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ABSTRACT
Motivation: Generation of fast tools of hierarchical clustering
to be applied when distances among elements of a set are con-
strained, causing frequent distance ties, as happens in protein
interaction data.
Results: We present in this work the program UVCLUSTER,
that iteratively explores distance datasets using hierarch-
ical clustering. Once the user selects a group of proteins,
UVCLUSTER converts the set of primary distances among
them (i.e. the minimum number of steps, or interactions,
required to connect two proteins) into secondary distances
that measure the strength of the connection between each
pair of proteins when the interactions for all the proteins in the
group are considered. We show that this novel strategy has
advantages over conventional clustering methods to explore
protein–protein interaction data. UVCLUSTER easily incorpor-
ates the information of the largest available interaction data-
sets to generate comprehensive primary distance tables. The
versatility, simplicity of use and high speed of UVCLUSTER
on standard personal computers suggest that it can be a
benchmark analytical tool for interactome data analysis.
Availability: The program is available upon request from
the authors, free for academic users. Additional information
available at http://www.uv.es/∼genomica/UVCLUSTER
Contact: ignacio.marin@uv.es

1 INTRODUCTION
The extraction of relevant information from massive amounts
of biological data is becoming crucial in the post-genomic
era. Current efforts are focused on the generation of tools
able to allow the classification of large amounts of similar,
correlated or interconnected elements and retrieve from that
classification useful patterns or regularities that can be later
explored either in the laboratory or in silico. Thus, in the
last years we have witnessed an ever-increasing interest in
the development of classification tools for gene expression
data obtained from microarray analysis (Quackenbush, 2001;
Gibbons and Roth, 2002). The recent generation of massive
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protein–protein interaction data has created a similar need
for methods to efficiently explore the complex graphs of
interconnected proteins that often faithfully represent com-
plex metabolic functions of a cell (Schwikowski et al., 2000;
Drees et al., 2001; reviewed in Salwinski and Eisenberg, 2003;
Bader et al., 2003).

Among the best-known and most powerful methods of
classification are those involving hierarchical clustering
(reviewed in Everitt et al., 2001). Elements are progressi-
vely classified into sets either by sequentially putting them
together in non-overlapping classes (agglomerative methods)
or by progressively dividing the full set of elements into
smaller groups (divisive methods). Many different types of
hierarchical clustering methods exist that depend on how the
distances among elements are evaluated to build (or split)
the groups, and there is considerable interest in determin-
ing when some of those methods perform better than others
(e.g. Gibbons and Roth, 2002). Hierarchical clustering is one
of the most common methods of classification used in biology.
Among many others, common uses of hierarchical cluster-
ing techniques are the classification of organisms of different
populations or species according to quantitative similarities
(numerical taxonomy), the ordering, according to sequence
similarity, of sets of genes or proteins and, more recently, the
determination of sets of genes with similar profiles of expres-
sion according to microarray-derived data (reviewed in Nei
and Kumar, 2000; Quackenbush, 2001; Felsenstein, 2004).
In this study, we explore the use of hierarchical clustering for
the functional classification of proteins using protein–protein
interaction data. Our approach has two steps. First, we meas-
ure the distance among any two proteins in a protein–protein
interaction network according to the minimum number of
steps required to connect them, where each step is a known,
physical protein–protein interaction. Second, we use those
distances to classify the proteins in groups using hierarchical
clustering. This approach is thus in principle very similar to
those used for other types of data and would seem quite easy
to implement. However, protein–protein interaction data have
special features that make the use of hierarchical clustering
methods particularly problematic.
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An often overlooked aspect of hierarchical cluster analysis
is the fact that it has serious intrinsic problems when used
with datasets in which the distances among many elements
are identical (the ‘ties in proximity’ problem; Backeljau et al.,
1996; Takezaki, 1998; MacCuish et al., 2001). Ties generate
multiple mathematically equivalent solutions when hierarch-
ical clustering is performed. In favorable cases, when ties are
very rare, we would anyway expect all alternative clustering
solutions to be very similar. The simplest solution in those
cases is to solve the ties arbitrarily, for example, in ways that
are dependent on the order of data input. However, when ties
are frequent, the number of alternative solutions and the dif-
ferences among those alternatives increase. Backeljau et al.
(1996) summarized the effect of ties on the performance of
several commonly used computer programs, concluding that
none of them was able to correctly confront this problem. The
relative importance of ties was further analyzed by Takezaki
(1998), which determined the likelihood of ties and their effect
on bootstrap tests for some small simulated datasets, conclud-
ing that ties have only occasionally a significant influence.
However, these two works analyzed small distance matrices
based on nucleotide sequences, in which ties are relatively
rare and often caused by the effect of rounding decimal num-
bers. Ties are much more frequent in other types of data, most
especially when distances are constrained to a narrow range
of values. Most especially, protein–protein interaction data
generate one of the datasets in which ties are most prominent.

Currently, the most complete interactome data available in
eukaryotes involves the protein interaction network of the
yeast Saccharomyces cerevisiae. In addition to results derived
from a large number of small-scale, directed studies, massive
non-directed protein–protein interaction data for S.cerevisiae
were generated either by using two-hybrid assays (Uetz et al.,
2000; Ito et al., 2001) or by pulling down protein complexes
using a tagged subunit as bait (Gavin et al., 2002; Ho et al.,
2002). Analysis of the large datasets generated using these
approaches demonstrated that the S.cerevisiae interactome has
‘small world’ properties (Wagner, 2001; see review by Albert
and Barabási, 2002). We can define the distance between
two proteins as the minimum number of direct interactions
among proteins in the dataset that are required in order to
connect them (a parameter often called ‘minimal path length’
or simply ‘path length’; see Barabási and Oltvai, 2004). For
a ‘small world’ interaction dataset, it is found that many dis-
tances are identical because most proteins are either directly
connected (i.e. they are part of the same protein complex or
interact in two-hybrid assays; distance = 1) or separated by
just a few steps, each one involving a physical interaction
between two proteins or protein complexes. That interactome
data have small world properties was already anticipated
using a small fraction of the information currently available
(just 899 interactions) by Wagner (2001), which described
in the S.cerevisiae protein network a group of 466 pro-
teins connected by an average distance (average path length)

of 7.14. This distance should become smaller when more
interactions are determined. Thus, recently Wilhelm et al.
(2003) described a S.cerevisiae dataset involving about 20 000
interactions and with an average distance for the proteins of the
largest connected component equal to only 2.57. Similarly, in
a recent analysis in which 15 210 interactions were considered
[data obtained from the January 2004 release of the DIP data-
base; Xenarios et al. (2002)], we found that all proteins that
can be connected have distances that range from 1 to 12. When
we assigned a conventional value of distance equal to 24 (i.e.
twice the largest detected for any connected proteins) to all
those pairs of proteins that cannot be connected by any path,
we found an average distance of 4.97 for 4721 S.cerevisiae
proteins. This value is of course an overestimate, because in
the future more/all proteins are expected to be found connec-
ted, and with shorter distances. In any case, for DIP data, we
found that there are 4721 × 4720/2 = 11.1 millions of dis-
tances among proteins that are constrained to a short range of
possible distance values, mostly between 1 and 12, so it can
be deduced that the S.cerevisiae interactome dataset includes
millions of identical distances. Very recent data for animal
species, such as Drosophila melanogaster or Caenorhabditis
elegans are more limited (i.e. the average number of inter-
actions per protein is lower than in S.cerevisiae). However,
the general pattern of small world properties with constrained
distance values is similarly observed (Giot et al., 2003; Li
et al., 2004).

The ties in proximity problem has led most authors inter-
ested in analyzing protein interaction data to focus their efforts
on generating tools, which are based on graph theory and
designed to detect clusters of highly or similarly connec-
ted proteins (e.g. Bader and Hogue, 2003; Bu et al., 2003;
Goldberg and Roth, 2003; Spirin and Mirny, 2003; Gagneur
et al., 2004; Pereira-Leal et al., 2004; Przulj et al., 2004).
These approaches are very interesting because they may effi-
ciently detect functionally relevant modules. However, they
have the obvious limitation of not allowing a general view
of the relationships among proteins selected with criteria
different from their degree of connection. In this study, we
describe a novel, alternative strategy of analysis that allows
to explore the characteristic type of complex data that suffers
the ties in proximity problem using hierarchical clustering.
In a significant precedent to our work, Rives and Galitski
(2003) circumvented the problem by using not the distances
among elements but the correlation coefficient obtained when
the distances of two proteins are measured against all the
members in a database (see also Prinz et al., 2004 for a
related procedure). Our method is different, being based on
obtaining multiple, equally valid solutions and evaluating the
distances among elements according to those multiple solu-
tions. This strategy is implemented in a program that we have
called UVCLUSTER, which is extremely simple to use and
fast enough to analyze large datasets involving hundreds of
proteins on standard PC computers. UVCLUSTER allows the
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determination of the relative degree of proximity of groups
of proteins that can be defined by the user in several ways,
generating outputs that can be easily explored or converted
into dendrograms. We demonstrate that UVCLUSTER-based
analyses have obvious advantages over conventional hierarch-
ical clustering and that UVCLUSTER can be used to explore
interactome data in order to detect new proteins relevant to
any chosen biological process.

2 SYSTEM AND METHODS
The UVCLUSTER program (available upon request from
the authors, free for academic users) is written in C and its
versions have been compiled and tested on Windows and
Linux operating systems. The flow chart of the program is
shown in Figure 1. UVCLUSTER analyses begin by import-
ing a text file containing a dataset of direct protein–protein
interactions. This dataset can be then filtered in two different
ways. First, the user can create a list of proteins and then select
one of two options: (1) use only those interactions between
pairs of proteins in the list; or (2) exclude all interactions
involving any protein in the list. After this first filter, a table
with the selected group of interactions can be saved for further
analyses. Then the user can apply a second filter by selecting
a cutoff value for the maximum/minimum number of interac-
tions that a protein may have to be included in the analysis.
This second filter allows to exclude proteins with a number
of interactions lower than a particular threshold (i.e. poorly
connected proteins) or higher than the cutoff value (i.e. it
eliminates ‘hubs’, highly connected proteins). After these two
filters, the UVCLUSTER program generates with the remain-
ing proteins a matrix of primary distances (d; equivalent to
their shortest path or minimal path length) among them. If two
proteins cannot be connected directly or indirectly, we have
followed the convention of assigning a distance that is twice
the longest distance among connected proteins in the dataset
(modifying this convention does not alter any of the results that
we will present below). The tables of primary distances gener-
ated by UVCLUSTER can be saved for further analyses. Thus,
in other rounds of analysis, the user may decide whether to
import a new file to generate another primary distance table or
to directly use a table that is already available. This is useful,
because a primary distance table obtained from all the interac-
tion data that exist for a species is generated that can be used
many times in different analyses.

Once a primary distance table has been generated or simply
loaded, UVCLUSTER allows the user to further select groups
of proteins to be analyzed, again in two different ways. A first
option is to choose a single protein (‘network center’) while
establishing a cutoff distance value. In this case, the program
explores the primary distance table, by selecting all the pro-
teins with primary distances from the selected one that are
equal or lower than the cutoff value and generates a subtable
containing only those proteins together with their distances.

Fig. 1. UVCLUSTER flow chart.

The second alternative involves providing the program with
a list of proteins. Then, the program generates a subtable of
primary distances, but only including the proteins in the list
for which interaction data are available.

Once the subtable of primary distances has been generated
by any of these two methods, UVCLUSTER iteratively uses
agglomerative hierarchical clustering on the primary distances
dataset to generate N alternative, equally valid, clustering
solutions. The value of N must be chosen by the user before
starting the analysis after considering the speed of the com-
puter, number of proteins to analyze and the precision of
analysis required (see below for a discussion). The solutions
are generated in three steps: (1) random sampling of the ele-
ments of the dataset; (2) elements in the dataset are clustered
according to group average linkage (Everitt et al., 2001); and
(3) the agglomerative process is finished at a certain point,
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defined by the user that must select the value for a global
‘stopping rule’ parameter, the Affinity Coefficient (AC). AC is
defined as follows:

AC = 100[(Pm − Cm)/(Pm − 1)], (1)

where Cm (cluster mean) is the average of the distances for
all elements included in the clusters and Pm (partition mean)
is the average value of distances for the whole set of selected
proteins. If AC = 100, then Cm = 1, meaning that only pro-
teins with distance equal to 1 can be clustered together. Using
AC < 100 relaxes the conditions, allowing that proteins sep-
arated by distances higher than 1 be put together in the same
cluster. It therefore favors the generation of larger clusters,
although including proteins often indirectly connected. We
generally use values of AC ranging from 50 (highly relaxed)
to 100 (maximally strict) in our analyses. If many proteins are
directly connected, it may be useful to increase the AC value,
while if distances among proteins are large, AC values may be
decreased to facilitate the detection of potentially interesting
clusters.

Once the dataset of N alternative solutions is obtained,
UVCLUSTER evaluates in how many of them each pair of
elements appear together in the same cluster and generates
an output file containing a table with secondary distances (d ′)
among the elements. The secondary distance between two ele-
ments is defined as the number of solutions in which those two
elements do not appear together in the same cluster divided
by the total number of solutions (N ). Therefore, iterative res-
ampling of the primary distance data allows to establish how
likely it is for each pair of elements to be clustered together
when many alternative, equally good, clustering solutions
are generated. This is the key of the strategy implemented
in UVCLUSTER. Secondary distances establish the strength
of the connection between two elements, relative to all the
elements in the analyzed dataset [an idea first developed
in Arnau and Marín (2003), although using a less appropriate
clustering method]. Ties in secondary distances will be very
rare, due to the complex nature of the connections among ele-
ments. This means that the secondary distance dataset may
then be analyzed by conventional (i.e. non-iterative) methods
to obtain a rigorous classification of the elements.

To facilitate the exploration of the results, UVCLUSTER
generates four output files. The first one contains the tables of
primary and secondary distances among the chosen elements
plus the values of several significant parameters used in the
analyses, such as AC, Cm and Pm. This first file also contains a
table of secondary distances suitable to be copied to a text file
and directly imported into MEGA 2.1 (Kumar et al., 2001). In
MEGA, the secondary distance data can be used to generate
dendrograms, using conventional methods of clustering such
as UPGMA or Neighbor-joining. In the second UVCLUSTER
output file, the results of an agglomerative hierarchical clus-
tering using UPGMA performed with the secondary distance
data are detailed. This file may be useful for a preliminary

exploration of the results, especially for those users that are
not familiar with MEGA or other similar packages. Finally,
the third UVCLUSTER output file contains a graphical rep-
resentation of the data in PGM (Portable GreyMap) format. To
generate the PGM file, proteins are ordered according to the
results described in the second UVCLUSTER output file. To
facilitate the analysis of the PGM figure, a fourth output file is
generated that contains a list of names that corresponds to the
order in which proteins are shown in that figure. The PGM rep-
resentation (see Arnau and Marín, 2003) is a square formed
by K2 smaller color-coded squares, where K is the num-
ber of proteins analyzed. Shades of gray indicate the degree
of interaction between each pair of proteins, with light gray
corresponding to close proteins and black to distantly con-
nected proteins. PGM format files can be read using freeware
programs such as IrfanView 3.85 (www.irfanview.com).

3 ALGORITHM
The dataset of direct protein–protein interactions must be
written as a text file, in such a way that each line of the
file contains the names of two interacting proteins separ-
ated by a tab. This is the format most commonly used
to express protein–protein interaction data in public data-
bases. Therefore, massive amounts of data can be very
quickly imported into UVCLUSTER. Primary distances are
calculated from this file of direct interactions using Floyd’s
algorithm (Floyd, 1962).

The main algorithm of the program, that characterizes the
iterative clustering method, can be described as follows:

Import table with d values
Select N , AC values
Repeat_from k = 1

Random ordering of elements;
Agglomerative hierarchical clustering using group

average linkage (d, AC);
Increment counters according to the solution found;
k = k + 1;

To k = N

Generate d ′ values corrected by N

Export files containing: (a) tables of d, d ′ values;
(b) UPGMA clustering with d ′ values and
(c) graphical output in PGM format.

4 IMPLEMENTATION

4.1 Speed and performance
No matter how complex or extensive the raw interaction data
are, they can be quickly converted into primary distance
data by UVCLUSTER and then saved for later analyses. In
addition, the speed of generation of primary distance tables
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allows us to easily update any comprehensive species-specific
table, every time a new information is available. For example,
the S.cerevisiae data available in the January 2004 release of
the DIP database (4721 proteins, 15 210 interactions) can be
converted into a primary distance table in about 14 min on a
standard PC computer (Intel Pentium IV 2.8 GHz processor
with 512 MB RAM memory).

Once a table with primary distances has been generated,
secondary distance data are also obtained very quickly. Time
depends on the selected AC value. Smaller AC values that pro-
long the clustering process, require longer time. Therefore, to
establish the speed of UVCLUSTER analyses, we have per-
formed tests with AC values ranging from 50 to 100. First,
by using a set of 34 elements and 561 primary distances
(see Section 4.3), and running on the same standard com-
puter detailed above, UVCLUSTER obtained the values of
secondary distances with a number of iterations, N = 10 000
in less than 2 s. Time increased linearly with the number of
iterations, so a similar analysis with N = 100 000 required
9 (AC = 100) to 13 (AC = 50) s. Similarly, for a set of
150 randomly chosen elements (11 175 primary distance val-
ues), an analysis with N = 10 000 took from 9 (AC = 100)
to 125 (AC = 50) s. Finally, the largest dataset that we
have used composed of 500 randomly chosen proteins (i.e.
124 750 distances), which was analyzed (N = 10 000), in 23
to 160 min, again depending on the AC value used.

UVCLUSTER results can be directly explored, considering
the files that the program automatically generates containing
either a UPGMA cluster analysis of secondary distances or a
graphical PGM representation. However, for advanced users,
and especially for analyses including up to a few hundreds
of proteins, we think that the simplest and most efficient way
to explore the results involves the generation of dendrograms
based on secondary distances. Ties in secondary distances are
very rare, facilitating the generation of non-ambiguous trees.
For this reason, UVCLUSTER also generates outputs com-
patible with MEGA 2.1 (Kumar et al., 2001). This is one of
the most used program packages in the molecular evolution
and phylogenetics fields and includes several standard meth-
ods to build dendrograms. Moreover, it can be obtained free
from the authors (www.megasoftware.net).

4.2 UVCLUSTER analysis of synthetic graphs
A simple model (Figure 2) demonstrates the advantages of the
iterative strategy implemented in UVCLUSTER. Figure 2A
shows a graph with 11 elements connected by a total of 16
interactions. Two clusters (units 1–4 and 8–11) are obvious.
Figure 2B shows a UPGMA tree obtained using primary dis-
tances. Input order to obtain this tree followed the numeric
value (1, 2, . . . , 11) assigned to the elements. The solution
shown in Figure 2B clearly fails to detect the two clusters,
closely connecting units 4 and 5. This type of error is caused
by the ties. If ties are solved in such a way that, by chance,
units 4 and 5 (or, alternatively, 7 and 8) become clustered,

the solution generated will necessarily fail to detect the two
natural clusters. Figure 2C shows a UPGMA tree obtained
using the secondary distances generated by UVCLUSTER
with N = 10 000 and AC = 100. In this case, distances
among units 1–3 or 9–11 are equal to zero. It can be seen that
Figure 2C closely corresponds to Figure 2A: the two clusters
appear as discrete entities with units 4 and 8 being the ones
most closely connected to the rest.

It is interesting to develop an index to summarize the validity
of the clusters detected, in order to be able to compare differ-
ent cluster results. Such an index would help in determining
that the solution shown in Figure 2C is better than that shown
in Figure 2B. Many rules have been proposed to evaluate the
different partitions of a dataset into clusters [see review by
Gordon, 1999, pp. 60–65 and 185–204). However, we think
that none of these methods is fully convenient when applied
to proteomic interaction data. They all use the whole distance
dataset for cluster validation (i.e. they take into account all
distances, irrespectively of them implying direct interactions
or simply shortest paths among distant elements). Evaluation
of the whole distance dataset is essential for clustering, but
validation of the clusters should take into account two fea-
tures of this particular type of information, which demonstrate
that a distance equal to one is qualitatively different from the
other distances. First, distances equal to one imply a strong
functional link: two proteins directly interact in the cell, and
therefore must be at the same time in the same place and
often functioning together. On the contrary, when larger than
one, two identical distances may be radically different from
a cellular point of view. For example, a distance of two may
mean that two proteins are part of a complex together with a
third protein that physically interacts with both of them, or,
alternatively, may mean that in different moments of the cell
cycle (or in different tissues, if we refer to a multicellular
organism), there are transient interactions of both proteins
with a third one. In the first case, all three proteins may
function as a single unit, while in the second, the cellular
roles of the two proteins may be radically different. A second
consideration is that the protein interaction datasets are incom-
plete. As we already commented above for S.cerevisiae, each
new experiment diminishes the distance among proteins. In
fact, comparisons among the experiments performed so far
in S.cerevisiae found a low degree of congruence (Bader and
Hogue, 2002; von Mering et al., 2002), suggesting that we
are still quite far away from having a complete dataset of
the protein interactions for any species. This means that it is
reasonable to expect that, in the future, many more direct inter-
actions will be found. In this sense, distances larger than one
may be considered to be overestimates of the true distances.

All these considerations lead us to suggest that cluster
results from proteomic interaction data may be conveniently
evaluated considering just the number of intracluster and inter-
cluster direct interactions. If we have a dataset in which K

elements are connected by direct interactions, thus forming
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Fig. 2. A synthetic example. (A) Graph of 11 elements connected by 16 interactions. Two clusters (units 1–4 and 8–11) are observed. (B)
UPGMA-based tree using primary distances derived from the graph in (A). Notice the lack of correspondence with the graph. (C) UPGMA-
based tree using the secondary distances obtained using UVCLUSTER with AC = 100 and 10 000 iterations. The topology very closely
corresponds to the graph shown in (A).

an undirected graph, we can define the following parameters.
First, F will be the maximum possible number of direct inter-
actions among elements [F = K(K − 1)/2]. Let us also call
n the number of actual direct interactions discovered among
the K elements. For a particular partition into clusters, we can

find a number M that corresponds to the maximum possible
number of intracluster direct interactions:

M =
c∑

i−1

ki(ki − 1)/2, (2)
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where c is the number of clusters in the partition and ki is the
number of elements in each cluster. Finally, we will call p the
total number of direct intracluster interactions actually known.
We suggest to evaluate the partitions found in proteomic data
by selecting as best the one that minimizes the cumulative
hypergeometric distribution that follows:

Min (M , n)∑

j=p

(
M
j

)(
F−M
n−j

)
(
F
n

) . (3)

This is equivalent to select the partition that generates a dis-
tribution that maximizes the proportion of intracluster direct
interactions while minimizing the proportion of intercluster
direct interactions.

We can apply this rule to the trees shown in Figure 2,
by using their topology in order to establish partitions with
a progressive number of clusters (c ≥ 2) (see Levenstien
et al., 2003 for a similar approach). Circles in the dichotomic
nodes have been numbered in Figure 2B and C accord-
ing to the number of clusters generated when we progress
from left (largest distances) to right (smallest distances). We
found that the tree in Figure 2C has a minimum value of
Equation (3) in the particular case when c = 3. In that
case, we find that out of 16 total direct interactions, 14 are
found within clusters and only 2 (units 4 and 5; units 7 and
8) are found between clusters. According to the cumulative
hypergeometric distribution described in Equation (3), the
likelihood of finding by chance a distribution at least as asym-
metric as the one defined by such partition is 3.17×10−9. None
of the partitions obtained from the tree in Figure 2B has such
a small value (lowest value: 3.30 × 10−6). We can conclude,
as intuitively was evident, that UVCLUSTER analysis using
secondary distances has provided a partition that is superior
to those obtained by using the tree topology generated from
the direct analysis of the primary distances.

4.3 UVCLUSTER exploration of the actin
cytoskeleton of Saccharomyces cerevisiae

To demonstrate the advantages that our program provides
when applied to real biological data, we first chose as a
model a set of 34 S.cerevisiae proteins characterized by Drees
et al. (2001), which they described as 26 proteins participat-
ing in actin patch assembly and patch-mediated endocytosis
together with 8 proteins involved in other related processes,
such as cytokinesis (BNI1, BNR1), endocytosis (SVL3), con-
trol of the morphogenesis checkpoint (SWE1, HSL7) or the
CDC42 signaling pathway (CDC42, CLA4, GIC2) (Drees
et al., 2001). Results shown in that study were updated
by analyzing the DIP database, which we found contained
all the information available in the literature. The graph of
protein–protein interactions shown in Figure 3 summarizes
all currently (February 2004) available information for that
set of proteins.

This particular set of proteins was selected for two main
reasons. First, it comprises a highly explored (i.e. most
likely without false positive interactions) and very com-
pact set of elements, in which obvious clusters or groups
cannot be detected. This is shown in Figure 3, obtained
using PIVOT (Orlev et al., 2004), a program that provides
a minimal-energy-based layout that highlights clustering
among units. However, whether clusters are present in
Figure 3 is unclear. This group of proteins may thus be
a good test to determine whether standard methods of
clustering may detect any particular organization in the
data, and how UVCLUSTER compares with these standard
procedures. Second, because it contains a few elements
that stand out as participating in processes that are related
(through connections with actin function) but not part of
the two main processes in which most elements particip-
ate (actin patch assembly and patch-mediated endocytosis),
we can test whether we can discriminate these groups using
UVCLUSTER.

Figure 4 shows the results obtained with two different meth-
ods. First, we show in Figure 4A the tree generated by MEGA
2.1 that was obtained with UPGMA and the primary dis-
tances calculated from the graph shown in Figure 3. This
first option therefore corresponds to the analysis that can be
typically performed using standard clustering tools. Second,
we show the tree obtained when the UPGMA algorithm
is applied to the set of secondary distances obtained using
UVCLUSTER, with N = 10 000 and AC = 100 (Figure 4B).
Both trees are quite different. As was obtained in the syn-
thetic example shown above, the first tree is just one of the
many possible solutions that can be obtained by applying hier-
archical clustering to the primary distance dataset. When we
evaluated the topologies shown in Figure 4A and B using
the hypergeometric-based parameters described above, we
found a partition (with c = 12) in the tree obtained using
UVCLUSTER that is much more extreme (p = 1.79×10−27)
than the best value obtained from the direct analysis of the
primary distances (c = 10; p value = 1.80 × 10−23). This
optimal partition is shown also in Figure 4B. Because it
is known that one important problem with protein–protein
interaction data is the presence of false positives, we tested
whether the partition shown in Figure 4B is robust by ran-
domly generating false protein–protein interactions that were
added to the DIP database. Even when 7605 false interac-
tions were added (making the randomly generated interactions
33% of all present in the modified database), the clusters
were identically recovered when N = 10 000, AC = 100.
Only when 15 210 false interactions were added (50% of
all interactions are then spurious) we found a variation:
clusters 2 and 7 appeared together. These results suggest
that, when provided a significant core of true interactions,
UVCLUSTER analyses may provide robust topologies even
in the presence of a substantial number of false positive
interactions.
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Fig. 3. Set of proteins involved in actin patch assembly and endocytosis according to Drees et al. (2001). Lines indicate direct interactions
among them as found in the DIP database (January 2004 release). The figure was drawn using PIVOT (Orlev et al., 2004).

We also wanted to check whether the partition obtained
was biologically relevant. First, we considered the informa-
tion provided by Drees et al. (2001). The proteins involved
(according to these authors) in actin patch assembly and
function form clusters 1–5, 7, 11 and 12. Cluster 6 corres-
ponds to the three proteins described as involved in CDC42
signaling. Cluster 8 includes the two proteins described by
Drees et al. (2001) as involved in the morphogenesis check-
point together with a third protein (APP1, called YNL094w
in the study by Drees et al.) whose relationship with that
process has not been determined. Cluster 9 contains the
endocytosis protein SVL3 plus a protein involved in actin
polymerization and crosslinking to microtubules (CRN1).
Finally, cluster 10 contains the two proteins involved in
cytokinesis (BNI1, BNR1) plus PFY1, which plays sev-
eral roles in actin organization and polymerization. These
‘hybrid’ clusters were expected because the actin patch
proteins that closely connect with proteins involved in other
processes may contribute to linking these functions together
in the cell (Drees et al., 2001). As a second biological val-
idation of the clusters, we performed searches using the
SGD Gene Ontology Term Finder (http://db.yeastgenome.org/
cgi-bin/SGD/GO/goTermFinder) that allows, among other
features, to determine the most likely process in which a group

of proteins are involved according to Gene Ontology (GO)
terms. For the whole set of proteins, we found, as expected,
that the general GO process term defined as ‘actin cytoskel-
eton organization and biogenesis’ included 20 out of the 34
proteins analyzed, with a probability of those proteins being
together by chance equal to 1.03 × 10−29. For the particular
clusters including two or more proteins (because a limita-
tion of the program is that requires at least two proteins in
a cluster, thus eliminating clusters 3, 4 and 12 in Figure 4B)
we found the following results (considering only the GO terms
that gave the lowest probabilities of the cluster occurring
by chance): clusters 1 and 7—actin cytoskeleton organiza-
tion and biogenesis [p(cluster 1) = 2.65 × 10−11; p(cluster
7) = 1.95 × 10−6]; cluster 6—Rho protein signal transduc-
tion (equivalent to the definition by Drees et al. of ‘involved
to CDC42 signaling’; p = 1.51 × 10−8); cluster 8—G2/M
transition of mitotic cell cycle (again related to the assigna-
tion of this group of proteins to the morphogenesis checkpoint
by Drees et al.; p = 5.78 × 10−5); cluster 9—cell growth
and/or maintenance (p = 0.091); cluster 10—response to
osmotic stress (p = 5.06 × 10−7) and cluster 11—actin fil-
ament depolymerization (p = 7.55 × 10−7). Only clusters 2
and 5 did not generate significant assignations according to
GO terms. These results are interesting in two different ways.
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Fig. 4. Comparison of analyses using primary versus secondary distances from the dataset described in Figure 3. (A) UPGMA-based tree
using the primary distances derived from Figure 3 data. Names in bold indicate deviations with respect to the tree in Figure 4B. (B) UPGMA-
based tree using the secondary distances estimated using UVCLUSTER (AC = 100; N = 10 000). The optimal solution, according to the
hypergeometric distribution of direct interactions, consists of 12 clusters, that are detailed on the right side.

First, they demonstrate that proteins in most clusters can be
significantly associated to particular cellular processes, thus
confirming the biological significance of our results. Second,
the fact that the processes assigned are generally different
for each cluster suggests that these clusters are composed
of proteins involved in closely related but still different pro-
cesses in vivo and that GO terms are precise enough so as to
discriminate among those processes.

The possibility of including all available data for a par-
ticular species using UVCLUSTER analyses allowed us to
ask the question of whether there are other proteins that

may be significantly involved in actin patch assembly and
function that did not appear in the description by Drees et al.
(2001). In order to do so, we calculated the average primary
distance of each of the 4721 proteins in the DIP database
against the 26 proteins that, according to Drees et al. (2001)
were involved in these processes (the other 8, as we already
described above, often showed protein–protein interactions
with these 26, but functionally were less related). We found
that 19 of those 26 proteins were among the 40 proteins with
lowest average distances in the whole dataset (average dis-
tance values ranging from 1.31 to 2.23) and even the worst
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connected protein (TRM5; average distance with the rest
equal to 2.65) was in position 199 in our list. These results
confirm the results obtained by Drees et al. (2001) using the
updated information currently available: all the proteins con-
sidered by those authors indeed are in close proximity in
the S.cerevisiae interactome graph. However, we concluded
that there are other proteins that are similarly or even better
connected. Figure 5 contains a new UPGMA tree obtained
using also the whole DIP interaction data, with AC = 100
and N = 10 000, but including 38 other proteins poten-
tially involved in actin patch assembly and function. These
38 proteins have average distances lower than 2.27 to the
26 proteins in the original dataset. The close proximity to
actin and interspersion with the proteins of the original data-
set of many of those newly added proteins can be easily
appreciated in Figure 5. It is also significant that duplicat-
ing the number of proteins only alters the relative position
of a few proteins of the original dataset. If we compare
Figures 4B and 5, we can see that only YPR171W, SLA1,
YHR133C, RVS167 and RVS161 appear in very different
positions in both the trees. This result can be interpreted as a
new confirmation that the delimited clusters were quite reli-
able. Adding more data in general only contributes to make
the groups that were already observed larger. Similar results
were obtained using AC = 50 (not shown). As a secondary
biological validation of our results, we have also included
in Figure 5 some additional data. First, we add informa-
tion for protein localization from Huh et al. (2003) and other
sources, as compiled in the MIPS database (Mewes et al.,
2002; http://mips.gsf.de/). Fifty-six proteins are described
in MIPS as being localized to the actin cytoskeleton. Of
them, 24 are found in Figure 5, being 16 part of the ori-
ginal data from Drees et al. (2001) while the other 8 are
among the ones we have secondarily added to our tree using
UVCLUSTER analyses (see details in Figure 5). Moreover,
another five UVCLUSTER-suggested proteins (LSB3, LSB5,
BEM1, ARP2, END3) are localized according to MIPS to the
yeast cytoskeleton in a broader class that may also imply inter-
action with actin. Second, we include also information about
the GO term ‘actin cytoskeleton organization and biogenesis’
that, as we described above, includes most of the proteins in
our original dataset. The SGD Gene Ontology Term Finder
assigns to that GO term the lowest probability among all
terms (p = 4.3 × 10−34) when all the proteins in Figure 5
are included. Moreover, all other terms with low probability
are related to it. In total, there are 28 proteins in Figure 5
that are included in the ‘actin cytoskeleton organization and
biogenesis’ GO term. Of them, 8 are from the secondary data-
set obtained using UVCLUSTER. These results demonstrate
that a significant fraction of the proteins suggested by the
UVCLUSTER study of the interactome are related to actin,
or at least cytoskeleton, function. Thus, we can conclude that
UVCLUSTER-based analyses may significantly contribute to
delineate groups of closely integrated proteins in the cell,

suggesting members that could be missed when using other
approaches.

4.4 UVCLUSTER global analysis correlating gene
expression and protein–protein interaction

To demonstrate that UVCLUSTER can be used at a gen-
omic scale, we decided to compare UVCLUSTER-generated
results based on protein–protein interaction data with those
derived from gene coexpression data obtained using microar-
rays. There is good evidence, at least in yeast, that the products
of highly coexpressed genes interact with a probability much
higher than expected by chance (e.g. Kemmeren et al., 2002).
Thus, we can expect UVCLUSTER to recover, at least in part,
clusters of coexpressed genes using protein–protein interac-
tion data. To analyze coexpression, we used as a starting
database the yeast ‘refined modules’ defined by (Bergmann
et al., 2004). These modules are groups of genes that show a
significant level of coexpression and that were obtained start-
ing with a core of evolutionary conserved, coexpressed genes
to which other genes with similar expression patterns were
added Bergmann et al. (2004). These authors described eight
of those modules, including a total of 548 genes, as detailed in
Table 1. We decided to check to which extent UVCLUSTER
analyses may unearth those same modules using the available
protein–protein interaction data. We therefore took the list of
548 genes (that was reduced to 543 after eliminating 5 genes
that appeared in two or more modules) and analyzed whether
the DIP database contains interaction data for their products.
We found that the products of 376 of those genes indeed were
found in DIP. However, only 163 were involved in more than
one protein–protein interaction. These results demonstrate
that the amount of information for the protein products of
this set of genes is quite limited. We then used UVCLUSTER
(AC = 100, N = 10 000) to determine clusters of proteins
based on interactome data. Results are shown in Figure 6.
A total of 162 proteins formed several well-defined clusters
while the other 214 appeared isolated, due to the fact that they
did not present direct interactions with any other proteins in
the dataset (these last ones have been grouped together in a
single branch in Figure 6). As shown in the figure, several of
the clusters closely follow the results obtained by Bergmann
et al. (2004). Thus, a cluster contains 56 rRNA processing
proteins plus 14 ‘contaminant’ proteins involved in other
processes. Another has 29 proteasome proteins with a single
‘contaminant’, a third one includes 17 MRP proteins with
two ‘contaminants’, etc. We became aware when considering
these results that the information in DIP is indeed quite frag-
mentary, which explains why some very characteristic clusters
are missing in Figure 6. For example, DIP does not con-
tain interaction data corresponding to cytoplasmic ribosomes
(explaining why a large ribosomal cluster does not appear),
or to the small subunit of mitochondrial ribosomes (there-
fore, the 17 MRP proteins that appear together are all part
of the large subunit). Several of the modules (e.g. glycolysis,
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Fig. 5. Results of the analysis to discover new actin patch assembly and endocytosis proteins. In bold, the new proteins discovered. Italics refer
to the eight proteins that Drees et al. (2001) considered as belonging to processes other than patch assembly and patch-mediated endocytosis.
(a): Proteins that are localized to the actin cytoskeleton according to Huh et al. (2003). (b): Proteins assigned to the GO process ‘actin
cytoskeleton organization and biogenesis’ according to the SGD database (see http://www.yeastgenome.org/GOContents.shtml).
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Table 1. UVCLUSTER results using the refined modules by Bergmann et al.
(2004)

Module No. of
genes in
module

No. of
proteins in
clusters
defined by
UVCLUSTER

Size of main
cluster defined
by UVCLUSTER
(% of total
genes in
module)

rRNA processing 192 74 56 (29.2)
Ribosomal protein 153 20 5 (3.3)
Mitochondrial ribosomal 76 19 17 (22.3)

protein
Proteasome 40 31 29 (72.5)
Peroxide 29 2 0 (0.0)
Secreted protein 28 8 4 (14.3)
Glycolysis 15 2 0 (0.0)
Heat shock 15 6 5 (33.3)

peroxide) are moreover formed in part by proteins that are
not expected to physically interact. Those results explain why
only some of the modules defined by Bergmann et al. (2004)
actually are found in UVCLUSTER analyses (see Figure 6
and Table 1 for the details). In any case, we can conclude that
UVCLUSTER can be used for analysis involving hundreds of
proteins and, even in those complex cases, it recovers interest-
ing functional information based on interactome data. On the
other hand, the analysis just shown casts doubts on whether
interaction data alone will ever provide a detailed picture of
cell function. The relative incompleteness of the results we
have just described can be conservatively explained suggest-
ing that the available information is very fragmentary and will
significantly improve in the future. However, it could also be
explained by some/many highly integrated cellular processes,
which do not require direct protein–protein interactions. This
would hinder the processes to be identified, no matter how
exhaustive the interactome data are.

5 DISCUSSION
UVCLUSTER is a flexible tool for global exploration of pro-
tein function using interactome data that is based on iterative
hierarchical clustering. The strategy implemented in our pro-
gram is related to permutation tests commonly used in other
contexts (reviewed by Felsenstein, 2004, pp. 359–363), which
are applied for the first time to the resolution of the ‘ties in
proximity’ problem that arises in clustering methods when
many distances are equal. We have shown that UVCLUSTER
has four main strengths. First, it may easily discover and define
sets of closely linked proteins. Secondary distance data among
the elements of a set delineate their relationships in a way that
their direct, primary distances cannot do (see Figures 2 and 4).
Second, UVCLUSTER may be used to discover proteins

involved in a particular process, when provided with some
preliminary information. For example, if we know that a group
of proteins are acting on a relevant process, we can use them
as ‘seeds’ to delimit, using UVCLUSTER, all the proteins
that are closely connected to them in the interactome. There-
fore, we can obtain a clearer picture of the functions of the set
of interesting proteins (see Figure 5 and the related analyses
explained above). This approach can be seen as complement-
ary to the one based on the detection of highly connected
graphs that include a protein of interest developed by Bader
and Hogue (2003; ‘directed mode’). Third, UVCLUSTER
can be also used to establish groups of connected proteins
even when some information is unavailable, by being able to
predict potential interactions. This can be done by using AC
values lower than 100, that is, allowing proteins that do not dir-
ectly interact, but that are still quite close in the interactome,
to be clustered together. We have observed that diminishing
the AC value has the effect of generating topologies that are
worse than the one obtained with AC = 100 when eval-
uated with the hypergeometric distribution-based parameter
described above. This is due to the effect that the increased
permissiveness of the clustering process has on the secondary
distances, often allowing directly connected proteins to appear
in different clusters. However, this relaxation of the conditions
may be of great interest if we assume that data are incomplete
and some distances may be actually lower than those available.
In those cases, relaxed analyses may suggest potential clusters
of interacting proteins that would be missed by the strictest
ones. It is significant that UVCLUSTER can also be used in
the opposite direction, that is, in order to detect false positive
interactions. For example, promiscuous proteins, which are
able to interact with many different partners, can be easily
detected using UVCLUSTER (with AC = 100) when they
appear as being equally distant to many other, totally unre-
lated, proteins (Arnau and Marín, 2003). This may be another
significant application of our program, because, as we com-
mented above, the number of false positives is considered to
be high for interaction data generated by non-directed, large-
scale experiments (e.g. von Mering et al., 2002). As a final
potential application, UVCLUSTER can be used to quickly
explore whether proteins encoded by orthologous genes retain
related functions in two species by comparing the relative
positions in both of their the interactomes. We have already
generated relevant information for some conserved genes by
comparing the S.cerevisiae and D.melanogaster interactomes,
which will be presented elsewhere.

UVCLUSTER has been designed keeping in mind the needs
of groups working in functional biology. Potential users of
UVCLUSTER are those researchers interested in obtaining
in a short period of time significant information for parts of
the interactome of a species, for example, including all the
proteins involved in the particular biological process that they
are studying. Therefore, analyses involving tens to hundreds
of elements, similar to the ones we have shown above are
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Fig. 6. UVCLUSTER results for the refined modules defined by Bergmann et al. (2004). See text for details.

expected to be the most frequently performed. It is important
that, for our datasets, we have found that secondary distance
results do not significantly change by increasing N above a
certain threshold. Our experience with the program suggests
that it is reasonable to use a value of N of at least ten times

the number of elements to generate reliable secondary distance
tables. For example, when we repeatedly analyzed the actin
dataset with N = 100, the topology shown in Figure 4B
(obtained when N = 10 000) appeared only in 7 out of 10
cases (in the other three, clusters 1 and 2 appeared fused
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together). However, 10 repetitions with N = 500 generated
the same clusters shown in Figure 4B. This recommendation
of using at least 10 times the number of elements sharply
contrasts with the suggestions of several well-known com-
puter programs, which suggest to perform about 10 replicates
when there are ties [summarized in Backeljau et al. (1996)
and recently confirmed by our group].

UVCLUSTER analyses involving up to 1000 elements (e.g.
1000 proteins) can be, as the times described previously
demonstrate, easily performed on standard computer equip-
ment. However, our general guideline to select the number of
iterations suggests that UVCLUSTER, in its current imple-
mentation, has severe limitations to analyze whole-proteome
data. For example, for the whole S.cerevisiae dataset, which
is defined by about 11 millions of primary distances, our
guideline suggests performing analyses with N values of at
least 50 000. Such a huge analysis is evidently not feas-
ible on standard PC equipment (estimated time: 6100 h,
with AC = 100), showing that a parallel implementation of
UVCLUSTER, whose development is already in progress
by our group, is essential for analyses involving very large
datasets.

Finally, it is obvious that UVCLUSTER may also be used to
analyze information other than protein interaction data. Any
type of information that can be converted into primary dis-
tances and that suffers from the ties in proximity problem
can be advantageously analyzed using UVCLUSTER. Typical
examples in genomics are the analyses of connections among
protein domains, in which distances are defined depending on
the combination of domains found in the set of proteins of one
or multiple species (e.g. Mott et al., 2002; Ye and Godzik,
2004) or the analysis of distances estimated from genetic
interaction screens (Tong et al., 2004). Other fields, as the ana-
lysis of paper citations or coauthorships (Albert and Barabási,
2002) could also benefit from the use of UVCLUSTER.
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