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Abstract

The application of Discrete Wavelet Transform to real-time digital signal
processing requires the use of dedicated hardware to provide the necessary
speed. The use of integer arithmetic in this dedicated hardware may be crucial
to speed-up the signal processing.

In this paper, we study the implementation of 2-D DWT using fixed-point
number representation. The results show that this implementation can be per-
formed without significantly losing quality.
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1 Introduction

The Discrete Wavelet Transform (DWT) has received considerable attention in the
field of image processing due to its flexibility in representing non-stationary image
signals and its ability in adapting to human visual characteristics [1].

This transform needs enormous computational power, and in order to satisfy
these requirements in many real-time applications, dedicated hardware implementa-
tion is required [4]. In order to develop a DWT hardware implementation, the use
of fixed-point number representation provides two main advantages with respect to
floating-point number representation: faster computation of DWT and easier design
of electronic circuitry.

In this paper, we study the implementation of 2-D DWT using fixed-point num-
ber representation. The purpose is to find the minimum number of bits required
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to ensure that both image processing and the intermediate representation of the
coefficients are performed without significantly losing quality.

The rest of the paper is organized as follows: Section 2 briefly describes how
to apply 2-D DWT to an image. Section 3 studies the required number of bits
to be used in a 2-D DWT when using fixed-point number representation. Finally,
Section 4 presents some concluding remarks.

2 Applying 2-D DWT to a Picture

A DWT is an orthogonal function that can be applied to a finite group of data.
Functionally, it is very much like the Discrete Fourier Transform, where the trans-
forming function is orthogonal, a signal passed twice through the transformation is
unchanged, and the input signal is assumed to be a set of discrete-time samples.
Both transforms are convolutions. Whereas the basis function of the Fourier trans-
form is a sinusoid, the wavelet basic is a set of functions, which are defined by a
recursive difference equation [3].

Generally, the wavelet transform is made by a Quadrature Mirror Filters (QMF)
that provides a Low-Pass filter L. and a High-Pass filter H. 1-D Wayvelet transform
is a lineal operation that transforms an input vector X with size 2%, in two vectors
with size 251 [2]. The first vector is the result of applying the Low-Pass filter and
the second vector is the result of applying the High-Pass filter. These filters can be
repeatedly applied to the low-pass output of each previous iteration. Each step of
re-transforming the low-pass output is called a dilation, and if the number of input
samples is N = 2% and the filter is formed by two coefficients then a maximum of
K dilations can be performed. The last dilation results in a single low-pass value
and single high-pass value. Figure 1 shows this process.

The 2-D Wavelet Transform is a generalization of the 1-D transform. First, 1-D
transform is applied to every line of the image, and then the 1-D transform is applied
to every column of the result image. That is, the filters L and H are applied first in
horizontal direction and then in vertical direction.

The result obtained after the application of the 2-D Wavelet Transform is an
image divided in 4 quadrants, LL, LH, HL, and HH. The LL area contains the
softened original image. The HL area shows horizontal details, the LH area shows
vertical details and finally the HH area shows oblique details. Similarly to the
1-D transform, the process can be repeated on the quadrant LL of the previous
transformation, so that the output decreases by n/4 in each step. Figure 2 shows
three dilations of 2-D DW'T applied to an image.

After the application of 2-D Wavelet Transform on an image, there will be a



BLOCK STREAM (block size =8) LLIHL HL
N N I LH]HH HL

Low-Pass (L) / \I High-Pass {H) LH HH
Lt 11 1 [ |
N
L1 I 1 1| LH HH
YW

1]

Figure 1: Dilations of a eight-sample Figure 2: Three dilations applied to an
block of data. image.

great quantity of coefficients with values very close to zero, providing a threshold
that will allow, in a later compression process, to achieve bigger compression rates.

3 Fixed-point Data Representation

The coefficients of the Daubechies wavelet transform are real coefficients. Therefore,
the use of integer arithmetic to apply this wavelet transform to an image introduces
errors. Thus, it is necessary to study the required number of bits to be used in
order to represent, using integer arithmetic, both the transform coefficients and also
the image transformed values. The selected number of bits must guarantee a good
quality of the final image.

First, we will study the required number of bits to represent the transformed
image values. Since the sum of the filter coefficients is equal to 2, each time we
compute a wavelet transform of a given image we are multiplying by a factor of two
the pixel values of the image. Therefore, the transformed coefficients will require an
additional bit for each new dilation. On the other hand, the transformed coefficients
may be negative, requiring a new additional bit for the sign.

Figure 3 shows the required number of bits to represent the resulting image of
applying three dilations of the Daubechies4 filter to a 512x512 image, with 8-bit
pixel values. Tt can be seen that for this number of dilations the required number of
bits is 12.

Figure 4 shows the required number of bits to represent only the high-pass area
of the resulting image. Since the resulting values are obtained as subtractions of
pixel values, the average value for this area does not need more bits to be properly
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Figure 3: Histogram of the entire image. = Figure 4: Histogram of high-pass area.

represented. Even more, the required number of bits is often less than 8 bits.
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Figure 5: SNR for different number of Figure 6: SNR for different number of
bits used in Daub4 filter. bits and filter sizes.

Figure 5 shows the signal-to-noise ratio (SNR) for a reconstructed image after
applying some different number of dilations of the Daub4 filter. This Figure shows
that, since each dilation introduces errors due to the use of integer arithmetic, these
errors are being accumulated as more dilations are applied, degrading the SNR
obtained for the reconstructed image. It can also be seen that in order to represent
the Daub4 transform coefficients and obtaining an acceptable SNR, at least 10 bits
are required. Additionally, the use of more than 11 bits does not improve the SNR.



Figure 6 shows the SNR for different number of bits and for different filter sizes.
It can be seen that using 10 bits for representing the filter coeflicients results in a
good SNR, regardless of the filter size. Although it is not shown here due to space
limitations, the resulting images show that when using a small number of bits for
the coefficients then the reconstructed image has a low luminance (the average pixel
values decreases).

Additionally, we have studied the possible effects of image and size in the required
number of bits to be used. Figures 7 and 8 show that the SNR of the reconstructed
image is not significantly affected by the filter size nor by the image size.
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Figure 7: SNR obtained for different fil-
ter sizes. Figure 8: SNR obtained for different im-
age sizes.

Figure 9 shows the obtained SNR for the reconstructed image when fixing the
number of used bits and varying the number of applied dilations of different Daubechies
filters. This figure clearly shows that the bigger the filter size is, the worse SNR is
obtained for the reconstructed image. It is due to the errors introduced by the use
of integer number representation. Although they are not shown here due to space
limitations, the reconstructed images show that for more than 7 dilations there ex-
ists some areas in the reconstructed images with worse quality than in the original
images.



Dilations:

Figure 9: SNR obtained for different number of dilations.

4 Conclusions

The purpose of this paper has been to implement the wavelet transform in a dedi-
cated hardware, obtaining simple circuits capable of providing the wavelet transform
in real time. We have studied parameters such as the required number of bits to
represent filter coefficients and pixel values, filter sizes and number of dilations.

The results show that in order to obtain a reconstructed image with good quality,
the minimum required number of bits for representing the filter coefficients is 10.
Additionally, an additional bit for each applied dilation must be used to represent
the pixel values of the low-pass area of the resulting image, due to the average value
of the filter coefficients. On the other hand, the required number of bits to represent
the pixel values of the reconstructed image is 12 bits. Finally, for image sizes of
512x512 pixels, the application of three dilations provides a good quality of the
reconstructed image.
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