
Implementation of 2-D Discrete Wavelet Transform for Real-Time Video 
Signal Processing  

 
RICARDO J. COLOM1, RAFAEL GADEA1, ANGEL SEBASTIA1, MARCOS 

MARTINEZ1, VICENTE HERRERO1, VICENTE ARNAU2 
1Departamento de Ingeniería Electrónica 

Universidad Politécnica de Valencia 
Camino de Vera s/n, 46022 Valencia  

SPAIN 
2Departamento de Informática 

Universidad de Valencia 
Av. Vicente Andrés Estellés s/n, 46100 Burjasot, Valencia 

SPAIN 
rcolom@eln.upv.es    http://dsd.upv.es 

 
 

Abstract: - This paper presents the architecture and implementation of a two-dimensional Discrete Wavelet 
Transform (2-D DWT) on a FPGA. This architecture works in a non-separable fashion using a parallel filter 
structure with distributed control to compute all the DWT resolution levels, so that the input sample can be 
processed at the rate of one sample per clock cycle. For the computation of an N × N still image with a filter 
length L, N2 + N clock cycles and 6N memory storage cells are required. Some of the most used image 
compression filters have been studied, emphasising the number of bits necessary to carry out a physical 
implementation of the Wavelet. 
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1   Introduction 
The Discrete Wavelet Transform has received 
considerable attentions in the field of image 
processing due to its flexibility in representing non-
stationary image signals and its ability in adapting to 
human visual characteristics. It is closely related to 
multiresolution analysis and subband decomposition, 
which has been successfully used in image processing 
for a decade. This transform method describer was 
developed by Mallat [12], offers orthogonality and 
leads to multigrid representation. Many VLSI 
architectures for 1-D DWT have been proposed and 
implemented. Although 2-D DWT can be a direct 
extension of 1-D DWT, it is still difficult to design an 
efficient architecture with a low hardware cost and 
high throughput. 
     Basically, the 2-D DWT can be classified into 
separable and non-separable design approaches. In a 
separable design approach, the transform operations 
can be divided into row and column processes so that 
processes can be individually performed by the 
architecture of 1-D DWT. Therefore, Lewis and 
Knowles [13] proposed a simple architecture for the 
special case of Daubechies DWT, but it did not work 
efficiently for other wavelets. Vishwanath [4] 
constructed two systolic array filters, two parallel 
computation filters and a storage unit to complete the 

2-D transform. Chakabarti [6] designed an 
architecture with regular structure by using linear 
systolic arrays. A parallel pipelined VLSI array 
architecture for the 2-D DWT was designed by 
Chuang and Chen [14]. Ming-Hwa [11] presented 
VLSI architecture with lower hardware costs and less 
memory for separable 2-D DWT. In non-separable 
design approaches, Chakabarti [6] used parallel filters 
and lots of shift registers to achieve a fast 2-D DWT. 
Chu Yu [5] used parallel-systolic filter structure and 
many registers to achieve the 2-D DWT. 
     In this paper, we design the architecture and 
implement a FPGA for the 2-D DWT decomposition, 
using a parallel-systolic filter structure with 
distributed control to compute all the resolution levels 
of DWT's. 
     This paper is organised as follows. Firstly, a brief 
review of the 1-D DWT and 2-D DWT is given in 
Section 2. A study of filters that can be used for the 
DWT are discussed in Section 3. Section 4 presents 
the architecture for 2-D DWT. Section 5 describes the 
FPGA implementation for the proposed DWT 
architecture. Performance and comparisons of various 
DWT architectures are discussed in Section 6. 
Finally, concluding remarks are given in Section 7. 
 
 



2   Discrete Wavelet Transform  
The Wavelet Transform is used for the compression 
of images and audio. In the process of analysing the 
wavelet, signals are represented using a group of 
basic functions produced by the displacement and 
scaled by a main function. The transformed wavelet 
is a decomposition of a signal in frequency.  
     The one-dimensional Discrete Wavelet Transform 
recursively decomposes the input signal, S0(n), into 
approximation and detail at the next lower resolution. 
Let Si(n) and Wi(n) be the approximation and detail, 
respectively, of the signal at level i. The 
approximation of the signal at level i + 1 is computed 
using 
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and the detail of the signal at level i +1 is computed 
using 
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     The equations (1) and (2) describe the 
computation of DWT. This technique for computing 
the DWT is often referred to as the pyramid 
algorithm or Mallat's algorithm [12]. The three-level 
1-D DWT computation is shown in Fig.1. 
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Fig.1. Block diagram of the DWT analysis filter 
banks. 
 
     The two-dimensional DWT has applications in 
multi-resolution analysis, computer vision, and image 
compression. The two-dimensional DWT operates on 
a 2-D signal, such as images. While 1-D filters are 
used to compute the 1-D DWT, the 2-D DWT uses 2-
D filters in its computation. These 2-D filters may be 
separable or non-separable, where a 2-D filter f(n1,n2) 
is separable if it can be written as f(n1,n2)=f1(n1)f2(n2). 
The separable 2-D DWT decomposes an 
approximation image Si(n1,n2) into an approximation 
image and three detailed images according to 
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where H(z) and G(z) are 1-D wavelet filters. The 
signal Si+1(n1,n2) is an approximation of Si(n1,n2) at a 
lower resolution. This approximation is computed 
from Si(n1,n2) by lowpass filtering and decimating by 
2 along its rows and columns. The signals 
Wi+1

1(n1,n2), Wi+1
2(n1,n2), and Wi+1

3(n1,n2) contain the 
detail of Si(n1,n2). The one-level 2-D DWT 
computation is shown in Fig.2. 
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Fig.2. Block diagram of the analysis filter bank used 
to compute the 2-D DWT. 
 
     In contrast to the separable filters, the non-
separable filters directly decompose an image into 
four resultant sub-images without column and row 
DWT's. Fig.3 illustrates the architecture of 2-D non-
separable DWT with one-resolution levels. Note that 
each block in this architecture is a 2-D filter down-
sampled by 2. Fig.4 illustrates the octave-band 
decomposition of an image using 2-D DWT. 
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Fig.3. Block diagram of the analysis filter bank used 
to compute the 2-D non-separable DWT. 
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Fig.4. (a) Octave-band decomposition of an image. 
(b) Lena-image decomposition. 



 
     Chakrabarti and Vishwanath [7] proposed the 2-D 
non-separable DWT VLSI architecture with a 
parallel-filter structure to improve the disadvantages 
of the separable filters. The hardware components of 
this architecture include 2L2 programmable 
multipliers, 2(L2-1) adders, 2NL memory storage, and 
a control unit, where L is the filter length and N is the 
row size of an image. The parallel-filter structure 
utilises the modified recursive pyramid algorithm in 
2-D to construct the whole 2-D DWT architecture, 
such that a computation time can be achieved of 
around N2. Since this architecture adopts non-
separable filters, it needs no transpose memory 
between row and column DWT's. As a result, it 
reduces a large amount of memory space and latency 
time. However, this architecture holds a relatively 
large number of hardware components and 
complicated routing (proportion to the square of the 
filter length) so that its hardware cost is huge for the 
2-D non-separable DWT realisation. 
 
 
3   Study and Analysis of Filters for the 
DWT 
The Wavelet Transform known as Daub-4 is 
performed using a four coefficients FIR filtering unit. 
The filter G(z) (low pass) used in the DWT analysing 
process,  has the following coefficients: 

24
31

)3(;
24
33

)2(;
24

33
)1(;

24
31

)0(
−

=
−

=
+

=
+

= gggg   

     As a well-known fact in  sub-band filtering, 
symmetry of filters and exact reconstruction of the 
signal are incompatible concepts if the same filter is 
been used in reconstruction and decomposition. 
However, it is still possible to obtain symmetry in the 
filters using biorthogonals coefficients instead of the 
orthogonal ones. The biorthogonals coefficients 
under study are presented in the following table. 
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     Once the algorithms in Matlab have been tested 
and verified, we carried out an initial implementation 
using a hardware description language like VHDL. 
This has shown to be useful for studying their 
behaviour with integer arithmetic.  
     In Table 1 we show the results of our study. The 
following information for each filter can also be 
found: signal-noise ratio; number of bits used in 
coefficient quantization; maximum number of 
necessary bits for the representation of the DWT after 
the 4 octaves; maximum number of necessary 
theoretical bits for the realisation of the internal 
arithmetic operations of the DWT; and maximum 
number of bits necessary in practice for the 
realisation of the internal arithmetic operations of the 
DWT without information loss. 
 
 
4   Proposed Architecture for 2-D DWT 
 
 
4.1 Direct Approach 
A straightforward implementation of the 2-D non-
separable DWT is the result of applying the pyramid 
algorithm. It essentially consists of four 2-D filters 
module (HH, HG, GH and GG) which are used 
repeatedly in the manner shown in Fig.5. The number 
of clock cycles needed to compute the N × N pixel 
DWT’s with one level is 4N2. 
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Fig.5. Architecture of a 2-D non-separable DWT with 
three levels 
 
 
4.1 Parallel Even-Odd Architecture  
To reduce the number of clock cycles we propose a 
2-D non-separable filter architecture with a parallel 
even-odd structure. Fig.6 illustrated the block 
diagram of one 2-D non-separable filter with a 
parallel even-odd structure. It is composed mainly of 
two filter units, one multiplexor, and a simple 
controller. The even filter calculates the output of 
even pixel DWT’s (output C) and the odd filter 
calculates the output of odd pixel DWT’s (output D). 
The inputs A and B are, respectively, the even and 



odd pixels of the input image. This structure 
computes two input pixels in parallel.  
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Fig.6. 2-D parallel even-odd filter structure for the 2-
D non-separable DWT 
 
     This structure has a latency of eight clock cycles 
and a throughput of four clock cycles. Therefore, the 
number of clock cycles needed to compute the N × N 
pixel DWT’s with one level is N2+4. Thus, the 
number of clock cycles needed to compute the N × N 
pixel DWT’s with three levels is:  
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     But, we do not need to wait until the first level 
finishes to begin computing the second level. We can 
synchronise the computation of three levels and 
reduce the number of clock cycles to N2+4N+12. We 
use storage units to connect the different levels. The 
storage units are dual port memories, and we store 
only six rows of the DWT. 
 
 
4.3 Recursive Architecture  
To conclude we have folded the architectures shown 
in Fig.5 and used recursive architecture. There is a 
filter unit to compute the first level and others to 
compute the second and third levels. Fig.7 shows the 
recursive architecture for a 2-D non-separable DWT 
with three levels. This architecture uses the filter unit 
described in Section 4.2 and shown in Fig.6. The 
number of clock cycles needed to compute the N × N 
pixel DWT’s with three levels is N2+4N+12. 
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Fig.7. Block diagram of recursive architecture for 2-
D non-separable DWT with three levels 
 
     Fig.8 shows the timing diagram for three 
resolution levels of computation in the 2-D non-
separable DWT architecture. The first level (filter 

unit 1) this continuously computing. The second level 
(filter unit 2) begins when the first level has 
generated the first four rows. The second level 
computes when that the first level generates two new 
rows. 
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Fig.8. Timing diagram of the 2-D DWT recursive 
architecture. 
 
 
4.4 Control Unit 
To control the architecture shown in Fig.7, we 
propose a distributed control with two different 
control units. A simple control unit in the filter unit 
(S-control unit in Fig.6), and a complex control unit 
(D-control unit in Fig.7). The D-control unit controls 
the connection of data between one level and the 
following level. Thus, two D-control units they are 
needed to make a 2-D DWT with three levels. Fig.9 
shows how the D-control unit is used in an unfolded 
architecture for 2-D DWT with three levels. 
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Fig.9. As using the distributed control in an unfolded 
architecture 
 
     The D-control unit communicates with the S-
control unit of the filter unit. Therefore, the filter unit 
2, shown in Fig.7, needs two S-control units one to 
communicate with the D-control unit 1, and another 
to communicate with the D-control unit 2. 
     Distributed control makes the architecture totally 
modulable and scalable. To increase the number of 
levels, it is only necessary to copy the D-control unit 
and the S-control unit. 
 
 
5   FPGA Implementation 
Following the proposed architecture as described in 
Section 4.3, we have implemented the 2-D non-
separable DWT on an FPGA Xilinx XCV600E. The 
block diagram of the chip with 4-taps and 3-levels is 
shown in Fig.7. It is mainly composed of two storage 
units, two filter units, and two D-control units. The 
filter unit was shown in Section 4.2 and Fig.6. 



     The storage unit is a dual port block memory, 
which has two independent access ports permitting 
shared access to a central pool of memory. The data 
width and memory depth of each access port are 
independently configured. Access port A (write only) 
takes P-bit data value and a Q-bit address; and access 
port B (read only) takes 2P-bits data value and a (Q-
1)-bit address. Since each port is accessing the same 
quantity of memory, data words formatted 
appropriately for port B will be equivalent to two data 
words formatted for port A. A single memory access 
on port B is equivalent to two accesses made to port 
A. The storage unit 1 has a memory depth of 8N/2 
words, and the storage unit 2 has a memory depth of 
8N/4 words. These storage units are Xilinx cores.  
     The implementation process is as follows. Firstly, 
we use Matlab simulations to validate the 2-D non-
separable DWT. The simulation is also used to 
generate test patterns. Secondly, we use VHDL 
simulation for developing behavioural and structural 
VHDL code. A VHDL synthesiser produces a digital 
circuit that can be simulated for correctness. Another 
tool, called partitioning, placement and routing (PPR) 
tool, then generates FPGA bitstream that can be used 
for both static time analysis as well as downloading 
to an FPGA demoboard for real-time validation. 
Based on the resulting configuration of FPGA 
resources, it is possible to estimate the maximum 
clock cycle achievable . This clock cycle, in turn, 
determines the data throughput. The performance 
data of the FPGA, is summarised in Table 2. 

 
Table 2. Performance Data 

Processing Image Size 512 × 512 
Input Data Precision 8 bits 

Output Data Precision 14 bits 
Filter Coefficients Non-separable 4 × 4 

Levels DWT 3 
Device XCV600E 

No. Slices 2568 (37 %) 
No. Block RAM's 14 (19 %) 

Equivalent gate 285114 
Clock Rate 45 MHz 

 
 
6   Performance and Comparisons of 
DWT Architectures  
In this section, we examine the performance of the 2-
D DWT architectures. The performance comparisons 
of our and another architecture, are summarised in 
Table 3. Our 2-D non-separable DWT architecture 
consists of regular 2-D filters, and so needs only 6N 
of memory storage, 8 multipliers, and 8 adders. When 
comparing our architecture to the other 2-D DWT, it 
is worth remembering that ours is the only one 
implemented in a FPGA. Our architecture processes 
video in real-time, using less storage units that [8]. 
 

 
Table 1. Results of the study of filters. 

Filter S/N 
(dB) 

Bits 
Coefficients 

Max. Bits in  
4 Octaves 

Max. Bits for 
the Theoretical 

Operations 

Max. Bits for the 
Practical 

Operations 
Daub-4 26.95 9 13 31 29 

Daub-4 M. 26.91 9 9 27 25 
CDF 3/1 52.96 4 14 22 19 

CDF 3/1 M. 42.52 4 10 18 15 
CDF 2/2 52.02 4 13 21 18 
CDF 9/7 56 7 13 27 24 

 
Table 3. Comparison between 2-D architectures 

Architecture Ours [4] [5] [6] [11] [8] 

Input order Serial-
Parallel Parallel Parallel Parallel Parallel Parallel 

Computing 
approach 

Non-
separable  Separable  Non-

separable  Separable  Separable  Non-
separable  

Real-time 
Video 

Processing 
Yes Not Not  Not Yes 

No. Of * 8 16   10  
No. Of + 8 16 3  10 2048 



Architecture Ours [4] [5] [6] [11] [8] 
MACs  8 8 24   

Storage size 
(byte) 3072 4096 3584 3968 896 7680 

Frequency 
(MHz) 45  55  25 50 

Computing 
Time ≈ 

N2+N N2+N N2+N N2+N N2+N  

 
 
 
 
7   Conclusions  
A fast and efficient architecture and an FPGA 
implementation for the 2-D DWT decomposition has 
been described in this paper. The 2-D non-separable 
DWT architecture is, in general, very complicated, 
and so it was not widely implemented in an FPGA. In 
this paper, we present a 2-D non-separable, parallel, 
and recursive DWT architecture, which uses 
distributed control, little storage memory, latency and 
throughput. Moreover, this 2-D architecture can be 
easily cascaded into a larger tap size of filters, scaled 
up with the resolution levels, and implemented in an 
FPGA. In addition, the designed FPGA can process 
digital video in real-time. 
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