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In the post-genomic era, one of the main tasks is deciphering the meaning of the DNA sequences
of complex organisms. In order to do so, there is a clear need for biocomputer tools able to extract
and order the information of long DNA molecules, such as whole chromosomes or even complete
genomes. However, most genomic analyses have been concentrated on the detection and counting of
short words having sizes of between 1 and 10 nucleotides. In this paper, we describe parallel algo-
rithms with different complexities that exhaustively determine all words of size k, k being arbitrarily
large, in a source DNA sequence. The results shown that our algorithms achieve a high degree of
scalability, allowing the detection of DNA words of 64 nucleotides in only 800 seconds.

1. Introduction

In genomic analysis, the determination of the DNA words (sequence of nucleotides) found in
chromosomes or even of whole genomes is essential in many contexts. Some examples are: 1)
Determination of genomic signatures that characterize organisms or species; 2) Characterization of
differences among chromosomes for certain specific oligonucleotides, such as the differences in CpG
dinucleotides that are specific targets for DNA methylation in many organisms; 3) Characterization
of repetitive DNA sequences; or, 4) Finding singular sequences that are much more frequent in cer-
tain chromosomes or genomes than in others. However, many of these analyses become unfeasible
for long word lengths on standard PC equipment due to memory limitations.

Significant advances in our understanding of genome structure and complexity have been provided
by the analysis of oligonucleotide words (reviewed in [7]). However, most of the analyses performed
to date have been limited to the detection and counting of short words (of sizesk between 1 and
10 nucleotides;1≤ k≤ 10) [1][8]. When those analyses are to be extended to longer words, the
complex problem emerges of designing algorithms that are able to handle the millions of possible
combinations (4k; i.e. for k = 15, the number of possible words is about109). One solution is to use
complex data pre-processing ([6]) that introduces a high computational requirement.

In this study, we propose two parallel algorithms [3][4][5] for the DNA words frequency analysis:
two-stage andk-stage algorithm. Thetwo-stage algorithm is able to achieve high parallel computer-
system efficiency to perform DNA exhaustive analysis, extracting the frequency information of every
word of a particular length in a DNA sequence. Thek-stage algorithm is designed for highly frequent
DNA word analysis, such as Alu sequences. Thek-stage is able to find frequency information about
extremely long DNA words. In our study, we evaluated our algorithms with human chromosome
analysis using a cluster of 16 PCs. Our results show thattwo-stage algorithm achieves up to 76% of

∗This work was supported by the MCyT-Spain under contract TIC 2004-03388, TIC 2003-08154-C06-04 and partially
supported by the Generalitat de Catalunya- Grup de Recerca Consolidat 2001SGR-00218.
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the cluster optimal performance and thek-stage algorithm is able to analyze DNA words longer than
64 nucleotides.

The remainder of this paper is organized as follows: we show the sequential algorithm definition
in section 2. Thetwo-stage andk-stage parallel algorithms are analyzed in sections 3 and 4, respec-
tively. In section 5, we show performance evaluation and indicate our main conclusions are set out
in section 6.

2. The Sequential Algorithm

In a previous study [2], we described an algorithm that can exhaustively determine all 12-nucleotide-
long (k = 12) words present in a given DNA sequence, together with their frequencies.

The rationale of the algorithm is as follows: a tree is started that has a root node (level 0) from
which four different pointers can be established, corresponding to nucleotides A, C, G or T, that lead
to the four possible nodes in the level 1. In the level 2 of the tree, we have 16 nodes, corresponding
to 16 different words with 2-nucleotide (AA, AC,...,TT). The solution tree structure is dynamically
generated to contain all the posible words. To build the tree at a faster rate, a pointer was used for
each level, so that after reading one nucleotide, each pointer indicates a new node determined by
the pointer on the previous level and the newly read nucleotide. The final nodes have a different
data structure. They have a counter that indicates the frequency of appearances of each word ofk
nucleotides.

In that study, we also showed that the algorithm is fast enough to be used on a genomic scale.
However, the algorithm is not able to extend the frequency analysis to DNA sequences with more
than 12 nucleotides. Given a DNA sequence that is long enough to contain all the possible com-
binations of words of lengthk, the maximum number of nodes (Nmax) of the solutions tree of the
sequential algorithm is:

Nmax=
k

∑
i=1

4i =
4k+1−1

3
(1)

In the implementation, the sequential algorithm requires a value of 32 bits (4 bytes) to reference
a node of the tree. Since each node makes 4 references to nodes of the next level of the tree, each
node requires, at least, 16 bytes. In a 32-bit machine, the maximum amount of available memory is
232 bytes. In other words, it is able to hold a tree of232

16 = 228 = 414 nodes. This implies that the
sequential algorithm would not be able to solve the problem of searches for words of longer than13
nucleotides using a 32-bit machine.

Moreover, if the machine has less than232 bytes (4 Gigabytes) of memory, the solvable space for
the problem, using the sequence algorithm, is even smaller. For example, if we have 512 Mbytes of
memory, the sequential algorithm is only able to deal with a search problem for words of up to 12
in length. One Gigabyte of memory is not enough to extend the search to a length of 13. The result
of this analysis leads us to the unquestionable need to research an algorithm using parallel systems
where there is more than one computational element.

3. Two-stage Parallel Algorithm

In this section, we show the key ideas of the parallel algorithm. The aim of this algorithm is to be
able to extend the initial problem to analyse words of any length.
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Figure 1. Parallel Task Assignation

Figure 2. DNA information Delivery Mechanism

3.1. Definition of Parallel Tasks
The number of levels of solution tree depends on the length of the words that we want to analyze

and is limited to a maximum (M) that is determined by the size of the memory of the machine being
used. The key idea of the parallel algorithm consists of dividing the process of generating the search
tree into two stages in which a partial tree of only the firstp levels is generated for stage one (Figure
1). Stage 2 performs the search process for all of the sub-trees that are derived from the leaf nodes
of the partial tree in stage 1. The levels of the sub-trees in stage 2 will be limited byM and therefore
the process can be performed on a single machine. Each of these sub-trees represents one task that
should be performed in stage 2 and the number of these is equal to4p. The value ofp depends on
M andk that is the length of the words we want to search for; so thatp = k−M. Figure 1 shows an
example of a 4-levels tree for searching for words of length 4 (k = 4). In this case, the value ofM is
2 and, therefore,p is 2.

Since the sub-trees are derived from different leaf nodes of the partial tree in stage 1, the tasks
related to these in stage 2 are independent from each other and, therefore, can be run on parallel
machines following the Master-Slave model. In stage 1, the master generates the partial tree, which
defines different tasks of the stage 2. Each path between the root node and a leaf node of the
partial tree defines thePrefix of the words that should be analyzed by a task. The slaves generate
the sub-trees in stage 2 and represent the different tasks of analysis. Depending on the number of
machines available for the parallel system, the master creates a number of slaves and sends them
the different prefixes to determine the analysis task they must perform. In the case of Figure 1, the
master generates a partial tree of 2 levels and defines the 16 tasks. The 16 tasks are defined by 16
prefixes that are sent from the master to the slaves. For example, the task 7 searches for the frequency
of all the words that start with a{CT} prefix.
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3.2. DNA sequence Delivery and Results Collection Mechanism
As well as the distribution of the task prefixes to slaves, the master sends the DNA sequence to be

used for an analysis. Since every slave requires the complete DNA sequence in order to generate the
sub-tree, the master have to send the DNA sequence to all of the slaves. An initial solution could be
for the master to send the sequence to the slaves using independent communication channels. The
major problem with this solution is that it quickly saturates the system’s communication network
and the parallel algorithm cannot be scaled to every number of machines.

Our design for the DNA sequence delivery is based on the logical chaining of slaves (Figure 2).
The master assigns two neighbours to each slave; one neighbour that collects the DNA sequence (Vs)
and one neighbour that sends the sequence (Vd). All of the DNA sequence that has been collected
from Vs is redirected towardsVd (except the last slave) using the Forward mechanism. In this way,
DNA sequence is sent to every slave.

Algorithm 1 Slave Pseudocode
1: Receive Control Information from MasterPre f ix⇐{P1,P2, ...,Pp}, K andm
2: Create a array of(K−m) pointersP[0..K−m]⇐{NULL, ..,NULL}
3: Create a array of(K−m) numbersPos[0..K−m]⇐{1, ..,1}
4: while There is more DNA informationdo
5: Receive one Nucleotide(NN = 1,2,3,4) from Mastar
6: for i = 1 to (K−m) do
7: if Pos[i] == m then
8: P[i]⇐ Next level of Tree acording toN
9: if P[i] == NULL then

10: Create next level of the Tree
11: end if
12: if P[i] is the last levelthen
13: Increase the Frequency
14: P[i]⇐ NULL
15: Pos[i]⇐ 1
16: end if
17: else
18: if NN == Pre f ix[Pos[i]] then
19: Pos[i]⇐ Pos[i]+1
20: end if
21: end if
22: end for
23: end while

The chaining mechanism works as a Pipeline process, where the stages of the pipeline represent
the slaves that perform the searching task and re-send the DNA information. The performance of
the pipeline closely depends on the DNS sequence delivery mechanism, which has to guarantee
information availability as well as no overflow of the input buffers. The DNA sequence delivery
is complemented by the control mechanism in which a message is sent by the last slave (slaven)
to the master to report the successive arrivals of packets of information. Using the information on
the frequency of arrival of these messages, the master adapts its delivery speed to the processing
capacity of the different stages.
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Figure 3.k-stage Algorithm Solution Tree

In order to deliver DNA sequence on a packet commutation based network, the master divides
the DNA into blocks. This is performed in the Fragmentation module. As well as the division, the
module also performs the DNA sequence compacting process by assigning 2 bits to each base. As a
result of the analysis, the slave generates a list that contains the words found with a frequency higher
than the threshold. The slaves’ lists are collected by the master to generate the final output of the
system.

Algorithm 1 show the slave pseudocodes. In the step 1, the slave receives the control information
from the master whileas the DNA sequence is received in step 5.P[i]’s are memory pointers to
scan the tree andPos[i]’s indicate the position of the DNA word that each pointer is. The master
pseudocode is not shown for space limitation.

4. K-Stage Parallel Algorithm with Dynamic Memory Deallocation

In the solution process oftwo-stage algorithm, a distributed tree is created that includes every
word in the input DNA sequence, independently of frequency of appearance. But should we only
wish to search for very frequently repeated words, the system does not use memory efficiently, as we
will be storing information about uninterested words. For example, in the chromosome 1 of Homo
sapiens, there are more than 40000 words with a frequency higher than 200, if the words-length is
12 (k= 12), However, less than 10000 of these appear at a frequency of more than 600. These results
show that the number of words of interest depends on the threshold frequency and the word length.
The higher the threshold frequency, the lower the number of words found. The longer the words are,
the fewer there will be that will achieve the threshold frequency.

The aim of thek-stage parallel algorithm is to achieve better performance in the use of memory
and number of machines. The key idea of this algorithm is to perform a progressive and directed
analysis. In analysis process, only those parts of the tree that contain significant words (i.e. above
the cut-off value) are created.

4.1. Definition of thek-stage Algorithm
The initial problem of searching for nucleotide words can be formulated mathematically as the

search for all words of{b1,b2, ...,bk} such thatf ({b1,b2, ...,bk}) > U where f () is the function
that determines the frequency at which any word appears. Given this formulation, the searching
problem follows the axiom:given a word{b1, ...,bk−1,bk} with f ({b1, ...,bk−1,bk}) >U if and only
if f ({b1, ...bk−1}) > U . This axiom tells us that if a word of lengthk is more frequent thanU , then
the word formed by the firstk−1 nucleotides should also have a frequency greater thanU .

Thek-stage parallel algorithm is based on the aforementioned axiom in which each stagei searches

627



6

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14  16

Sp
ee

dU
P

Number of CPUs

Chromosome 1
Chromosome 21

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  2  4  6  8  10  12  14  16

Sp
ee

dU
P

Number of CPUs

Chromosome 1
Chromosome 21

a) b)

Figure 4. SpeedUP of: a)two-stage Algorithm. b)k-stage Algorithm.

for the frequency of words of lengthi and eliminates all those that are below thresholdU . The tree
of stagei is used to create the tree of stagei + 1. In this way, only the nodes that contain possible
solutions are kept in the memory, achieving higher memory efficiency. Figure 3 represents the tree
of solutions created in accordance with ak-stage algorithm. The number of stages is4 in this case,
where stage 1 is run by the master and the other 3 in the four slaves. Two types of nodes have been
defined: 1) candidate nodes, which are those that could contain solutions. 2) non-candidate nodes,
which are those with a frequency lower thanU and where therefore there are no longer any possible
solutions in these branches of the tree. In the case shown, a single word{C,A,A,C} has been found
by slave 2 that has a higher frequency than the threshold. In the case of slave 4, no branch has been
created.

5. Performance Results

In this section, we describes the experimental results obtained by running the different versions
of the algorithm using the parallel system. The different parallel algorithms are implemented using
language C with the C+PVM library and the parallel system consists of a cluster of 16 Pentium 4
PCs with 512 MB of memory interconnected using a 100 Mbps Ethernet. There are several points
that we are especially interested in measuring: 1) the speed-up that can be obtained using parallel
algorithms. 2) the response time of parallel algorithms given a certain number of machines. 3) how
the response time of the algorithms varies when we add more machines to the parallel system.

5.1. Speed-up of two- andk-stage Algorithms
We calculated the time taken to search for words of length 14 with a cut-off frequency of 1000.

We ran the programs that implement the 2- andk-stage parallel algorithms on 1-16 machines. The
M value of our machines is 12 and therefore in the case oftwo-stages, we found thatp= 14−12= 2
and therefore, the program must run42 = 16 independent tasks.

Figure 4.a shows the speed-up results in the cases of human chromosomes 1 and 21 using the
two-stage algorithm. The speedup value increases as more machines are added to the running of the
program. The algorithm obtains a speedup of 12.13 with 16 CPUs, which is 76% of the theoretical
value.

Between 8 and 15 CPUs, no increase of the speed-up value is observed owing to the existence
of non-usage of the CPU in the task distribution process. For example, in the case of 12 CPUs, the
algorithm assigns 12 tasks to 12 CPUs in the first distribution, leaving 4 tasks to be run. In the next
distribution, the system runs the 4 remaining tasks using only 4 CPUs and there are therefore 8 CPUs
that do not do any task.
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Figure 4.b shows the speed-up values using thek-stage algorithm. In this case, the speed-up value
is lower than the case fortwo-stages. This is because multiplying the number of machines by 4
involves the reduction of one stage of calculation. With 4 machines, we only achieve a speed-up of
1.85 and with 16 CPUs, the speed-up value is only 2.3.

5.2. Response Time According With the Number of Machines
We measured the computation time of 2- andk-stage algorithms using 4 machines to perform a

search for words of lengths between16≤ k≤ 64 and with a frequency of appearance greater than
250, 500 and 1000.

Figure 5.a shows the response time in seconds using thetwo-stage algorithm. In this case, we have
only determined the time for words of a length of up to 20. The time required increases exponentially
in accordance with the length. No outstanding differentiations are observed when varying cut-off
frequency (U).

Figure 5.b shows the times taken in seconds by thek-stage algorithm. As we can see, the response
time ofk-stage algorithm increases linearly with value ofk. There is also a slight increase depending
on the value of the cut-off frequency (U). This is because with a lower cut-off value, there are more
words in the final result that should be collected by the master.

5.3. Algoristhms Response Time Comparison
In order to make a comparison of the performance of the two versions of algorithm, we made a

search for words of lengths 15 and 16 with a frequency of appearance greater than 500. In this test,
we determined the total time of the two algorithms using from 1 to 16 CPUs.

Figure 6 shows what results were found. Owing to the complexity of thetwo-stage algorithm, the
time increases exponentially as the number of available machines decreases. Meanwhile, thek-stage
algorithm lineally increases the total time as fewer CPUs are used.

There is a point where thetwo-stage algorithm achieves better results than thek-stage algorithm.
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This is the case for words of length 15. Thetwo-stage algorithm achieves better results when there
are more than five CPUs in the system. However, the result is not the same in the case of the search
for words of 16, where thek-stage algorithm is always better than thetwo-stage one when we do not
have more than 16 machines in the system.

From observing the data, the point can be calculated where thetwo-stage algorithm is better
than thek-stage one. The following expression estimates the number of CPUs where thetwo-stage
algorithm betters thek-stage one:

4k−M

N
≤ k− log4N (2)

For example, if we want to find chains of 15 using machines that haveM = 12, the two-stage
algorithm is better than thek-stage one when we have about 5 CPUs. In the case for 16, we can
estimate that from around 19 machines, thetwo-stage algorithm is better than thek-stage one with
regards to response time.

6. Conclusions

In this study, we present a parallel application that enables us to determine the frequency of ap-
pearance of words ofk nucleotides in long DNA sequences. The proposed parallel algorithm has
demonstrated high scalability in accordance with the number of processors and can be used to anal-
yse any length of words in the search problem.

The proposed parallel algorithm presents two implementations. In the first algorithm, the dis-
tributed tree of solutions is totally built to obtain an exhaustive analysis. In the second implemen-
tation, however, the algorithm eliminate no intereted words and only the most frequently repeated
words are presented in the solution tree. The second design achieves a high memory efficiency for
analysis of extremely large words.

In order to validate the parallel algorithms, a set of tests was performed on various human chro-
mosomes and the most repeated sequences found were highly repetitive sequences typical of our
genome, known as Alu sequences plus simple DNA sequences(e.g. poli(A), poli(GA), etc). Those
results were as expected when high cut-off values are used. Similar analyses can be performed on
less known genomes in order to establish the most frequent highly repetitive sequences found in
these.
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