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NDVI (Normalized Difference Vegetation Index) has been widely used to monitor vegetation changes since
the early eighties. On the other hand, little use has been made of land surface temperatures (LST), due to their
sensitivity to the orbital drift which affects the NOAA (National Oceanic and Atmospheric Administration)
platforms flying AVHRR sensor. This study presents a new method for monitoring vegetation by using NDVI

- and LST data, based on an orbital drift corrected dataset derived from data provided by the GIMMS (Global
ﬁgf\\xords. Inventory Modeling and Mapping Studies) group. This method, named Yearly Land Cover Dynamics (YLCD),
LST characterizes NDVI and LST behavior on a yearly basis, through the retrieval of 3 parameters obtained by
linear regression between NDVI and normalized LST data. These 3 parameters are the angle between
regression line and abscissa axis, the extent of the data projected on the regression line, and the regression
coefficient. Such parameters characterize respectively the vegetation type, the annual vegetation cycle length
and the difference between real vegetation and ideal cases. Worldwide repartition of these three parameters
is shown, and a map integrating these 3 parameters is presented. This map differentiates vegetation in
function of climatic constraints, and shows that the presented method has good potential for vegetation
monitoring, under the condition of a good filtering of the outliers in the data.

Vegetation monitoring

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Traditionally, vegetation has been monitored by remote sensing
through vegetation indices, among which the NDVI (Normalized
Difference Vegetation Index) is by far the most widely used. However,
NDVI has been showed to be responding primarily to the highly
absorbing red reflective band, thus mimicking red reflectance and
saturating over forested regions, while being sensitive to canopy
background variation in arid and semi-arid areas (Huete et al., 1997).
Therefore, additional information is needed to complete NDVI
information and palliate these drawbacks. Few attempts have been
made by the scientific community to integrate additional information
to vegetation monitoring, mainly through the analysis of at sensor
brightness temperatures. However, since the remotely sensed data
with the longest time extent is derived from the AVHRR (Advanced
Very High Resolution Radiometer) sensor aboard NOAA (National
Oceanic and Atmospheric Administration) satellites, and since these
data are contaminated by orbital drift of the NOAA platforms,
observation of vegetation index and temperature relationships have
been limited to short time series (Nemani & Running, 1997), for which
orbital drift can be neglected.
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To this date, the relations between NDVI and land surface
temperature (LST) have been studied in two different ways. The first
one is related to their spatial variation, when the purpose is the
determination of land surface parameters such as surface moisture or
evapotranspiration; the second one is related to their temporal variation,
to characterize vegetation changes. However, some of the studies carried
out used LST retrieved only from sensor brightness temperatures (BT). In
those cases, LST is replaced by BT in the following paragraphs.

Nemani and Running (1989) studied temporal variations of NDVI and
BT in Montana, showing that this relation evolved in time. The slope
between BT and NDVI was sensitive to changes in canopy resistance,
identifying this slope as a useful parameter for evapotranspiration
estimation. Ehrlich and Lambin (1996) built a land cover classification of
Africa through principal component analysis of BT/NDVI slopes over a
year of monthly data. This classification compared well with a previous
classification. Schultz and Halpert (1995) studied the correlations
between NDVI, BT and precipitation over the globe, evidencing a
generally positive correlation, especially in the high and middle
latitudes, with some subtropical areas presenting a negative correlation.
They also found low correlations between NDVI and BT anomaly. Lambin
and Ehrlich (1996) reviewed extensively the drivers between NDVI and
BT, and described a general spatial pattern of relationships between
NDVI and BT, related to land cover. They concluded that BT/NDVI slope
could be used to classify land cover, and monitor land cover changes over
time, when associated to seasonality information, retrieved from NDVI
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annual variations alone. Nemani and Running (1997) used BT and NDVI
annual variations to build a classification over United States (later
extended to the whole globe) which they validated against previous
classification. They also presented an approach to characterize changes
in NDVI and LST parameters, which has been used in other studies
(Julien etal., 2006). Lambin and Ehrlich (1997) used the results of Lambin
and Ehrlich (1996) to build a change index based on NDVI and BT to
retrieve change patterns in sub-Saharan Africa, which they found to be
highly erratic due to interannual climatic variability. Sobrino and
Raissouni (2000) presented two methods for land cover change
detection in Morocco based on NDVI and LST annual variations. Borak
et al. (2000) confirmed that coarse resolution estimates of change were
best related to fine resolution estimates when BT and NDVI evolutions
were considered. Bayarjargal et al. (2006) compared various drought
indices retrieved from satellite data over Mongolia arid regions, among
which BT and NDVI ratio, and concluded that no index could be selected
as most reliable, and that these indices were difficult to relate to ground
observations.

As for spatial variations, Nemani et al. (1993) used remotely sensed
NDVI and BT to estimate surface moisture status in western Montana
(USA), observing a strong negative relationship between NDVI and LST
over all present biomes (grass, crops and forests). Gillies et al. (1997)
validated the estimation of surface soil water content and energy
fluxes from NDVI and BT with ground measurements, leading to an
accuracy around 20% in these parameters. Clarke (1997) used the
combined values of NDVI and BT to detect water stress in irrigated
fields. Goward et al. (2002) used Simplified Simple Biosphere model to
examine LST/NDVI relationships with biophysical parameters. Near-
surface soil moisture, incident radiation, plant stomatal function and
to a lesser degree, wind speed were found to be the most critical
parameters. Soil moisture estimates from satellite data obtained using
a model derived equation showed good concordance with ground
measurements. Sandholt et al. (2002) designed a Temperature-
Vegetation Dryness Index, related to surface moisture status from
relationships between BT and NDVI, which they validated by
comparison with a hydrological model over Senegal. Hope et al.
(2005) evidenced a negative linear relationship between LST and NDVI
in Arctic tundra ecosystems. Wang et al. (2006) designed a method for
retrieving evaporative fraction from a combination of day and night
LST and NDVI with an increased accuracy. Yue et al. (2007) studied
Landsat retrieved NDVI and BT over various urban classes, and showed
that each class presented a different pattern of relationship, validating
those parameters for urban land occupation classification. Finally,
Goetz (1997) showed that the use of data with different spatial
resolution led to similar results regarding spatial and temporal
behavior of BT/NDVI relationship.

As a conclusion to this review, few studies have used LST coupled
with NDVI for vegetation monitoring, BT parameter being generally
preferred over LST because of the simplicity of its estimation.
Moreover, temporal analyses of the relation between LST and NDVI
have been limited to theory and classification purposes, while spatial
analyses have been carried out only locally, generally to estimate
biophysical parameters linked to photosynthesis. Moreover, no global
analysis of the NDVI-LST relationship has ever been carried out, due to
the orbital drift present in NOAA/AVHRR data, which make retrieved
LST temporally incoherent.

The approach chosen in this study is to use LST and NDVI parameters
as a tool for describing land covers. To this end, a dataset of LST and NDVI
has been built and corrected from orbital drift, and the annual behavior
of NDVI and LST has been studied. Finally, a map describing the annual
behavior of NDVI and LST relationship has been built.

2. Data

This study uses GIMMS (Global Inventory Modeling and Mapping
Studies) data (Tucker et al., 2005) provided by M. E. Brown of the

NASA Goddard Space Flight Center (USA). This dataset has global
coverage (with exception of Antarctica) from November 2000 to
December 2006 time period, which corresponds to NOAA-16 and
NOAA-17 activity. These data are quasi 15-day composites, and have
a spatial resolution of 8 km. 8 km spatial resolution was obtained by
forward mapping of the satellite data in NOAA level 1B format
(Kidwell, 1998) to the output bin closest to the center location of
each 8 km grid cell, and respective calibration values were applied to
each channel (Vermote & Kaufman, 1995). At this resolution, land
cover is mainly heterogeneous, however, assuming a good geo-
referencing of the data by the GIMMS group, the observed pixels
correspond to the same area. The images were then composited by
the GIMMS group following the NDVI MVC (Maximum Value
Compositing) technique (Holben, 1986), which means that daily
NDVI images were calculated and aggregated in quasi 15 day
composites by selecting the day for which maximum NDVI value is
reached during each compositing period for each pixel. This
reference day for the given pixel is also chosen for compositing the
rest of the available channels. These data are described in details in
Sobrino et al. (in press), and have been corrected from orbital drift
using the method described in Sobrino et al. (in press).

3. Yearly Land Cover Dynamics (YLCD) methodology

NDVI and LST time series have been retrieved for the period
November 2000 to December 2006. LST estimates have been obtained
using the method developed by Sobrino and Raissouni (2000). In a
first step, these data have been reprojected from continental Albers
projection to global lat/lon projection. In a second step, average years
of NDVI and LST have been calculated over the whole period, by
averaging the data over each corresponding compositing period in
order to reduce the influence of residual errors. Then, a few
representative pixels have been selected for visualizing yearly
trajectories of NDVI and LST parameters. These representative pixels
are located in the following areas: Landes forest, in France; Atacama
desert, in Chile; Sahara desert, in Lybia; Gobi desert, in China; a boreal
forest, in Sweden; tropical rainforests, in Amazonia, central Africa, and
Sumatra. Fig. 1 shows these trajectories.

Fig. 1 shows that arid areas (Lybia, Gobi and Atacama deserts) tend
to have a vertical trajectory in the NDVI-LST feature space, while
tropical rainforests (Congo, Amazonia, Sumatra) tend to have a
horizontal trajectory. Other areas (Landes, Sweden) show an oblique
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Fig. 1. Trajectories of LST-NDVI for 8 control points.
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trajectory. As for yearly trajectory amplitude, Sweden shows by the far
the longest, since snow presence in winter diminishes considerably
NDVI and LST values. However, arid areas as well as tropical
rainforests do exhibit significant yearly amplitude, limited to only
one of the two parameters: NDVI for tropical rainforests, and LST for
deserts.

From these trajectories, one can observe general patterns in the
NDVI-LST feature space. These general patterns can be summarized
with 3 parameters, which can be obtained by simple linear regression
between LST and NDVI:

- the angle of the regression line with the abscissas axis,
- the length of the yearly cycle,
- the accuracy of the regression.

To obtain the yearly cycle length, we decided to project
orthogonally each NDVI-LST ensemble of points on its regression
line. Since orthogonal projection only makes sense in an orthonor-
mal basis, we decided to normalize LST data between 0 and 1 as
follow:

(LST-LST,pis)

LST= (LSTpyax—LSTin)

(M

where LST is the normalized LST, and LST., and LSTna.x are
respectively the chosen minimum and maximum LST values. We
have fixed LST y;, to 240 K, and LSTy,,.« to 340 K. This has the advantage
of setting the NDVI-LST regression line angle to the whole -90° to 90°
range.

Finally, the 3 chosen parameters for description of the yearly
trajectory in the NDVI-LST feature space are the following:

- 6, angle of the NDVI-LST regression line with the abscissa axis,

- d, maximum distance of the projected NDVI-LST on the regression
line,

- R?, regression coefficient, which describes the accuracy of the
regression, as the rate between the variance of the regression
values and the variance of the data.

These 3 parameters are presented Fig. 2. 6 characterizes the
relationship between NDVI and LST parameters, which is land cover
dependent. For example, arid areas do exhibit little variation in NDVI
while annual LST cycle can be extended (0 ~ +90°). Vegetation

04 doco + Sweden |
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Fig. 2. Chosen parameters for vegetation description in the LST-NDVI feature space.

growth in semi-arid areas is limited by water availability, meaning
that NDVI peak happens generally with lower temperatures (6<0°).
Temperature limited vegetation grows when temperature are
higher, meaning that high NDVI values are reached for higher LST
values (6>0°). Finally, some areas see few changes in LST during the
year, though NDVI values may vary (6~0°). These areas correspond
generally to highly vegetated areas such as rainforests. d char-
acterizes the length of the annual cycle of the land cover. For
example, areas covered with snow during winter (low NDVI and low
LST) and with tall grasses (medium NDVI and medium LST) such as
tundra ecosystems have a large d value, while tall grasses in
savannahs for example do have a much shorter NDVI-LST annual
cycle, resulting in smaller d values. Of course, the cases presented
above to illustrate 6 and d values are ideal cases, NDVI and LST
extreme values do not coincide usually for most land covers. R? is a
measure of the distance between ideal cases and actual land cover
NDVI-LST annual behavior.

4. Results

These 3 parameters have been retrieved for all pixels from the
average year of NDVI and LST. Fig. 3 shows the spatial repartition of
these parameters at global scale. As one can observe from Fig. 3a, 0
gives a good description of vegetation type: arid areas tend to have
vertical yearly trajectories in NDVI-LST feature space, translated in 6
values greater than 70° or lower than 80°, due to a low NDVI
variation throughout the year, while LST do have a yearly amplitude,
result of seasonal differences in climate; semi-arid areas have
negative values, showing that high NDVI values are reached at low
LST values, easily explained by the fact that their vegetation is water
limited and not temperature limited; tropical rainforests have 6
values close to null, due to the fact that this vegetation type regulates
its temperature (LST corresponding in this case to canopy tempera-
ture), maintaining it constant throughout the year, while NDVI
values fluctuate depending on seasonal cloud cover (Huete et al.,
2006); finally, temperate and boreal areas show a positive 6 value,
corresponding to high NDVI values reached for high LST values, as
temperature is usually the limiting parameter for plant growth in
these areas.

As regards d parameter (Fig. 3b), its repartition is simpler: areas
with snow cover during winter show higher d values, since snow
presence decreases both NDVI and LST values. Arid areas and tropical
rainforests have little yearly amplitude in the NDVI-LST feature space,
showing low d values. However, semi-arid areas have higher d values,
due to the difference between NDVI values for bare soil and punctual
vegetation growth, coupled with a LST yearly cycle comparable to arid
areas.

As for the regression coefficient (Fig. 3c), R? values are close to 1
(perfect fit) for boreal and temperate areas, as well as for Sahel, North-
East Brazil, Western Australia and Southern South America. R? values
are low over deserts, due to noise in NDVI values, and over tropical
rainforests. These low R? values over rainforests explain why some 6
values in these areas are far from zero (up to 30°), evidencing residual
cloud presence in the data.

Finally, Fig. 4 shows all three parameters displayed using the [HS
convention: 6 is coded as hue, d as intensity, and R? as saturation. The
reasons for this choice are the following:

- 6 is defined modulo 180°, meaning that angles of +90° and -90°
represent the same regression line, and thus has to be coded in the
same way (hue). Hue is derived from 6 following Eq. (2):

HUE = 2*6-240. 2)

As a result, arid areas are displayed in purple (6 ~+90°), semi-arid
areas in yellow (6~-30°), evergreen forests in green (6~0°) while
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Fig. 3. Spatial repartition of a) 6 (from -90° to +90°), b) d (from 0 to 1), and c) R? (from O to 1) parameters following the traditional rainbow color code.

temperate, polar, austral and mountain vegetation appear in - R? is relied to the confidence in the regression, which should be
various shades of blue (6>0°). The code color corresponding to 0 made clear at simple glance. To this end, saturation is a perfect tool,

values is presented in Fig. 4.

since low R? values will appear as grey, while high R? values
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Fig. 4. IHS (Intensity-Hue-Saturation) image of NDVI-LST feature space parameter at global scale. Colors indicate 6 values, characterizing vegetation types; intensity codes d values,
characterizing NDVI-LST annual cycle extent; and saturation codes R? values, related to regression confidence.

appear in bright colors. Saturation is derived from R? values using
Eq. (3):
R2

SATURATION =0.3 + 07 (3)
- d describes the yearly amplitude of the considered pixel in the

NDVI-LST feature space, which is coded in the remaining

component, intensity, darker colors corresponding then to small

yearly amplitudes, and light colors to more important yearly

amplitudes. Intensity is derived from d values using Eq. (4):

INTENSITY =d +0.2. (4)

Egs. (2)—(4) have been determined by optimization of visual contrast
between vegetation types.

Sunlight

Water

5. Discussion and conclusion

Fig. 3 shows that the Yearly Land Cover Dynamics method captures
the annual behavior of the vegetation as has been evidenced in
previous studies. For example, Lambin and Ehrlich (1996) showed in
their Fig. 3 the time trajectories in the NDVI-LST space for the main
African biomes in both hemispheres. Due to differences in LST
estimation and normalization, direct comparison cannot be carried
out, however, similar behaviors can be evidenced for the same biomes
in both cases. Evergreen rainforests have a low positive NDVI-LST
slope as evidenced in Fig. 3a (#~15°), with a short seasonality as
evidenced in Fig. 3b (d~0.25), and an annual behavior far from linear
as evidenced in Fig. 3¢ (R>~0.3). Transition woodlands and savannahs
have a negative NDVI-LST slope, confirming the 6 values obtained for

Fig. 5. Geographic distribution of potential climatic constraints to plant growth (adapted from Nemani et al., 2003). This map corresponds well with Fig. 4.
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these biomes in Fig. 3a (#~-30°), with higher seasonality, as Fig. 3b
confirms (d~0.5), and an annual NDVI-LST pattern closer to the linear
model (Fig. 3c: R?>0.6). As for Sahel and Sahara regions, they show a
quasi vertical NDVI-LST slope in Lambin and Ehrlich (1996),
corresponding to the large negative 6 values of Fig. 3a (6<-45°),
with higher seasonality for the Sahara than for the Sahel region,
mirrored in the d values presented in Fig. 3b (d~0.3 and d~0.1
respectively), and with an annual NDVI-LST pattern closer to the linear
model for the Sahara (R?~0.4) than for the Sahel region (R*~0.2)
as showed in Fig. 3c. Nemani and Running (1997) presented in their
Fig. 2 a conceptual diagram showing the seasonal trajectories of
different land cover types in the NDVI-LST space. This diagram is in
agreement with Fig. 3, except for boreal evergreen forests, where
Fig. 3b shows a higher seasonality than would be expected from
their conceptual diagram. This is due to snow presence in the data
during winter, which increases artificially the NDVI-LST yearly
amplitude due to the low values of both NDVI and LST reached by
vegetation covered by snow. As for the two methods presented in
Sobrino and Raissouni (2000), displayed respectively in their Fig. 5
and 6, they were designed for the analysis of the desertification
in arid and semi-arid areas. The method of the area of the triangle
(MAT - Sobrino & Raissouni, 2000) is mirrored by the R* parameter
of the YLCD method, which measures the difference between the
linear model and the actual NDVI-LST annual pattern. A smaller
triangle in the MAT method (bare soil) corresponds to a better
adequacy with the linear model used in the YLCD method, and there-
fore a larger R? value, as can be verified in Fig. 3c. The method of the
LST/NDVI slope (Sobrino & Raissouni, 2000) can be related directly to
the 0 parameter of the YLCD method, with lower negative values for
bare soil than for vegetation in arid areas (water limited), as can be seen
in Fig. 3a.

Fig. 4 shows that the YLCD method is well-suited for vegetation
monitoring, since it allows a good description of the vegetation, in
term of vegetation type as well as climate influence. Moreover, one
has to keep in mind that this analysis has been carried out on an
average year of orbital drift corrected data, meaning that cloud
contamination and orbital drift influence have been greatly dimin-
ished. Determining NDVI-LST feature-space parameters with cloud
contaminated yearly time series may lead for example to an artificial
lengthening of the yearly cycle amplitude, as well as a wrong value of
NDVI-LST regression line angle, and of course a lower value of R%. Fig. 5
shows a global map of climatic constraints to plant growth published
by Nemani et al. (2003). These climatic constraints are temperature,
radiation and water. Visual comparison between Figs. 4 and 5 shows
that the method presented above allows vegetation characterization
including climatic constraints. As a consequence, this method seems
promising for monitoring climate change effects on land cover.
However, a quantitative validation of this method is needed, and
will be carried out by the authors in a near future.

Additionally, the end products of this analysis (6, d and R?
parameters) are retrieved annually, and therefore can be monitored
on a yearly basis. This monitoring may be achieved by statistical
analysis or through building yearly classifications from existent
AVHRR databases. Such work is currently under development within
the Global Change Unit of the University of Valencia (Spain), and will
hopefully increase our knowledge of the recent land cover changes
suffered by our planet.
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