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1 Introduction

A central result of Information Theory is Shannon’s noisy channel coding theorem.
The purpose of this note is to point out that this theorem is not robust to a game
theoretical analysis and thus cannot be directly applied to strategic situations. To
demonstrate our inquiry we study the same framework as Shannon: the possibility
of a noisy channel communication between a privately informed sender and a re-
ceiver who must take an action. Our contribution is to show that the methodology
developed for optimal information transmission do not necessarily define equilibria
of sender-receiver games.

The issue of information transmission is not new in Economics and actually
there is a vast literature starting with the seminal work of Crawford and Sobel
[3]. Several papers have additionally addressed the situation where communication
may be distorted in the communication process by assuming that messages may
not arrive (Myerson [12], Rubinstein [13], among others). This brand of literature
points out that players’ strategic behavior under “almost common knowledge” is
not enough to guarantee coordination. Less research has been undertaken when the
noisy communication is of a particular type: while messages are always received
by the receiver, they may differ from those sent by the sender (Blume et al. [1],
Koessler [10], Hernández et al. [9], Mitusch and Strausz [11]). Another brand of the
literature deals with entropy based communication protocols (See Gossner et al [4],
Gossner and Tomala [5], [6], [7], Hernández and Urbano [8]).

Traditional Information Theory, pioneered by Shannon [14], has approached
noisy information transmission by considering that agents communicate through
a discrete noisy channel. Although Shannon does not describe this situation as
a game, we consider it as in a standard sender-receiver game with two players: a
sender and a receiver. The sender has to communicate through a noisy channel some
private information from a message source to the receiver, who must take some ac-
tion from an action space, and with both receiving 1 if the information is correctly
transmitted and 0 otherwise. More precisely, suppose the sender wishes to transmit
an input sequence of signals (a message) through a channel that makes errors. One
way to compensate for these errors is to send through the channel not the sequence
itself but a modified version of the sequence that contains redundant information.
The process of modification chosen is called the encoding of the message. The re-
ceiver receives an output message and he has to decode it, removing the errors and
obtaining the original message. He does this by applying a decoding function.

The situation that we consider, in line with the set up of Information Theory,
is as follows. We have a set Ω of M states. The sender wants to transmit through
the channel the chosen state, so there are M possible messages. The communication
protocol is chosen, given by a codebook of M possible messages, each of which is
represented by a codeword of length n over the communication alphabet. The sender
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picks the codeword corresponding to the state. This codeword is transmitted and
altered by the noisy channel. The receiver decodes the received message (a string of
n symbols from the alphabet), according to some decoding scheme. The protocol is
common knowledge to the players. Both sender and receiver are supposed to follow
the rules of the protocol.

The natural question from the viewpoint of Game Theory is whether following
the rules constitutes a Nash equilibrium. The protocol may not define the best
possible code in terms of reliability, but in that case one may hope that it constitutes
at least a not-so-good Nash equilibrium.

This paper shows that the common way of constructing a communication proto-
col does not necessarily lead to a Nash equilibrium: Given the decoding scheme, it
may happen that, given some state, it is better for the sender to transmit a message
that is different from that prescribed by the codebook. Similarly, when the sender
uses the codebook as prescribed, the receiver may sometimes prefer to deviate from
the decoding scheme when receiving a message.

This common way of choosing a communication protocol is as follows:

1. The channel with its errors is defined as a discrete Markov process where a
symbol from the alphabet is transformed into some other symbol according to some
error probability.

2. From these characteristics of the channel one can compute a capacity of the
channel, which determines the maximal rate of transmitting information reliably.
For example, a rate of 0.2 means that (if the alphabet is binary) for every bit of
information on the input side, one needs to transmit 5 bits across the channel.

3. A main insight of Shannon is that as long as the rate is below channel capacity,
the probability of error in information transmission can be made arbitrarily small
when the length n of the codewords is allowed to be sufficiently long.

The way Shannon achieves the above is the following: The sender selects M
codewords of length n at random. That is, for every input message, the encoding is
chosen entirely randomly from the set of all possible encoding functions. Further-
more, for every message, this choice is independent of the encoding of every other
message. With high probability this random choice leads to a “nearly optimal” en-
coding function, from the point of view of rate and reliability. The decoding rule
is based on a simple idea: A channel outcome will be decoded as a specific input
message if that input sequence is “statistically close” to the output sequence. This
statistical proximity is measured in terms of the entropy of the joint distribution of
both sequences which establishes when two sequences are probabilistically related.
The associated decoding function is known as the jointly typical decoding.

Our methodological note is organized as follows. The sender-receiver game and
the noisy channel are set up in Section 2. Section 3 offers a rigorous presentation
of Shannon’s communication protocol, specifying players’ strategies from a theoret-
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ical viewpoint. The reader familiar with Information Theory can skip it. Section 4
presents three simple examples of a sender-receiver game with specific code realiza-
tions. The first two examples offer the following code realizations: 1) the “natural
one” where the decoding rule translates to the majority rule and where the equilib-
rium conditions are satisfied; and 2) a worse code realization, where a deviation by
the receiver takes place. The last example exhibits a sender’s deviation. Concluding
remarks close the paper.

2 The basic sender-receiver set up

Consider the possibilities of communication between two players, called the sender
(S) and the receiver (R) in an incomplete information game Γ: there is a finite set of
feasible states of nature Ω = {ω0, . . . , ωM−1}. Nature chooses first randomly ωj ∈ Ω
with probability qj and then the sender is informed of this state ωj , the receiver
must take some action in some finite action space A, and payoffs are realized. The
agents’ payoffs depend on the sender’s information or type ω and the receiver’s
action a. Let u : A×Ω → R be the players’ (common) payoff function, i.e., u(at, ωj),
j = 0, 1, . . . ,M − 1. Assume that for each realization of ω, there exists a unique
receiver’s action with positive payoffs: for each state ωj ∈ Ω, there exists a unique
action âj ∈ A such that:

u(at, ωj) =

{
1 if at = âj
0 otherwise

The timing of the game is as follows: the sender observes the value of ω and then
sends a message, which is a string of signals from some message space. It is assumed
that signals belong to some finite space and may be distorted in the communication
process. This distortion or interference is known as noise. The noise can be modeled
by assuming that the signals of each message can randomly be mapped to the whole
set of possible signals. An unifying approach to this noisy information transmission
is to consider that agents communicate through a discrete noisy channel.

Definition 1 A discrete channel (X; p(y|x);Y ) is a system consisting of an input
alphabet X and output alphabet Y , and a probability transition matrix p(y|x) that
expresses the probability of observing the output symbol y, given that the symbol x
was sent.

A channel is memoryless if the probability distribution of the output depends only
on the input at that time and is conditionally independent of previous channel inputs
or outputs. In addition, a channel is used without feedback if the input symbols do
not depend on the past output symbols.

The nth extension of a discrete memoryless channel is the channel (X = Xn; p(y =

yn|x = xn);Y = Y n), where p(y|x) = p(yn|xn) =
n∏

i=1
p(yi|xi).
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Consider the binary channel ν(ε0, ε1) = (X = {0, 1}; p(y|x);Y = {0, 1}) where
p(1|0) = ε0 and p(0|1) = ε1 (i.e., εl is the probability of a mistransmission of input
message l) and let νn(ε0, ε1) be its nth extension. While binary channels may seem
rather oversimplified, they capture the essence of most mathematical challenges
that arise when trying to make communication reliable. Furthermore, many of the
solutions found to make communication reliable in this setting have been generalized
to other scenarios.

Let Γn
υ denote the extended communication game. It is a one-stage game where

the sender sends a message x ∈ X of length n, using the noisy channel, the receiver
observes a realization y ∈ Y of such a message and takes an action in Γ.

A strategy of S in the extended communication game Γn
υ is a decision rule sug-

gesting the message to be sent at each ωj : a M -tuple {σS
j }j where σS

j ∈ X is the
message sent by S given that the true state of nature is ωj . A strategy of R is a
2n-tuple

{
σR
y

}
y
, specifying an action choice in Γ as a response to the realized output

sequence y ∈ Y.

Expected payoffs are defined in the usual way. Let the tuple of the sender’s
payoffs be denoted by {πS

j }j = {πS
j (σ

S
j ,

{
σR
y

}
y
)}j , where for each ωj ,

πS
j = πS

j (σ
S
j ,

{
σR
y

}
y
) =

∑
y∈Y

p(y|σS
j )u(σ

R
y , ωj)

and where p(y|σS
j ) is the sender’s probability about the realization of the output

sequence y ∈ Y conditional on having sent message σS
j in state ωj .

Let the tuple of the receiver’s payoffs be denoted by {πR
y }y = {πR

y ({σS
j }j , σR

y )}y,
where for each output sequence y ∈ Y,

πR
y = πR

y ({σS
j }j , σR

y ) =
M−1∑
j=0

p(σS
j |y)u(σR

y , ωj)

and where p(σS
j |y) is the receiver’s probability about input message σS

j in state ωj

conditional on having received the output message y.

A pure strategy Nash equilibrium of the communication game is a pair of tuples
({σ̂S

j }j , {σ̂R
y }y) such that for each ωj , and for any other strategy σ̃S

j of the sender,

π̂S
j = πS

j (σ̂
S
j , {σ̂R

y }y) ≥ πS
j (σ̃

S
j , {σ̂R

y }y)

and for each y ∈ Y and for any other receiver’s strategy σ̃R
y ,

π̂R
y = πR

y ({σ̂S
j }j , σ̂R

y ) ≥ πR
y ({σ̂S

j }j , σ̃R
y )
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Notice that the set of probabilities {p(σS
j |y)}j for the receiver (where by Bayes rule

p(σS
j |y) =

p(y|σS
j )p(σ

S
j )

p(y) ) is always well-defined (p(y) > 0 for all y). Therefore, the
Nash equilibrium is also a perfect Bayesian equilibrium.

Fix the Sender’s strategy {σS
j }0,...,M−1 where σS

j ∈ X is the message sent by S
given that the true state of nature is ωj . The receiver has to take an action al in Γ
after receiving an output sequence y such that:

al = Argmax
al

M−1∑
j=0

p(σS
j |y)u(σR

y , ωj) = Argmax
al

M−1∑
j=0

p(σS
j |y).

Equivalently, given the linearity of the receiver’s payoff functions in probabilities
{p(σS

l |y)}l, 0 ≤ l < M − 1, and since by Bayes’ rule,

p(σS
l |y)

p(σS
k |y)

=

p(y|σS
l )p(σ

S
l )

p(y)

p(y|σS
k )p(σ

S
k )

p(y)

=
ql
qk

p(y|σS
l )

p(y|σS
k )

then the receiver will choose, for each y, action al whenever qlp(σ
S
l |y) ≥ qkp(σ

S
k |y)

(i.e.,
qlp(σ

S
l |y)

qkp(σ
S
k |y)

≥ 1), for all k ̸= l, k = 0, . . . ,M − 1, and will choose ak otherwise.

This condition translates to the receiver choosing action al whenever qlp(y|σS
l ) ≥

qkp(y|σS
k ), and choosing ak otherwise, with p(y|σS

j ) given by the channel’s error
probabilities and by the sender’s coding. To simplify assume that the states of
nature are uniformly distributed, ql =

1
M for l ∈ {0, . . . ,M − 1}. Then

σR
y = al, whenever p(y|σS

l ) ≥ p(y|σS
k ) ∀σS

k ∈ X (1)

Consider now the sender’s best response to the receiver’s strategy σR
y . The

sender’s problem is to choose an input sequence σS
j for each state ωj , j = 0, . . . ,M−

1, such that

σS
l = Argmax

∑
y∈Y

p(y|σS
l )u(σ

R
y , ωl) = Argmax

∑
y∈Y

p(y|σS
l ).

Given the receiver’s decoding, the above problem amounts to choosing an input
sequence σS

j in states ωj such that∑
y∈Y

p(y|σS
l ) ≥

∑
y∈Y

p(y|xS) (2)

for any other input sequences xS in all codebooks over {0, 1}n.
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3 Shannon’s communication protocol

For completeness we present first some basic results from Information Theory, largely
following Cover and Thomas [2]

Let X be a random variable with probability distribution p. The entropy H(X)
of X is defined by H(X) = −Σθ∈Θp(θ) log(p(θ) = −EX [log p(X)] , where 0 log
0 = 0 by convention. Consider independent, identically distributed (i.i.d.) random
variables X1, . . . , Xn. Then by the definition of entropy,

H(X1, . . . , Xn) = −Σθ1∈Θ1 . . .Σθn∈Θnp(θ1, . . . , θn) log p(θ1, . . . , θn)

where p(θ1, . . . , θn) = p(X1 = θ1, . . . , Xn = θn).

Let x be a sequence of length n over a finite alphabet θ of size |θ|. Denote by
θi(x) the frequency θi over n. We define the empirical entropy of x, denoted by
H(θ1(x), . . . , θ|θ|(x)), as the entropy of the empirical distribution of x.

An (M,n) code for the channel (X, p(y | x), Y ) consists of 1) an index set
{0, 1, . . . ,M − 1}; 2) an encoding function e : {0, 1, . . . ,M − 1} −→ Xn, yield-
ing codewords: e(1), e(2), . . . , e(M). The set of codewords is called the codebook ; 3)

a decoding function d : Y n −→ {0, 1, . . . ,M − 1}.

Consider a noisy channel and a communication length n. Let

λi = Pr(d(Y n ̸= i|Xn = Xn(i)) =
∑
yn

p(yn|xn(i))I(d(yn) ̸= i)

be the conditional probability of error given that index i was sent, and where I(.) is
the indicator function. The maximal probability of error λ(n) for an (M,n) code is

defined as λ(n) = maxi∈{0,1,...,M−1} λi and the average probability of error P
(n)
e for

an (M,n) code is P
(n)
e = 1

M

M−1∑
i=0

λi. Note that P
(n)
e ≤ λ(n).

The rate and the mutual information are two useful concepts from Information
Theory characterizing when information can be reliably transmitted over a commu-

nications channel. The rate r of an (M,n) code is equal to r =
log|Θ| M

n , and a rate
r is said to be achievable if there exists a sequence of (2nr, n) codes such that the
maximal probability of error λ(n) tends to 0 as n goes to ∞. The capacity of a
discrete memoryless channel is the supremum of all achievable rates.

The mutual information I(X;Y ) measures the information that random variables
X and Y share. Mutual information can be equivalently expressed as I(X;Y ) =
H(X) −H(X|Y ) = H(Y ) −H(Y |X), where H(Y |X) is the conditional entropy of
Y (taking values θ2 ∈ Θ2) given X (taking values θ1 ∈ Θ1) defined by

H(Y | X) = −
∑

θ1∈Θ1

p(θ1)
∑

θ2∈Θ2

p(θ2 | θ1) log p(θ2 | θ1).
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Then, the capacity C of a channel can be expressed as the maximum of the
mutual information. Formally: C = suppX I(X;Y ) between the input and output
of the channel, where the maximization is with respect to the input distribution.
Therefore the channel capacity is the tightest upper bound on the amount of infor-
mation that can be reliably transmitted over a communications channel.

Theorem 1 (Shannon):All rates below capacity C are achievable. Specifically, for
every rate r < C, there exists a sequence of (2nr, n) codes with maximum probability
of error λ(n) −→ 0. Conversely, any sequence of (2nr, n) codes with λ(n) −→ 0 must
have r ≤ C.

3.1 Shannon’s strategies:

Fix a channel and a communication length n. We can compute from the channel
its capacity C, and from n the information transmission rate r. Shannon’s theorem
states that given a noisy channel with capacity C and information transmission
rate r, if r < C, then there will exist both an encoding rule and a decoding rule
which will allow the receiver to make arbitrarily small the average probability of the
information transmission error. These two parameters: rate and capacity are the
key to the existence of such coding1.

The sender’s strategy: random coding Let us show how to construct a ran-
dom choice of codewords to generate a (M,n) code for our sender-receiver game.
Consider the binary channel ν(ε0, ε1) and its nth extension νn(ε0, ε1). Following
Shannon’s construction random codes are generated, for each state of nature, ac-
cording to the probability distribution θ that maximizes the mutual information
I(X;Y ). In other words, let us assume a binary random variable Xθ that takes
value 0 with probability θ and value 1 with probability 1 − θ. Then, let Yθ be the
random variable defined by the probabilistic transformation of input variable Xθ

through the channel, with probability distribution:

Yθ = {(1− ε0)θ + ε1(1− θ), ε0θ + (1− ε1)(1− θ)}.

Therefore the mutual information between Xθ and Yθ is equal to:

I(Xθ;Yθ) = H(Yθ)−H(Yθ|Xθ) =

H({(1− ε0)θ + ε1(1− θ), ε0θ + (1− ε1)(1− θ)})− [θH(ε0) + (1− θ)H(ε1)],

where θ is obtained as the solution of the optimization problem:

θ = argmax
θ

I(Xθ, Yθ)

1Notice that for a fixed C, it is always possible to find a length n, large enough, to guarantee
Shannon’s Theorem. Alternatively, given a fixed r, we can always find a noisy structure, a channel,
achieving this transmission rate.

8



Denoting by p(x) the distribution of Xθ according to θ, generate 2nR codewords,

i.e., a (M,n) code at random according to p(x) =
n∏

i=1
p(xi).

The M codewords can be displayed as the rows of a matrix:

ζ =

 x1(0) x2(0) . . . xn(0)
. . . . . . . . . . . .

x1(M − 1) x2(M − 1) . . . xn(M − 1)


and therefore the probability of such a code is: p(ζ) =

2nR−1∏
ω=0

n∏
i=1

p(xi(ω)).

The receiver’s strategy: jointly typical decoding The receiver’s strategy is
based on a statistical property derived from the weak law of large numbers. This
property tell us when two sequences are probabilistically related.

Definition 2 The set An
η of jointly typical sequences {x,y} with respect to the

distribution p(x,y) is the set of n-sequences with empirical entropy η-close to the
true entropy,i.e.

An
η =

{(x,y) ∈ X×Y :
∣∣− 1

n log p(x)−H(X)
∣∣ < η;

∣∣− 1
n log p(y)−H(Y )

∣∣ < η and∣∣− 1
n log p(x,y)−H(X,Y )

∣∣ < η}

A channel outcome y ∈ Y will be decoded as the ith index if the codeword
xi ∈ X is “jointly typical” with the received sequence y: two sequences x and y are
jointly η-typical if the pair (x,y) is η-typical with respect to the joint distribution
p(x,y) and both x and y are η-typical with respect to their marginal distributions
p(x) and p(y). In words, a typical set with tolerance η, An

η , is the set of sequences
whose empirical entropy differ by no more than η from their true entropy.

Shannon’s communication protocol: Let us apply the above concepts to the
extended communication game Γn

υ . The sender communicates her private informa-
tion, through the nth extension of the noisy channel ν(ε0, ε1), by generating M
codewords of length n from the probability θ which maximizes the capacity of the
channel. The communication protocol has the following sequence of events:

1. The realization of such codes is revealed to both the sender and the receiver.

2. The sender is informed about the true state of nature and sends message xi

associated to i ∈ Ω.

3. The receiver observes a sequence y, according to p(y|x) =
∏n

i=1 p(yi|xi)
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4. The receiver updates the possible state of nature, and decides that index l ∈ Ω
was sent if the following conditions are satisfied:

• (xl,y) are jointly typical.

• There is no other index k ∈ Ω such that (xk,y) are jointly typical.

• If no such l ∈ Ω exists, then an error will be declared.

5. Finally, the receiver chooses an action in Γ according to his decoding rule:

• if y is only jointly typical with xl, he takes action al,

• otherwise, no action is taken.

Shannon was the first one to show that good codes exists. Given the above
strategies and Shannon’s Theorem, we can construct a good code for information
transmission purposes in the following way:

1. Choose first the θ that maximizes the mutual information I(X;Y ) and gen-
erate a realization of the random code. Then, for all η there exists an n∗ such that
for all n ≥ n∗, the empirical entropy of each realized code is at distance η

12 to H(X).

2. By the jointly typical decoding rule, any output message y is decoded as
either a unique input coding x, or an error is declared. When no error is declared,
the decoding rule translates to the condition that the distance between the empirical
entropy of the pair (x,y) and the true entropy H(X,Y ) is smaller than η

12 .

3. By the proof of the above Shannon’s Theorem (Cover and Thomas, page 200–

202), the average probability of error P
(n)
e , averaged over all codebooks, is smaller

thanη
2 . Therefore, for a fixed n ∈ [n∗,∞), there shall exist a realization of a codebook

satisfying that at least half of its codewords have conditional probability of error
less than η. In particular, its maximal probability of error λ(n) is less than η.

Notice that in order to apply this protocol to a standard sender-receiver game,
one needs to define an assignment rule when an error is declared in Shannon’s pro-
tocol. This rule assigns an action to the decoding errors and allows us to completely
specify the receiver’s strategy.

Remark:
Shannon’s Theorem is an asymptotic result and establishes that for all η− ap-

proximations there exists a large enough n guaranteeing a small average error related
to such η. By the proof of the Theorem (Cover and Thomas, page 200-202), the av-
erage error has two terms. The first one comes from the Jointly Typical Set defined
by such a threshold η. Here, again for large enough n, the probability that a realized
output sequence is not jointly typical with the right code is very low. The second
term comes from the declared errors in Shanon’s protocol, which have a probability
of 2{−n(I(X:Y )−3η))} of taking place and which is very small when n is large enough.
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Therefore, both probabilities are bigger or smaller depending on both n and how
many outcomes are rightly declared, and they are important to partition the output
sequence space.

When we focus on finite-time communication protocols, i.e., when n and η are
both fixed, disregarding asymptotic assumptions, we cannot guarantee that the
above probabilities are small enough with respect to n. Actually, the η-approximation
and the corresponding different associated errors can generate different partitions of
the output space. Therefore, careful attention shall be paid to generate a partition
in such situations.

3.2 Nash Equilibrium Codes

We have defined good information transmission codes. They come from asymptotic
behavior. Now, we look for finite communication-time codes and such that no player
has an incentive to deviate.

Let Yl be the set of y’s in Y such that the receiver decodes all of them as index
l ∈ {0, 1, . . . ,M − 1}. From the equilibrium conditions 1 and 2 in section 2:

Proposition 1 A code (M,n) is a Nash Equilibrium code if and only if
i) p(y|x(i)) ≥ p(y|x(j)) ∀i ̸= j ∈ M , and d(y) = i
ii)

∑
y∈Yi

p(y|x(i)) ≥
∑

y∈Yi
p(y|x), for all x ∈ {0, 1}n.

The question that arises is whether Shannon’s strategies are Nash equilibrium
strategies of the extended communication game Γn

ν . Particularly, we rewrite condi-
tion i) above in terms of the entropy condition of the jointly typical sequences. For
any two indexes l and k, let xl = x(l), and xk = x(k), then

d(y) = l, whenever p(y|xl) ≥ p(y|xk) ∀xk ∈ M

Alternatively, there exist η > 0 such that

− 1

n
log p(xl,y)−H(X,Y ) < η and− 1

n
log p(xk,y)−H(X,Y ) > η.

By Definition 3, set An
η is the set of jointly typical sequences. Consider y ∈ Yn such

that (x0,y) ∈ An
η and (x1,y) /∈ An

η . Formally:∣∣∣∣− 1

n
log p(x0,y)−H(X,Y )

∣∣∣∣ < η and

∣∣∣∣− 1

n
log p(x1,y)−H(X,Y )

∣∣∣∣ ≥ η

Therefore if y were decoded as l, we could assert that y is jointly typical with
xl, and not jointly typical with any other xk. It is straightforward to check that
the opposite is not true, that is, even if the empirical entropy of p(xl,y) were closer
than that of p(xk,y) to the true entropy, then the conditional probability of xl given
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y would not need be bigger than the conditional probability of xk given y. In fact
there are four possible inequalities:

1. − 1
n log p(x0,y) − H(X,Y ) < η and − 1

n log p(x1,y) − H(X,Y ) > η. In this
case we obtain that

p(x0|y) >
2−n(H(X,Y )+η)

p(y)
> p(x1|y)

and therefore, if (x0,y) is more statistically related than (x1,y), then the conditional
probability of x0 given y will be greater than the conditional probability of x1 given
y.

2. 1
n log p(x0,y) +H(X,Y ) < η and 1

n log p(x1,y) +H(X,Y ) > η. In this case
we obtain the opposite conclusion. Namely,

p(x0|y) <
2−n(H(X,Y )−η)

p(y)
< p(x1|y)

and now the above condition shows that even if the empirical entropy of p(x0,y)
were closer than that of p(x1,y) to the true entropy, then the conditional probability
of x1 given y could be bigger than or equal to the conditional probability of x0 given
y.

3. − 1
n log p(x0,y)−H(X,Y ) < η and 1

n log p(x1,y) +H(X,Y ) > η. Here,

p(x0,y) >
2−n(H(X,Y )+η)

p(y)
and

2−n(H(X,Y )−η)

p(y)
< p(x1,y).

and no relationship between p(x0|y) and p(x1|y) can be established. Finally,

4. 1
n log p(x0,y) +H(X,Y ) < η and − 1

n log p(x1,y)−H(X,Y ) > η.
As the third case above, we cannot establish any order between p(x0|y) and

p(x1|y). Indeed, we get:

p(x0|y) <
2−n(H(X,Y )+η)

p(y)
and

2−n(H(X,Y )−η)

p(y)
> p(x1|y).

Condition i) above establishes an order on the conditional probabilities of each
output sequences y, for all input sequences. We have seen that when the entropy
condition of the Jointly Typical Set is satisfied without the absolute value, then it
properly orders these conditional probabilities. Otherwise it may fail to do so.

Consider now condition ii). Let Yl be the set of y ∈ Y such that p(y|xl) ≥
p(y|xk) ∀xk ∈ M . Summing over all y in Yl we get:∑

y∈Yl

p(y|xl) ≥
∑
y∈Yl

p(y|xk) for all xk ∈ M.
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The second condition says that the aggregated probability of partition Yl when σS
l

was sent is higher than such probability2 when any other code, even those sequences
never taken into account in the realized codebook, are sent.

4 Examples: Shannon versus Game Theory

We wish to investigate whether the random coding and jointly typical decoding are
robust to a game theoretical analysis, i.e. whether they are ex-ante equilibrium
strategies. Since, the ex-ante equilibrium is equivalent to playing a Nash for every
code realization, then if for some code realizations the players’ strategies are not a
Nash equilibrium, then no ex-ante equilibrium will exist.

In the sequel we analyze three examples. The first two examples correspond to
two realizations of the random coding. The former consists of the “natural” coding
in the sense that the signal strings do not share a common digit, either 0 or 1,
and then the decoding rule translates to the “majority” rule; the latter is a worse
codebook realization. For each code realization we show how to generate a partition
of the output space, the receiver’s strategy and the players’ equilibrium conditions.
In particular, we prove that receiver’s equilibrium condition is not fulfilled for the
second code realization. The last example offers a sender’s deviation.

Fix a Sender-Receiver “common interest” game Γ where nature chooses ωi, i =
0, 1, according to the law q = (q0, q1) = (0.5, 0.5). The Receiver’s set of actions is
A = {a0, a1} and the payoff matrices for both states of the nature are defined by:

S

R
a0 a1

ω0 (1, 1) (0, 0)
ω1 (0, 0) (1, 1)

Consider the noisy channel ν(ε0,ε1) where the probability transition matrix
p(y|x) expressing the probability of observing the output symbol y, given that the
symbol x was sent, is p(1|0) = ε0 = 0.1 and p(0|1) = ε1 = 0.2.

Define the binary random variable Xθ which takes value 0 with probability θ and
value 1 with probability 1− θ. Let Yθ be the random variable defined by the chan-
nel probabilistic transformation of the input random variable Xθ with probability
distribution:

Yθ = {(1− ε0)θ + ε1(1− θ), ε0θ + (1− ε1)(1− θ)}.
2Recalling that the error λl of decoding the codeword xl is λl = Pr(y ∈ ∪k ̸=lYk|xl) =∑
y/∈Yl

p(y|xl), and that the right side
∑

y∈Yl
p(y|xk) is part of the λk error, then the Sender’s

condition could be written as 1− λl ≥
∑

y∈Yl
p(y|xk) for all xk ∈ M , which means that the aggre-

gated probability of the partition Yl when σS
l was sent is higher than the corresponding part of the

k-error of any code even for sequences never taken into account in the realized codebook.

13



Therefore the mutual information between Xθ and Yθ is equal to:

I(Xθ;Yθ) = H(Yθ)−H(Yθ|Xθ) =

H({(1− ε0)θ + ε1(1− θ), ε0θ + (1− ε1)(1− θ)})− [θH(ε0) + (1− θ)H(ε1)].

Let θ̂ = argmaxθ I(Xθ, Yθ). Then for channel ν(ε0,ε1) = ν(0.1,0.2), this proba-
bility θ̂ = 0.52.

Random codes are generated, for each state of nature, according to the probabil-
ity distribution θ̂ = 0.52. The code corresponding to index 0, i.e. state ω0, say x0, is
generated by n independent realizations of θ̂. Similarly, x1 is the code corresponding
to index 1, i.e. state ω1. Let us consider that a code is chosen uniformly at random
and sent through the noisy channel (by sending n bits one after the other).

4.1 A code fulfilling the Nash equilibrium conditions

We present first the realization of the “natural code” in full detail because it is quite
familiar and will help the reader to follow later a more complicated example. To
make the analysis very simple consider that the communication goes for 3 periods
and let Γ3

ν be the noisy communication extended game.
Suppose that a specific and common knowledge realization of the random code

is: [
x1(0) x2(0) x3(0)
x1(1) x2(1) x3(1)

]
=

[
x0 = 0, 0, 0
x1 = 1, 1, 1

]
Nature informs the sender about the true state of nature, therefore, the sender’s

strategy σS
j , j = 0, 1 is sending:

σS
0 = x0 = 000, if ω = ω0

σS
1 = x1 = 111, if ω = ω1

The receiver observes a transformed sequence y, with transition probability
p(y|x) =

∏3
i=1 p(yi|xi) and tries to guess which message has been sent. He will

consider that index j was sent if (xj ,y) are jointly typical and there is no other
index k, such that (xk,y) are jointly typical. If no such index j exists, then an error
will be declared.

Let us proceed to construct the receiver’s strategy, by generating a partition of
the set of outcome sequences Y = {0, 1}3. To apply the jointly typical decoding
rule, it is needed to calculate the functions3:

∆x0(y) = | − log(p(x0,y))

3
−H(X,Y )|

∆x1(y) = | − log(p(x1,y)

3
−H(X,Y )|

3Notice that only the third condition in the definition of jointly typical sequences is the binding
condition to be checked.
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which measures the difference between the empirical entropy of each sequence in Y
and the true entropy H(X,Y ) = 1, 6.

For example, for y = 000, for our specific channel ν(0.1, 0.2) and since θ̂ = 0.5,
then p(y = 000|x0 = 000) = (p(0|0))3 = (1 − ε0)

3 = 0.93 = 0.59; p(y = 000|x1 =
111) = (p(0|1))3 = ε31 = 0.23 = 0.0003; p(x0,y) = p(y|x0)p(x0) = 0.59× (0.5)3, and
p(x1,y) = p(y|x1)p(x1) = 0.0003× (0.33), and then:

∆x0(y =000) = 0.485 and ∆x1(y =000) = 1.801

Now we have to choose an η-approximation in order to partition the output mes-
sage space. Fix η = 0.64. The reason for such a choice will become clear at the end
of the example. Recall that such value is the upper bound of the distance between
the empirical entropy and the true entropy to define jointly typical sequences. Then,
the jointly typical decoding rule states that a given y ∈ Y is jointly typical with
x0 = 000, and with x1 = 111, respectively, whenever

∆x0(y) < η = 0.64

∆x1(y) < η = 0.64, respectively

The jointly typical decoding rule allows the receiver to define the following sub-
sets of Y,

P 0
0 = {y ∈ Y :∆x0(y) < η}

P¬0
0 = {y ∈ Y :∆x0(y) ≥ η}

P¬1
1 = {y ∈ Y :∆x1(y) ≥ η}
P 1
1 = {y ∈ Y :∆x1(y) < η}

The first set P 0
0 contains all the sequences in Y that are probabilistically related

to input sequence x0 = 000. Conversely, set P¬0
0 refers to all the sequences of Y

that are not probabilistically related to x0. Similarly, P 1
1 is the set of sequences in

Y that are probabilistically related to input sequence x1 = 111, while P¬1
1 is the

set of sequences in Y that cannot be related to x1. These sets are:

P 0
0 = {000, 001, 010, 100}

P¬0
0 = {111, 110, 101, 011}

P¬1
1 = {000, 001, 010, 100}
P 1
1 = {111, 110, 101, 011}

Denote by

P0 = P 0
0 ∩ P¬1

1 = {y ∈ Y :∆x0(y) < η and ∆x1(y) ≥ η}
P1 = P¬0

0 ∩ P 1
1 = {y ∈ Y :∆x1(y) < η and ∆x0(y) ≥ η}.
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the set of all sequences of Y which are uniquely related in probability to x0 and x1,
respectively. Since, P 0

0 = P¬1
1 this implies that no matters whether x0 or x1 has

been sent, the receiver univocally assigns x0 to all sequences in P 0
0 or P¬1

1 . Similarly,
P¬0
0 = P 1

1 implies that the receiver decodes all the sequences in either of these sets
as corresponding to x1. Moreover, since P0 ∩ P1 = ∅ and P0 ∪ P1 = Y, then the
typical decoding rule generates a true partition. In fact, the jointly typical decoding
rule is in this case equivalent to the majority rule decoding. To see this let yk be
an output sequence with k zeros. Then,

p(x0 | yk) =
p(yk | x0)p(x0)

p(yk)
=

(1− ε0)
kε3−k

0

(1− ε0)kε
3−k
0 + εk1(1− ε1)3−k

≥ 1

2

if and only if k ≥ 2.
The jointly typical decoding rule gives rise to the receiver’s strategy, for each

y ∈ Y:
σR
y = ai, whenever y ∈ Pi

To show that the above strategies are a Nash equilibrium in pure strategies, let
us check that both the sender and the receiver’s strategies are a best response to
each other.

1) The receiver’s Nash equilibrium condition translates to her choice of action
a0 whenever p(y|σS

0 ) ≥ p(y|σS
1 ), and of action a1 otherwise. In table 1 below it

can be checked that all output sequences y, that satisfy with strict inequality the
condition p(y|σS

0 ) ≥ p(y|σS
1 ) are exactly those belonging to set P0, and those for

which p(y|σS
1 ) ≥ p(y|σS

0 ) with strict inequality are the ones in P1. Therefore the
receiver’s jointly typical decoding rule is a best response to the sender’s coding
strategy.

y p(y|x0) p(y|x1) y

000 0.729 0.008 000
001 0.081 0.032 001
010 0.081 0.032 010
011 0.009 0.128 011
100 0.081 0.032 100
101 0.009 0.128 101
110 0.009 0.128 110
111 0.001 0.512 111

Table 1

2) The sender’s Nash equilibrium condition, given the receiver’s jointly typical
decoding, amounts to choosing input sequences σS

0 and σS
1 , in states ω0 and ω1,

16



respectively, such that∑
y∈Y

p(y|σS
0 )u(σ

R
y , ω0) =

∑
y∈P0

p(y|σS
0 ) ≥

∑
y∈P0

p(y|σ′S
0 ) =

∑
y∈Y

p(y|σ′S
0 )u(σR

y , ω0)∑
y∈Y

p(y|σS
1 )u(σ

R
y , ω1) =

∑
y∈P1

p(y|σS
1 ) ≥

∑
y∈P1

p(y|σ′S
1 ) =

∑
y∈Y

p(y|σ′S
1 )u(σR

y , ω1)

for any other input sequences σ′S
0 and σ′S

1 , respectively.

Let
∑

y∈P0
p(y|x0) and

∑
y∈P1

p(y|x1) denote the aggregated probabilities of
the sequences in P0 and P1 when input sequences x0 and x1 are sent. Given the
symmetry of the sequences it suffices to check the ones shown in the table 2 below:

x0
∑

y∈P0
p(y|x0)

∑
y∈P1

p(y|x1) x1

000 0.972 0.028 000
001 0.846 0.154 001
011 0.328 0.672 011
111 0.104 0.896 111

Table 2

Clearly, if the state is ω0, then obeying the communication protocol and sending
σS
0 = 000 will be a best reply to the receiver’s strategy, since sending instead any

other input sequence will only decrease the sender’s payoffs, as shown in the left
hand side of the above table. Similarly, if the state is ω1, sending σS

1 = 111 will
maximize the sender’s payoffs against the receiver’s strategy, as shown in the right
hand side of the above table.

To conclude this example we display in Figure 1 the relationship between the
η-approximation and the existence of an output set partition. The horizontal axes
represents the output set sequences and the vertical axes are the functions ∆x0(y)
(the dotted line) and ∆x1(y) (the continuos line) for the natural coding x0 = 000
and x1 = 111. Different values of η have been plotted in the same Figure 1. We
obtain the following remarks:

• For an η = 0.9 and y ∈ Y, if the value of ∆x0(y) goes by above of the constant
function η = 0.9, then that of ∆x1(y) will go by below of η, and the same will
happen in the other way around. By the Jointly Typical condition every y
is uniquely related in probability to either x0 or x1. Therefore for η = 0.9 a
partition of set Y is easily generated.

• The same reasoning applies to any η in (0.6, 1.08). This is why we have chosen
η = 0.64.
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• For η ≥ 1.08 or η ≤ 0.6, there are output sequences belonging to both the
output set associated to x0 and that associated to x1. Hence, there is a need
to uniquely reassign those sequences to one of the them.

In sum, under the natural coding x0 = 000 and x1 = 111 it is possible to
find a range of η which enables to construct a partition of the output set
and therefore support the strategies of the communication protocol as a Nash
equilibrium of the extended communication game.

η = 0.64

η = 1.7

•
• • •

• • •

•

⋄⋄⋄⋄

⋄⋄⋄

⋄

IIIIIIII

111110101100011010001000

0,5-

1,5-

2-

3-

Figure 1: Partition of the output message space around x0 = 000, x1 = 111.

However, other realizations of the random code might not guarantee the existence
of such an η to construct such partition as the following code realization shows.

4.2 A receiver’s deviation

Suppose that a new realization of the code is:[
x1(0) x2(0) x3(0)
x1(1) x2(1) x3(1)

]
=

[
x0 = 0, 1, 0
x1 = 0, 1, 1

]
where, as above, the channel is ν(ε0,ε1) = ν(0.1,0.2) and Γ3

ν is the noisy communi-

cation extended game. Fix now η = 0.37.
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Let us consider that the receiver observes the output sequence y = 010. Let us
calculate p(y = 010|x0 = 010) = 0.648 and p(y = 010|x1 = 011) = 0.144, and the
functions:

∆x0(y) = | − log(p(x0,y))

3
−H(X,Y)| = 0.40

∆x1(y) = | − log(p(x1,y)

3
−H(X,Y)| = 0.36

For η = 0.37, Shannon protocol dictates that the receiver decodes y as x1 and
plays action a1. This situation would correspond with case 3 in subsection 3.1
where the protocol may not order the conditional probabilities. In fact, the Nash
equilibrium condition for the receiver when y = 010 translates to choosing action
a0 since, as shown above, the conditional probability of y given x0 = 010 (0.648) is
bigger than the conditional probability of y given x1 = 011 (0.144).

4.3 A sender’s deviation

Fix now4 n = 5 and suppose that the specific and common knowledge realization of
the random code is the following:[

x1(0) x2(0) . . . x5(0)

x
(
11) x

(
21) . . . x

(
51)

]
=

[
x0 = 0, 0, 0, 0, 0
x1 = 0, 0, 0, 1, 1

]
where the two signal strings share the first three digits, and therefore only the last
two digits are different.

Then σS
j , j = 0, 1 is:

σS
0 = x0 = 00000, if ω = ω0

σS
1 = x1 = 00011, if ω = ω1

To construct the receiver’s strategy, we repeat the above computations of sets
P 0
0 , P

¬0
0 , P¬1

1 , P 1
1 , P0 and P1 of Y.

Notice that P 0
0 ̸= P¬1

1 implies that the receiver cannot univocally assign some y
in Y to x0 no matter whether x0 or x1 has been sent. Similarly, P¬0

0 ̸= P 1
1 with the

same meaning for x1. Therefore, P0∪P1 ( Y. Let us define the set P2 = Y−P0∪P1:

P2 = {y ∈ Y :∆x0(y) < η and ∆x1(y) < η} ∪ {y ∈ Y : ∆x1(y) ≥ η and ∆x0(y) ≥ η}
= {00100, 00111, 01000, 01011, 01100, 01111, 10000, 10011, 10100, 10111, 11000, 11011}.

This set contains all the sequences in Y, which the receiver is not able to decode,
i.e., any y ∈ P2 cannot be univocally assigned either to x0 or x1: the errors in

4We run a systematic search computation for a sender’s deviation when n < 5 and we concluded
that there was none.
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Shannon’s approach. Therefore, the jointly typical decoding does not generate a
partition of Y, and the receiver does not know how to take an action in Γ.

There is a need then to assign the sequences in P2 to either P0 or P1. Consider
that the specific rule is to assign each sequences y ∈ P2, to that element of the input
sequence which is probabilistically closer to them5, namely

y ∈ P0 if ∆x0(y) < ∆x1(y), and y ∈ P1 otherwise.

Then:

P0 = {00100, 01000, 01100, 10000, 10100, 11000, 11100}
P1 = {00000, 00001, 00010, 00011, 00101, 00110, 00111, 01001,
01010, 01011, 01101, 01110, 01111, 10001, 10010, 10011, 10111,

10011, 10111, 10110, 10111, 11001, 11010, 11011, 11101, 11110, 11111}

Therefore, P0 ∩ P1 = ∅ and P0 ∪ P1 = Y, and the partition gives rise to the
receiver’s strategy σR

y = ai, whenever y ∈ Pi, and for each y ∈ Y.

Recalling that p(P0) =
∑

y∈P0
p(y|σS

0 ) and p(P1) =
∑

y∈P1
p(y|σS

1 ), then it is
easy to calculate that p(P0) = 0.729 and p(P1) = 0.271.

Consider the sender’ deviation, i.e.,

σdS
0 = xd

0 = 11100, if ω = ω0, instead of σS
0 = x0 = 00000

σ1 = x1 = 00011, if ω = ω1

This deviation does not change the partition but does change the probability
associated to sets P0 and P1. In particular,

∑
y∈P1

p(y|x0 = 00000) = 0.21951 and∑
y∈P1

p(y|xd
0 = 00011) = 0.98916.

Suppose that ω = ω0 and let σS
0 and σR

y be the strategies of following faithfully
the protocol in Γ5

ν , for each y ∈ Y. Then, the sender’s expected payoffs are

πS
0 = πS

0 (σ
S
0 ,

{
σR
y

}
y
) =

∑
y∈P0

p(y|σS
0 )1 = 0.21951

πdS
0 = πS

0 (σ
dS
0 ,

{
σR
y

}
y
) =

∑
y∈P0

p(y|σdS
0 )1 = 0.80352

and the sender will then deviate.

5This rule is in the spirit of the maximum likelihood criterion.
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5 Concluding remarks

Information Theory tells us that whatever the probability of error in information
transmission, it is possible to construct error-correcting codes in which the likelihood
of failure is arbitrarily low. In this framework, error detection is the ability to
detect the presence of errors caused by noise, while error correction is the additional
ability to reconstruct the original error-free data. Detection is much simpler than
correction, and the basic idea is to add one or more “check” digits to the transmitted
information (e.g., some digits are commonly embedded in credit card numbers in
order to detect mistakes). As is common in Information Theory protocols, both the
sender and the receiver are committed to use specific rules in order to construct
error correcting/detecting codes.

Shannon’s theorem is an important theorem in error correction which describes
the maximum attainable efficiency of an error-correcting scheme for expected lev-
els of noise interference. Namely, Shannon’s Theorem is an asymptotic result and
establishes that for all small tolerance it is possible to construct error-correcting
codes in which the likelihood of failure is arbitrarily low, thus providing necessary
and sufficient conditions to achieve a good information transmission. Nevertheless,
the asymptotic nature of such a protocol masks the difficulties to apply information
theory protocols to finite communication schemes in strategic sender-receiver games.

In this paper we consider a game-theoretical model where a sender and a receiver
are players trying to coordinate their actions through a finite time communication
protocol à la Shannon. Firstly, given a common knowledge coding rule and an output
message, we offer the Nash equilibrium condition for the extended communication
game. Specifically, the receiver’s equilibrium conditions are summarized by choosing
the action corresponding to that state of nature for which the conditional probabil-
ity of the received message is higher. This implies an ordering of the probability of
receiving a message conditional to any possible input message. On the other hand,
given the realized state of nature and the receiver’s partition of the output message
space generated by the coding and the decoding rules, the sender’s equilibrium con-
ditions are specified by choosing the input message maximizing the sum of the above
conditional probabilities over all output messages belonging to the partition corre-
sponding to that state of nature. Secondly, we relate the Nash equilibrium strategies
to those of Shannon’s coding and decoding scheme. Particularly, we rewrite the re-
ceiver’s Nash constraint in terms of the entropy condition of the Jointly Typical
Set, pointing out that such entropy condition may not be enough to guarantee the
partition of the output space. Finally, we provide two counterexamples to illustrate
our findings.

Consequently, coding and decoding rules under Information Theory satisfy a set
of information transmission constraints, but they may fail to be Nash equilibrium
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strategies.
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