VI Spanish Symposium
on
PATTERN RECOGNITION AND
IMAGE ANALYSIS

Sponsored by:
AERFAI Asociación Española de Reconocimiento de Formas y Análisis de Imágenes

Organized by:
Departamento de Matemáticas Aplicadas, Ciencias de la Computación e Inteligencia Artificial, University of Córdoba

Co-sponsored by:
Consejería de Educación y Ciencia de la Junta de Andalucía
Escuela Universitaria Politécnica. (Univ. de Córdoba)
Vicerrectorado de Investigación. (Univ. de Córdoba)
Instituto de Ciencias de la Educación (Univ. de Córdoba)
Obra Cultural de Cajasur Caja y Monte de Córdoba
Excmo. Ayuntamiento de Córdoba
Ministerio de Industria y Energía
Ministerio de Educación y Ciencia

PROGRAMME COMMITTEE:
Alberto Sandfuchs (Univ. Pol. Cataluña)
Antonio Calvo (Univ. de Córdoba)
Augusto Morañas (Univ. Aut. Barcelona)
Aurilio Campillo (Univ. de Porto)
Darío Marxwall (Univ. de Málaga)
Emilio Zapata (Univ. Pol. Madrid)
Enrique Vidal (Univ. Pol. Valencia)
Francesco Ferru (Univ. de Valencia)
José Torres (Univ. del País Vasco)
Juan Márquez (Univ. de las Palmas)
Juan J. Villanueva (Univ. Aut. Barcelona)
Luis J. Álvarez (Univ. Comp. Madrid)
Luiz Solé (C.S.I.C.)
Modesta Montoto (Univ. de Oviedo)
N. Pérez de la Blanca (Univ. de Granada)
Pedro García (Univ. Pol. Valencia)
Rafael Arciz (Univ. Pol. Madrid)
S. Causton (Univ. Paul Sabatier)
Vito di Gesu (Univ. de Palermo)

COMITE ORGANIZADOR:
Antonio Calvo (Coordinador)
Rafael Medina (Vice-Coordinador)

Alberto Sandfuchs (Univ. Politécnica de Cataluña)
Angel Carmona (Univ. de Córdoba)
Angel Rojas (Univ. de Córdoba)
César Hervás (Univ. de Córdoba)
José Luis Cruz (Univ. de Córdoba)
J. Antonio Martín (Univ. de Córdoba)
J. Antonio Romero (Univ. de Córdoba)
María Antonia Cejas (Univ. de Córdoba)
M. Auxiliadora Sainz (Univ. de Córdoba)
Nicolás Fernández (Univ. de Córdoba)
N. Pérez de la Blanca (Univ. de Granada)
Rafael Jiménez (Univ. de Córdoba)
A COLOURMETRIC STUDY OF PSEUDOCOLOURATION IN DISPLAYING MEDICAL IMAGES

V. Arnaud*, M.J. Maldonado**, J.M. Artigas*, M. Vicens*, J.L. Menezo***

** Servicio de Oftalmología. Hospital Universitario La Fe. (Dpto. de Ciencia, U.V.), Valencia.
*** Dpto. Intervencion y Optica. Facultad de Física, Universidad de Valencia.

1. INTRODUCTION.

It is evident that the world of medicine has been subjected to an enormous revolution as the result of the incorporation of diagnosis through the image. The provision of data which are difficult to appreciate through the senses in the physical examination of patients justifies its unquestionable value.

Our investigations are centered on the improvement of the display of medical images. Once these images are digitalised, we establish a standard for treatment and display for clinical application, which gives an objective improvement in the image obtained [5]. For this purpose we introduce pseudocolouration techniques, including in them the capacity for chromonic discrimination in the human vision system.

2. ACQUISITION AND DISPLAY OF IMAGES.

To acquire the images we used a personal computer PC-386 with a MATROX PIP-1024 graphic pipe. The observed image was turned into a matrix of 512x512 sized points with a resolution of 256 levels of grey for each point of image.

In order to paint a screen point in a certain colour, one must give an appropriate combination of the intensity values to the three basic colours (red, green, and blue) so that the resulting colour from the combination of these three is the desired one. This trio of values of intensity for each one of the basic colours C is called trichromatic coordinates in the RGB colourmetric space: C=(R, G, B). R, G, and B are three numbers included between 0 and 63 for a personal computer with a IBM VGA target, offering a total of 2^26.144 different colours, more than enough for a good display if we bear in mind the capacity for chromonic discrimination in the human eye [6].

Pseudocolouration is the technique through which an image in levels of grey is represented on a colour monitor, assigning a different colour to each one of the 256 levels of grey. The use of this technique in the display of medical images is justified because the human eye is capable of discriminating between thousands of colours while, in levels of grey, it is only capable of distinguishing between one and two dozen levels, depending on the visual training of the human observer [2]. Bearing in mind that most medical images are monochrome, the use of this technique can offer an improvement in the appreciation of different tones which exist in the images used for medical diagnosis.

The assignment of pseudocolouration for medical imaging should be made pursuing certain objectives; uniformity in the assignment, cold or warm colours for certain bands of intensity of grey, the inclusion of a wider range of chromatic tones, not very bright colours for the lowest levels of grey, a bigger variation of tones for some predetermined bands of intensity of grey and so forth.

We investigated this colourmetric assignment thoroughly, studying the reaction of the human eye to the colour chosen to display each level of grey of the initial image.

3. COLORIMETRIC STUDY.

For this study, we digitalised images of photographs of catarracts to which we applied the pseudocolouration technique and two additional treatments shading for intensity and normalisation in scale of greys based on a linear modification of the histogram [5].

Prior to assigning colours to the levels of grey, we carried out tests with colour tables (lists) proposed in the bibliography [2, 3, 4] and performed a colourmetric study of the perception of the assigned colours which permitted us to objectively measure the quality of the range of colours chosen. Since the use of these colour tables did not satisfy the medical observers, we designed our own range of colours to fulfill the following visual and colourmetric requirements of the observers: 1) to assign the colour black to the darkest tone in the scale of greys (R=G=B=0) and evolve towards blue, 2) a progression from cold tones to warm tones as the luminosity in the image increases, 3) a progression from less to more luminous colours for more luminous tones in scale of greys.

We also made a graphic representation of the 256 colours using a space of colour perceptually uniform, the colourmetric space CIELAB [1], to objectively judge the quality of the range chosen.

4. RESULTS.

We developed the pseudocolour table shown in Figure 1. The assignment of colours to levels of grey was made in a progressive way, starting from black, going through blue, then green, then red and finishing with yellow. For displaying the degree of opacity in the crystalline lens, this distribution resulted in the darkest tones showing a smaller degree of opacity and the brightest tones showing the greater degree of opacity. With this assignment we also achieved to encompass the biggest range of opacity of the cataracts with warm colours.

We also represented the 256 colours chosen from each table in a uniform space of colour (CIELAB) to determine which of the 17 tables of colour offered a better discrimination between the colours used. This colour space has an associated formula for colour difference, which is:

\[ \Delta E^*_{ab} = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2} \]

The graph in Figure 2 shows the distribution of the 256 colours used and represents the colour table we designed in this perceptually uniform space.

To obtain a quantitative measure of the chromatic discrimination of each of the tables used, we calculated which was the mid point between the two adjacent colours, (based on \( \Delta E^* \)). The \( \Delta E^* \) in our table (11.69) resulted superior to the rest of the 17 tables of colour except for two (Levine. 13.19 and Niblack, 18.85).

5. CONCLUSIONS.

Our table of colours, designed to fulfill the visual requirements for medical diagnosis, also offered a very good chromatic discrimination. Although this average value was not higher than those of Levine and Niblack, it was sufficiently high to permit an excellent discrimination between two adjacent colours. Beyond, we found that the tables of Levine and Niblack did not meet the features that medical diagnostic imaging demand.

6. REFERENCES.

Index

Abad, J., 358, 503
Aguirre, J., 43
Ahouzi, E., 740
Alcoles, A., 73
Alonso-Fernández, J.R., 701
Alvarez, S., 112
Amengual, J.C., 218
Almog, M., 323
Andrade, J., 166
Aragón Martínez, M.C., 511
Aracil, R., 269
Ardissono, E., 550
Arnaiz, V., 966
Arquero, A., 749
Artacho-Pérez, E., 709, 711
Artigas, J.M., 696
Ayarte, J., 203
Ballotier, C., 655, 657
Balca, R., 158, 279, 735
Barranco, V., 58
Baumela, L., 463, 535
Beltran, P.S., 667, 669
Benavides, J.I., 360
Benedi, J.M., 368
Berríos-Valdés, L.R., 336
Bobes, M., 558
Boquete, L., 412
Bosch, S., 241, 455
Brian Subirana, A., 178
Brian, J., 43
Bueno, M., 92
Cabrera, J., 1
Caiado, E., 147
Calderón, L., 147
Calpe, J., 389, 716, 718
Calpe, R., 471
Calvo, A., 350, 629
Campillo, A.C., 605
Campos, J., 241, 740
Campoy, P., 268
Carnaz, J.M., 121, 208, 419, 427, 442, 637
Carbonero, M., 18
Carrascillo, A., 233
Caron, J.I., 155, 735
Casacuberta, F., 201, 301
Casadei, S., 43
Casas, A., 306, 694, 701
Caselles, V., 615, 655, 657, 659, 681
Cattil, A., 447
Castrillón, M., 1
Castro, M.J., 301
Ceres, R., 147
Cecinas, E., 396, 694, 701
Chamorro, L., 105
Chic, O., 755
Coll, B., 681
Correa, J., 396
Correia, M.V., 606
Cortijo, F.J., 358, 503
Cortés, M., 9
Crejo, J., 89
Cristobal, G., 663, 671
Cádiz, J., 249
de Francisco, J.R., 755
de Isusi, P., 447
de la Prada, L.G., 121
de la Pella, J.M., 690
de Pablo, S., 679
del Pozo, F., 331, 690
Di Gennaro, V., 315
Díez-Carlama, A., 724
Domingo, A., 744
Domingo, J., 683, 713
Dominguez, J.A., 279
Dominguez, S., 268
Dopazo, J., 121, 442
Díaz, E., 683
Díaz, J.C., 742
Ende, W., 645
Escolano, F., 260, 404
Falcón, A., 1, 17
Feldt-Källivik, J., 97, 105, 434
Feliujo, S., 155, 279, 745
Fernández, J.J., 427
Fernández, J.R., 155, 735
Fernández, X., 455
Ferré-Roca, O., 724
Ferré, F., 171
Flores, F., 260
Fonollosa, J.R., 543
Fuertes, A., 713
Fuertes, J.M., 366, 434
Gallego, D., 718
García, J., 637
García, J.A., 366
García, J.A., 97, 105
García, J.M., 260, 404
García, N., 253
García, P., 396, 685
García-Bonafé, M., 351
García-Chamizo, J.M., 746
García-Pérez, A., 753
García-Ibarra, J., 485
García-Rodríguez, P., 701
García-Rodríguez, P., 694
García-Sagredo, J.M., 690
García-Tejedor, J., 447
Garrido, A., 97, 105, 434
Garzón, A., 9, 543
Graña, M., 97, 366
Gill, J.M., 336
Gilbert, M.A., 485
Giraldez, J.V., 753
Godfrey, W., 138
Gonzalo, C., 336, 749
González, J.A., 692
González, J.M., 249
González, M., 655, 657
Gracia, L., 171
Grau, F.J., 412
Gratón, C., 373
Gras, J., 677, 751
Guerrero, J., 389
Guerrero, J.J., 590
Guill, N., 249
Gutiérrez, J.M., 733
Gómez, E., 212
Gómez, L., 396, 694
Gómez, L.P., 701
Gómez, P., 742
Heras, D.B., 323
Hernando, J., 293
Hernández, F.M., 1
Hernández, R., 667
Hervás, C., 186, 253
Horain, P., 485
Ibarra, F., 260, 404
Ibarra-Picó, P., 746
Ibáñez, P., 447
Iglesias, A., 733
Inesta, J.M., 52
Jiménez, V., 478
Juste, F., 130
Juvela, J., 232, 755
Kittler, J., 193, 558
Kober, V., 740
La Cueva, M., 550
Ladjadj, M., 427
Llacer, J., 621
Lladós, J., 27
Llorens, D., 478
Llorens, M., 751
Lobato, J., 249
Lorenzo, S., 679
Lozano, E., 105
Luece, P., 58