Un proyecto internacional coliderado por la Universitat obtiene 10 millones de Europa para mejorar los modelos climáticos mediante machine learning

 
El equipo de USMILE
De izquierda a derecha, Pierre Gentine, Markus Reichstein, Gustau Camps-Valls, Veronika Eyring

Gustau Camps-Valls, catedrático de Ingeniería Electrónica e investigador del Image Processing Laboratory (IPL) de la Universitat de València es uno de los cuatro Investigadores Principales del proyecto USMILE, que acaba de conseguir una ayuda ERC Synergy Grants dotada con 10 millones de euros para 6 años. El objetivo del trabajo, que combinará el machine learning con modelos físicos de la atmósfera y la Tierra, es mejorar los modelos climáticos y el análisis e interpretación de los datos del sistema Tierra.

Un equipo interdisciplinar de cuatro investigadores del Centro Aeroespacial Alemán (DLR), el Instituto Max Planck de Biogeoquímica, la Universitat de València y la Universidad de Columbia ha sido galardonado con una ayuda Synergy del Consejo Europeo de Investigación (ERC) de 2019 para comprender y modelar el sistema Tierra mediante aprendizaje estadístico (Machine Learning), uno de los enfoques hoy día más interesantes de la Inteligencia Artificial (IA). El prestigioso galardón, dotado con 10 millones de euros a lo largo de seis años, apoyará este innovador trabajo orientado a repensar el desarrollo y la evaluación de los modelos del sistema Tierra, que son la base para entender y proyectar el cambio climático.

Veronika Eyring, del Instituto de Física Atmosférica del DLR y colíder del proyecto comenta: "Nos unimos para optimizar esfuerzos combinando nuestra experiencia multidisciplinaria en modelado climático, ecosistemas terrestres, machine learning y caracterización de nubes, con el fin de abordar algunas de las principales limitaciones en simulación y análisis del cambio climático. Esto nos permitirá comprender mejor los procesos y descubrir causas y factores desconocidos en el sistema terrestre".

El proyecto "Understanding and Modelling the Earth System with Machine Learning" (USMILE), ahora financiado, está orientado a superar ciertas limitaciones fundamentales para la comprensión del sistema terrestre, aumentando así la capacidad de los científicos para simular y predecir con precisión y menor incertidumbre el cambio climático. Si bien los modelos del sistema Tierra han mejorado considerablemente en las últimas décadas, su capacidad para simular respuestas cuando se trata de sistemas terrestres globales y regionales –que son fundamentales para evaluar el cambio climático y sus efectos sobre los ecosistemas y las poblaciones del planeta– se ve limitada por la representación de los procesos físicos y biológicos a pequeña escala, como las nubes, los estomas y los microbios.

"Nuestra hipótesis central es que esta falta de comprensión puede resolverse mediante el machine learning. En primer lugar, disponemos ya de gran cantidad de datos de observación de la Tierra con una cobertura espacial y temporal sin precedentes. En segundo lugar, contamos con modelos de alta resolución para la detección de nubes que resuelven explícitamente procesos a pequeña escala, como lo es la presencia de nubes. Pero esas simulaciones son muy costosas desde el punto de vista computacional y, por lo tanto, sólo pueden ejecutarse durante un corto periodo de tiempo", asegura Pierre Gentine, de la Facultad de Ingeniería y Ciencias Aplicadas de la Universidad de Columbia.

"Y en tercer lugar – añade Gustau Camps-Valls, de la Universitat de València y otro de los cuatro Investigadores Principales (IPs) del proyecto–, el machine learning ha evolucionado rápidamente, permitiendo avances en la detección y análisis de relaciones y patrones complejos en grandes conjuntos de datos multivariados. Ahora no solo podemos ajustar, predecir y modelar funciones complejas, sino que también podemos aprender relaciones causales a partir de datos observacionales".

El equipo desarrollará algoritmos de machine learning para mejorar los datos de observación de la Tierra que tengan en cuenta las covarianzas espacio-temporales, así como las parametrizaciones y submodelos basados en el aprendizaje estadístico para nubes y procesos de la superficie terrestre que han obstaculizado el progreso en modelización del clima durante décadas. Además, detectarán y comprenderán los modos de variabilidad climática y los extremos climáticos multivariados, y descubrirán aspectos dinámicos del sistema terrestre con técnicas novedosas de deep learning (aprendizaje profundo), interferencia Bayesiana y descubrimiento causal.

Tradicionalmente, la modelización física y el machine learning han sido tratados como dos mundos diferentes con paradigmas científicos opuestos: uno basado en la teoría y el otro basado en los datos. "Aunque tiene un potencial extraordinario, el machine learning apenas se está utilizando para abordar la necesidad urgente de mejorar la comprensión y la modelización del sistema terrestre. Esperamos que, al tender un puente entre la física y el machine learning, seamos capaces de revolucionar el modelado y el análisis de los sistemas de la Tierra, y de propiciar proyecciones climáticas más sólidas a medio y largo plazo", dice Markus Reichstein, del Instituto Max Planck de Biogeoquímica. "USMILE puede impulsar un cambio de paradigma en la modelización actual del sistema terrestre hacia una nueva ciencia basada en los datos pero al mismo tiempo consciente de la física", concluye.

Las ERC Synergy Grants se conceden a grupos de entre dos y cuatro co-IPs con competencias, conocimientos y recursos complementarios para abordar conjuntamente proyectos que, por sus características, no podrían resolverse de manera individual. En el caso de USMILE, los cuatro investigadores trabajan a caballo entre el estudio de sistema terrestre y la ciencia de datos y sus conocimientos son complementarios. "Estamos encantados de trabajar juntos en este equipo interdisciplinario y agradecemos al ERC la gran oportunidad que nos brinda", comenta Veronika Eyring.

Creado por la Unión Europea en 2007, el Consejo Europeo de Investigación (ERC) tiene la misión de fomentar la investigación de más alta calidad en Europa a través de una financiación competitiva y apoyar la investigación de frontera en todos los campos de la ciencia, sobre la base de la excelencia científica. Cada año selecciona y financia a los mejores investigadores creativos de cualquier nacionalidad y edad para ejecutar proyectos en Europa. El ERC tiene diferentes esquemas de ayudas para investigadores principales individuales –Starting Grants, Consolidator Grants y Advanced Grants–, además de las Synergy Grants para pequeños grupos de investigadores excelentes.

Instituciones anfitrionas de USMILE:

Centro Aeroespacial Alemán (Deutsches Zentrum für Luft- und Raumfahrt, DLR). Es el centro nacional de investigación aeronáutica y espacial de la RDA. Su extenso trabajo de investigación y desarrollo en aeronáutica, espacio, energía, transporte, seguridad y digitalización está integrado en empresas cooperativas nacionales e internacionales. DLR es responsable de la planificación e implementación de las actividades espaciales de Alemania en nombre del gobierno federal. Es también la organización paraguas para una de las agencias de gestión de proyectos más grandes de Alemania.

Instituto Max Planck de Biogeoquímica, Jena. Es parte de la Sociedad Alemana Max Planck. Su misión es investigar los ciclos biogeoquímicos (carbono, agua, nutrientes) desde escalas locales a globales con enfoques que incluyen experimentos de manipulación, observaciones a largo plazo y enfoques de modelado de los procesos y basado ​​en datos.

Image Processing Lab (IPL) de la Universitat de València. La Universitat de València es una institución educativa y de investigación de más de 500 años, y una de las mejores universidades en física, teledetección e ingenierías en España. El Image Processing Lab (IPL) es un centro multidisciplinario que reúne a más de 60 profesores e investigadores en observación de la Tierra, procesamiento de imágenes, ciencias de la visión y machine learning. El laboratorio tiene colaboraciones activas con ESA, NASA y EUMETSAT para diseñar nuevos dispositivos sensores, campañas de medición y cadenas de procesamiento intensivo de datos. Los profesores adscritos al IPL pertenecen a distintos departamentos de la Universitat de València, desde donde forman a la nueva generación de físicos, científicos de datos, analistas de teledetección, matemáticos e ingenieros eléctricos en diversos grados, másters y doctorado.

Escuela de Ingeniería y Ciencias Aplicadas de la Universidad de Columbia. Columbia Engineering, con sede en Nueva York, es una de las escuelas de ingeniería más importantes de los EEUU y una de las más antiguas de la nación. También conocida como Escuela de Ingeniería y Ciencias Aplicadas de la Fundación Fu, la Escuela expande el conocimiento y avanza la tecnología a través de la investigación pionera de sus más de 220 profesores, al tiempo que forma a los estudiantes de pregrado y posgrado en un entorno colaborativo para convertirse en líderes informados por una base firme en Ingeniería. Los profesores de la escuela trabajan con el Instituto de Ciencia de Datos, el Instituto de la Tierra, el Instituto Zuckerman Mind Brain Behavior, la Iniciativa de Medicina de Precisión y la Iniciativa Columbia Nano. Guiada por su visión estratégica –"Columbia Engineering for Humanity"–, la escuela tiene como objetivo traducir ideas en innovaciones que fomenten una humanidad sostenible, saludable, segura, conectada y creativa.

Más información:

Esta página web utiliza cookies propias y de terceros con fines técnicos, de análisis del tráfico y para facilitar la inserción de contenidos en redes sociales a petición del usuario. Si continúa navegando, consideramos que acepta su uso. Para más información consulte nuestrapolítica de cookies