
ANL Parallel Processing Macro Package Tutorial

Introduction
The Argonne National Laboratory's (ANL) parallel processing macro package

provides a virtual machine that consists of a shared global memory and a number of
processors with their own local memory. The macros themselves are a set of process
control, synchronization, and communication primitives implemented as C-language m4
macros.

The use of macros has the advantage of portability. In fact, there are two layers of
macros: a small set of primitive, machine-dependent macros written in terms of target
machine functions and a larger set of machine-independent macros written in terms of the
machine-dependent macros, so only few machine-dependent macros need to be ported to
a new machine. Unfortunately, the use of macros also makes debugging more difficult,
since error messages are given in reference to the C program generated from the original
program.

This document describes a subset of the ANL macros as an introduction to their
use.

Environment Specification Macros
Some of the macros assume the existence of certain data structures. The

MAIN_ENV and the EXTERN_ENV macros contain the necessary definitions and
declarations; MAIN_INITENV performs required initialization.

MAIN_ENV contains types and structures used internally in the macro package. It
should appear in exactly one file (typically the main file) in the static definitions section
before any other macro usage.

EXTERN_ENV contains definitions and external declarations and should appear in the
static definitions section of each separately compiled module in which MAIN_ENV does
not appear.

MAIN_INTENV is an executable macro that initializes data structures defined by
MAIN_ENV. The code generated by this macro must be executed before that of any
other macro, thus it typically appears very early in the program's main function.

MAIN_END must be the last thing in your main() routine. It is used for any cleanup
necessary to support the programming environment.

Memory Allocation Macros
It is a good idea to declare a single structure, say gm_t, as global memory, and use

a single call to G_MALLOC to allocate this structure, say in variable gm. Parts of global
memory can then be referenced as, say, gm->someVar.



G_MALLOC(size) behaves like the Unix/C malloc call, except that the pointer returned
points to globally shared memory which is accessible to all processes. For example,

gm = (struct gm_t*) G_MALLOC(sizeof(struct gm_t));
where gm_t is a structure declared earlier.

G_FREE(ptr, size) de-allocates memory allocated by GMALLOC, and is similar to the
Unix/C free procedures.

P_MALLOC(size) behaves the same as the Unix/C malloc call, but is used for individual
processes which returns a pointer that is not accessible to other processes.

Process-Control Macros

CREATE(entryProc) causes a process to be created and start executing the procedure
entryProc. No arguments can be passed to the new process, or as parameters to
entryProc. The process is a Unix-style process and, in fact, CREATE uses the fork
system call. Note: At the point when a process is created, all of the parent's static data,
including the pointer to global shared memory is copied once into a separate address
space for the created process. The only memory that is shared is the memory explicitly
allocated by G_MALLOC. Globally allocated data is static.

WAIT_FOR_END(nProcs) waits for nProcs processes created by this process to exit.

Synchronization Macros
There are macros provided for locking, barriers, and distributed loops. In each

case, there is a macro for declaration (its name ends in DEC); the declaration macro
should appear within a structure that is allocated with G_MALLOC, so that it will be
globally shared and accessible to all processes. Another macro contains initialization
code (its name ends in INIT); the initialization must occur before any use.

LOCKDEC(lockName) contains a lock declaration.

LOCKINIT(lockName) initializes the lock lockName.

LOCK(lockName) attempts to acquire ownership of the lock named lockName. If no
other process currently owns the lock, then the process becomes the owner of the lock and
proceeds. Otherwise, it is delayed until it can acquire the lock.

UNLOCK(lockName) relinquishes ownership of the lock given by lockName. If other
processes are waiting to acquire the lock, one of them will succeed. Shen multiple locks
need to be acquired, deadlocks can occur. Perhaps the simplest strategy to avoid
deadlocks in this case is to have all processes acquire the locks in the same fixed order. If



the created processes all try to output to standard output at once, there can be trouble - so
use a lock to access standard output, or let only the main process generate output.

BARDEC(barName) declares a barrier with the given name.

BARINIT(barName) is an executable macro that initializes the barrier.

BARRIER(barName, nProcs) stops all processes reaching this statement until nProcs
processes have reached it. When that happens,
1. Barrier barName is reinitialized; it is not necessary to call BARINIT(barName) again.
2. All the processes continue on from the BARRIER statement.

Distributed Loops: Get Subscript
These macros aid in coordinating a distributed or self-scheduled loop. A self-scheduled
loop is executed in parallel; each process dynamically acquires the next iteration to be
executed (in this case, by first obtaining its corresponding index value).

GSDEC(name) declares an instance of a distributed loop.

GSINIT(name) initializes internal variables of the distributed loop.

GETSUB(name, subscript, maxSub, nProcs) sets subscript to the next available
subscript. When all subscripts in the range 0 to maxSub (inclusive) have been returned,
the following will happen to a process executing GETSUB, in this order:

1. The GETSUB operation is delayed until nProcs processes have requested an
out-of-range subscript.

2. Loop instance name is reinitialized; it is not necessary to call GSINIT(name)
again.

3. A value of –1 is returned for subscript.

Timing Macros
Execution time of part of whole programs can be measured using the CLOCK macro. It
gives the current elapsed time in some time unit, not actual CPU time, which means that
it is in general important that no other programs run during time measurements.

CLOCK(time) sets time to the current timer value, from 0 to 232-1, where time is
declared as

Unsigned int time;

The CLOCK macro will typically be used to computer time difference, so the fact that
time may wrap around does not matter, as long as your program takes less than 232 time
units.


