td>0.18</td>
<td>1.59</td>
</tr>
</tbody>
</table>

a, standard deviation; rmsd, root mean square deviation.
Table 5. Validation of the Generalized Single-Channel Equation and Comparison With the Algorithm Developed by Qin et al. [2001] Using Landsat TM-6 Data Acquired Over Requena-Utiel (Spain)

<table>
<thead>
<tr>
<th>Plot</th>
<th>(T_{\text{s, obs}}) K</th>
<th>(e_{\text{in situ}})</th>
<th>(T_{\text{s, in situ}}) K</th>
<th>(T_{\text{s, atm}} - T_{\text{s, Qin}}) K</th>
<th>(T_{\text{s, atm}} - T_{\text{s, Qin-rad}}) K</th>
<th>(T_{\text{s, atm}} - T_{\text{s, acl2}}) K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reddish soil</td>
<td>307.81</td>
<td>0.974</td>
<td>313.66</td>
<td>-2.43</td>
<td>0.55</td>
<td>-1.29</td>
</tr>
<tr>
<td>Light soil</td>
<td>306.24</td>
<td>0.948</td>
<td>313.48</td>
<td>-2.19</td>
<td>0.67</td>
<td>-1.50</td>
</tr>
<tr>
<td>Brown soil</td>
<td>307.72</td>
<td>0.962</td>
<td>314.35</td>
<td>-2.36</td>
<td>0.63</td>
<td>-1.37</td>
</tr>
<tr>
<td>Vinc</td>
<td>306.96</td>
<td>0.990</td>
<td>311.63</td>
<td>-2.48</td>
<td>0.43</td>
<td>-1.23</td>
</tr>
<tr>
<td>Mixed soil</td>
<td>308.53</td>
<td>0.967</td>
<td>314.99</td>
<td>-2.43</td>
<td>0.63</td>
<td>-1.32</td>
</tr>
<tr>
<td>Clayish soil</td>
<td>308.24</td>
<td>0.966</td>
<td>314.70</td>
<td>-2.41</td>
<td>0.62</td>
<td>-1.33</td>
</tr>
<tr>
<td>Mount site</td>
<td>302.60</td>
<td>0.984</td>
<td>306.74</td>
<td>-2.52</td>
<td>-0.02</td>
<td>-1.09</td>
</tr>
<tr>
<td>Bias</td>
<td>-2.40</td>
<td>0.50</td>
<td>-1.30</td>
<td>-2.40</td>
<td>0.50</td>
<td>-1.30</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>0.11</td>
<td>0.25</td>
<td>0.13</td>
<td>2.41</td>
<td>0.56</td>
<td>1.31</td>
</tr>
<tr>
<td>rmsd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The atmospheric data for the day of the acquisition of the Landsat image are the following: atmospheric transmissivity is 0.818, air temperature is 302.55 K, atmospheric temperature = 287.37 K, atmospheric water vapour content = 1.181 g/cm². \(e_{\text{in situ}} \), emissivity measured in situ at 11 μm; \(T_{\text{s, atm}} \) LST obtained from in situ emissivity and radiosounding data using the radiative transfer equation; \(T_{\text{s, Qin}} \), LST obtained from the Qin et al.’s algorithm; \(T_{\text{s, Qin-rad}} \), LST obtained from the Qin et al.’s algorithm using radiosounding data; \(T_{\text{s, acl2}} \), LST obtained from the generalized single-channel method proposed in the paper; \(\sigma \), standard deviation; rmsd, root mean square deviation.

It should be noted that the LST obtained in this way assumes a well calibration of the sensor, which is not always true. The results obtained for the LANDSAT/TM-6 sensor have been compared with the ones obtained using the mono-window algorithm developed by Qin et al. [2001], in which air temperature is needed in order to calculate the mean atmospheric temperature (see Table 5). Qin et al.’s algorithm provides low standard deviation values, of around 0.1 K, but high bias values, of around -2.4 K, which means a rmsd value of 2.4 K. The generalized single-channel equation proposed in the paper provides a similar standard deviation value (0.1 K) but improves the bias (-1.3 K), with a final value for rmsd of 1.3 K. As is expected, Qin et al.’s algorithm provides better results when the mean atmospheric temperature is estimated from the in-situ radiosounding data. In this case, low bias, standard deviation and rmsd values are obtained, 0.5 K, 0.3 K and 0.6 K respectively. However, it is possible to improve lightly these results using the methodology presented in the paper, as will be shown bellow (see section 6.1).

[24] It should be noted that the main error source in the methodology proposed is the assumption of an ideal filter response (with a FWHM of 1 μm) for all the thermal sensors. Despite of the filter response for many typical thermal sensors shows significant differences with the GT filter (see Figure 5), the results obtained in the validation agree with the results obtained with other methods to retrieve LST.

6. Particularized Expressions

[25] Equation (12), (13a) to (13d) and Table 2 can be used to obtain general atmospheric functions, i.e., for any thermal channel working in the 10–12 μm region. However, there are some particular cases in which the expressions proposed in the paper can be simplified and easily applied. These cases are discussed in this section.

6.1. Atmospheric Functions for Landsat TM-6

[26] In Section 3 the numerical coefficients for the atmospheric functions depending on the wavelength and the atmospheric water vapour content have been obtained using an ideal filter response. However, Figure 3c shows significant differences between the TM-6 filter response and the GT filter one. It is possible to obtain the appropriate atmospheric functions for Landsat TM-6 using the TM-6 filter response instead of the GT filter response. It should be noted that the numerical coefficients obtained are only applicable to a particular sensor and the general application of the single-channel equation is lost, but it is expected to obtain more accurate values. The following atmospheric functions have been obtained for Landsat TM-6:

\[
\psi_{1}^{TM6} = 0.14714 w^{2} - 0.15583 w + 1.1234 \quad (15a)
\]

\[
\psi_{2}^{TM6} = -1.1836 w^{2} - 0.37607 w - 0.52894 \quad (15b)
\]

\[
\psi_{3}^{TM6} = -0.04554 w^{2} + 1.8719 w - 0.39071 \quad (15c)
\]

The validation carried out using these atmospheric functions shows a rmsd value of 0.5 K, improving the one obtained with the general atmospheric functions (1.3 K, see Table 5). As has been commented in the validation section (see section 5), the LST in situ used for validating Landsat TM-6 data has been estimated assuming a well calibration of the sensor, so the rmsd value obtained indicates the accuracy of the approximations involved in the development of the generalized single-channel method. This result checks up the validity of the linear approximation of the Planck’s law if a good value of To (see Equation 3) is chosen.

[27] The methodology presented in this section can be used to obtain specific atmospheric functions for the thermal channels of any sensor. In this way, more accurate values are expected, but generality is lost, so these functions can be only applied to particular sensors.

6.2. Sea Surface Temperature (SST) Retrieval

[28] Assuming an emissivity equal to the unity for water, Equation (5) can be simplified as:

\[
T_{s} \approx \gamma(\lambda, T_{o}) \left[\psi_{1}^{SST}(\lambda, w) I_{\lambda}^{atm-sensor} + \psi_{2}^{SST}(\lambda, w) \right] + \delta(\lambda, T_{o}) \quad (16)
\]

In this case, the atmospheric functions are given by

\[
\psi_{1}^{SST}(\lambda, w) = \frac{1}{\tau(\lambda, w)} \psi_{2}^{SST}(\lambda, w) = \frac{I_{\lambda}^{atm-sensor}(\lambda, w)}{\tau(\lambda, w)} \quad (17)
\]
The same methodology proposed in section 3 can be used to obtain the explicit dependence on the wavelength and the atmospheric water vapour content for these atmospheric functions. The atmospheric function \(y_1^{SST} \) has the same expression and, therefore, the same numerical coefficients that the generalized algorithm. The atmospheric function \(y_2^{SST} \) can be obtained from Equation (12) and the following expressions with a correlation of 0.991 (in the region [10–12 \(\mu \text{m} \)]):

\[
\begin{align*}
\eta_{2\lambda} & = -0.027015 \lambda^3 + 0.82661 \lambda^2 - 8.5005 \lambda + 29.3086 \\
\xi_{2\lambda} & = 0.12772 \lambda^3 - 4.0027 \lambda^2 + 42.0045 \lambda - 147.7348 \\
\chi_{2\lambda} & = -0.23034 \lambda^3 + 7.1745 \lambda^2 - 74.8482 \lambda + 261.0593 \\
\varphi_{2\lambda} & = 0.33896 \lambda^3 - 11.4902 \lambda^2 + 129.9832 \lambda - 490.5483
\end{align*}
\]

(18a) (18b) (18c) (18d)

7. Estimating the Wavelength for LST Retrieval

The best wavelength to retrieve LST is the one for which the atmospheric transmissivity is maximum. To estimate this wavelength, the atmospheric function \(y_1 \) can be used, so this expression is the inverse of the atmospheric transmissivity (see Equation 7). In order to obtain this wavelength, the following condition must be applied:

\[
\text{maximum/minimum : } \frac{dy_1}{d\lambda} = 0
\]

Taking into account the previous expression, it is possible to obtain the following equation, which must be solved to calculate the optimal wavelength (\(\lambda_{op} \)):

\[
A(w)\lambda^2 + B(w)\lambda + C(w) = 0 \Rightarrow \lambda_{op}(w) = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}
\]

(19) (20)

where

\[
\begin{align*}
A(w) & \equiv 0.0027 w^3 + 0.00096 w^2 + 0.02958 w - 0.46293 \\
B(w) & \equiv -0.03276 w^3 - 0.12296 w^2 - 0.47344 w + 10.5514 \\
C(w) & \equiv 0.04745 w^3 + 1.2021 w^2 + 1.7133 w - 60.1170
\end{align*}
\]

(21a) (21b) (21c)

Figure 5. Comparison between the GT filter and (a) AVHRR 4 and 5 filters, (b) ATSR2 11 and 12 filters, (c) TM-6 filter and (d) ASTER 13 and 14 filters.
It should be noted that maximum transmissivity values are obtained for minimum ψ_1 values, so to select one of the two possible solutions of the Equation (20) the following condition must be applied:

$$\min \frac{d^2 \psi_1}{d\lambda^2} > 0$$ \hspace{1cm} (22)

Figure 6 illustrates the graph of the effective λ_{op} versus the atmospheric water vapour content. The optimal wavelength values changes from 11.2 to 10.3 μm when the atmospheric water vapour changes between 0.1 and 6.7 g/cm2. As an example, for atmospheric water vapour content of 1.0 g/cm2, the best wavelength is 11.0 μm, while for a water vapour value of 4.0 g/cm2, 10.5 μm is the best one.

8. Conclusions

A generalized single-channel method has been developed to retrieve land surface temperature from remote sensing data for any thermal sensor with a full-width half-maximum value near to 1 μm and validated over different test sites. The best results are obtained for those thermal channels with effective wavelength near to 11 μm: for AVHRR-4, ATSR2-11 and TM-6 root mean square deviation values of 1.6 K, 2 K and 1.3 K have been obtained. Thermal channels with effective wavelength near to 12 μm provide worse results, with root mean square deviation values higher than 2 K for AVHRR-5 and ASTR2-12. Although theoretically the LST should be the same for different wavelengths, the higher absorption at wavelengths near to 12 μm in comparison with wavelengths near to 11 μm introduces higher errors on the LST retrieval, so the atmospheric correction is stronger. Higher errors are also introduced when the atmospheric water vapour content is greater: a rmsd lower than 1.8 K has been obtained from AVHRR-4 data acquired in the BOREAS experiment when the atmospheric water vapour content is less than 3 g/cm2. However, values of rmsd between 3 K and 5 K are obtained when data acquired with atmospheric water vapour content greater than 3 g/cm2 is included.

Specific expressions have been found for Landsat TM-6, improving the rmsd values from 1.3 K with the generalized method to 0.5 K with the specific one (assuming a well calibration of the sensor). Finally, an estimation of the best wavelength to retrieve land surface temperature have been made, showing that this wavelength decreases with the atmospheric water vapour content. As an example, at 11 μm the transmissivity is maximum when the atmospheric water vapour content is 1 g/cm2.

Acknowledgments. We wish to thank to the European Union (WATERMED, project ICA3–CT–1999–00015) and the Ministerio de Ciencia y Tecnologia (project REN2001–3105/CLI) for the financial support, and also to Guillén Soria for his help.

References

[30] A generalized single-channel method has been developed to retrieve land surface temperature from remote sensing data for any thermal sensor with a full-width half-maximum value near to 1 μm and validated over different test sites. The best results are obtained for those thermal channels with effective wavelength near to 11 μm: for AVHRR-4, ATSR2-11 and TM-6 root mean square deviation values of 1.6 K, 2 K and 1.3 K have been obtained. Thermal channels with effective wavelength near to 12 μm provide worse results, with root mean square deviation values higher than 2 K for AVHRR-5 and ASTR2-12. Although theoretically the LST should be the same for different wavelengths, the higher absorption at wavelengths near to 12 μm in comparison with wavelengths near to 11 μm introduces higher errors on the LST retrieval, so the atmospheric correction is stronger. Higher errors are also introduced when the atmospheric water vapour content is greater: a rmsd lower than 1.8 K has been obtained from AVHRR-4 data acquired in the BOREAS experiment when the atmospheric water vapour content is less than 3 g/cm2. However, values of rmsd between 3 K and 5 K are obtained when data acquired with atmospheric water vapour content greater than 3 g/cm2 is included.

[31] Specific expressions have been found for Landsat TM-6, improving the rmsd values from 1.3 K with the atmospheric water vapour content is less than 3 g/cm2.

Gao, B. C., and F. H. Goetz, Determination of total column water vapor in the atmosphere at high spatial resolution from AVIRIS data using spectral curve fitting and band ratioing techniques, SPIE Imaging Spectrosc. Terr. Environ., 1298, 138–149, 1990b.

Qin, Z., A. Karmieli, and P. Berliner, A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its...

J. C. Jiménez-Muñoz and J. A. Sobrino, Global Change Unit, Department of Thermodynamics, Faculty of Physics, University of Valencia, S-46100, Burjassot, Spain. (jcjm@uv.es; jose.sobrino@uv.es)
