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Abstract

We state a condition for an observer to be comoving with another observer in general
relativity, based on the concept of lightlike simultaneity. Taking into account this con-
dition, we study relative velocities, Doppler effect and light aberration. We obtain that
comoving observers observe the same light ray with the same frequency and direction,
and so gravitational redshift effect is a particular case of Doppler effect. We also de-
fine a distance between an observer and the events that it observes, that coincides with
the known affine distance. We show that affine distance is a particular case of radar
distance in the Minkowski spacetime and generalizes the proper radial distance in the
Schwarzschild spacetime. Finally, we show that affine distance gives us a new concept
of distance in Robertson-Walker spacetimes, according to Hubble law.

1 Introduction

In general relativity it is often difficult to interpret when an observer β is comoving with
another observer β′, in the sense that β moves “like” β′. For example, given a particular
coordinate system it is usual to suppose that stationary observers (i.e. with constant spatial
coordinates) are comoving each one with respect to the other. But this criterion is coordinate-
dependent: let us suppose that two observers are stationary using a particular coordinate
system; then they are comoving each one with respect to the other. On the other hand, we
can find another coordinate system in which one observer is stationary and the other one is
not stationary; then they are not comoving each one with respect to the other. Since we want
that the property “to be comoving with” was an intrinsic property of the observer (i.e. that
an observer was able to decide if it is comoving with another observer or not, independently
from the coordinate system), the “stationary criterion” is a bad criterion.

Given an observer β, there is a general method to check if it is comoving with another
observer β′, based on the concept of simultaneity. We have to build a simultaneity foliation
associated with β [1], then parallelly transport the 4-velocity of β′ to β, along geodesics
joining β′ with β in the leaves of the foliation, and finally compare it with the 4-velocity of
β (see Figure 1).

There are a lot of kinds of simultaneities, but we are going to consider only two kinds
of simultaneity foliations associated with a given observer β [1]: the Landau foliation Lβ ,
whose leaves are Landau submanifolds [2], also called Fermi surfaces (spacelike); and the
past-pointing horismos foliation E−β , whose leaves are past-pointing horismos submanifolds [3]
(lightlike). We have to note that if we use Landau foliations, then the method to check if
an observer is comoving with another one is symmetric; on the other hand, if we use past-
pointing horismos foliations, then this method is not symmetric, i.e. one observer β can
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Figure 1: How to check if an observer β is comoving with another observer β′, depending on
the simultaneity foliation that we are using. Left: Landau foliation Lβ (spacelike). Right:
Past-pointing horismos foliation E−β (lightlike).

be comoving with another observer β′, and β′ being non comoving with β. But, since we
are working in relativity, the non-symmetry is an acceptable property. So, the problem is
to decide which simultaneity (spacelike or lightlike) is mathematically and physically more
suitable for us:

(a) Mathematically: in a previous work [1] we proved that the Landau foliation Lβ is not
always defined in every convex normal neighborhood because its leaves can intersect
themselves. For example, in a Minkowski spacetime if the observer β is not geodesic.
Moreover, Lβ is not necessarily spacelike at every point of a convex normal neighbor-
hood. On the other hand, the past-pointing horismos foliation E−β is always well defined
in every convex normal neighborhood and it is always lightlike.

(b) Physically: given an observer at an event p with 4-velocity u, the events of its Landau
submanifold Lp,u do not affect the observer at p in any way, since both electromagnetic
and gravitational waves travel at the speed of light. On the other hand, the events of
its past-pointing horismos submanifold E−p are precisely the events that affect and are
observed by the observer at p, i.e. the events that exist for the observer at p.

Therefore, we are going to work in the framework of lightlike simultaneity. So, given an
observer at an event p, we will say that the events of E−p are lightlike-simultaneous for this
observer at p. In fact “to be lightlike-simultaneous for an observer” is the same as “to be
observed simultaneously by an observer”.

Hence, in Section 3, we define the observers congruence comoving with a given observer,
according to the concept of lightlike simultaneity, and we give a method to measure relative
velocities of observers in Section 3.1. Given a light ray, we study Doppler effect in Section 3.2,
obtaining that the frequency of a light ray remains constant for comoving observers. This is
apparently contradictory with gravitational redshift effect, stating that light rays gain or lose
frequency in the presence of a gravitational field, and it is considered independent of Doppler
effect. Gravitational redshift effect is completely explained in our formalism, showing that it
is a particular case of a generalized Doppler effect. We also study light aberration effect in
Section 3.3, obtaining that there is not light aberration between comoving observers.
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The concept of distance is strongly bounded to the concept of simultaneity too. We are
using lightlike simultaneity, so we have to measure distances between lightlike-simultaneous
events, i.e. we need to measure lengths of light rays. In Section 4, we re-define a concept
of distance (called affine distance) between an observer and the events that it observes, i.e.
a distance between p and the events of E−p . In Section 5, we show that affine distance is
a particular case of radar distance in the Minkowski spacetime and generalizes the proper
radial distance in the Schwarzschild spacetime. Finally, we show that affine distance gives us
a new concept of distance in Robertson-Walker spacetimes, according to Hubble law.

We work in a 4-dimensional lorentzian spacetime manifoldM, with c = 1 and ∇ the Levi-
Civita connection, using the Landau-Lifshitz Spacelike Convention (LLSC). We suppose that
M is a convex normal neighborhood [4]. Thus, given two events p and q in M, there exists
a unique geodesic joining p and q . The parallel transport from p to q along this geodesic
will be denoted by τpq. If β : I →M is a curve with I ⊂ R a real interval, we will identify β
with the image βI (that is a subset inM), in order to simplify the notation. If u is a vector,
then u⊥ denotes the orthogonal space of u. Moreover, if x is a spacelike vector, then ‖x‖
denotes the module of x. Given a pair of vectors u, v, we use g (u, v) instead of uαvα. If X
is a vector field, Xp will denote the unique vector of X in TpM.

2 Preliminaries

An observer in the spacetime is determined by a timelike world line β, and the events of β
are the positions of the observer. It is usual to identify an observer with its world line, and
so β is an observer. The 4-velocity of the observer is a future-pointing timelike unit vector
field U defined in β and tangent to β. Given an event p, the 4-velocity of an observer at p is
given by a future-pointing timelike unit vector u. It is also usual to identify an observer with
its 4-velocity, since they are defined reciprocally. So, if u is the 4-velocity of an observer at p,
we will say that u is an observer at p, in order to simplify the notation. To sum up, we will
say that a timelike world line β is an observer, and a future-pointing timelike unit vector u
in TpM is an observer at p.

Given two observers u and u′ at the same event p, there exists a unique vector v ∈ u⊥
and a unique positive real number γ such that

u′ = γ (u+ v) . (1)

As consequences, we have 0 ≤ ‖v‖ < 1 and γ = −g (u′, u) = 1√
1−‖v‖2

. We will say that v

is the relative velocity of u′ observed by u, and γ is the gamma factor corresponding to the
velocity ‖v‖.

A free-falling test particle is given by a timelike geodesic β (i.e. the world line of a
geodesic observer) and a future-pointing timelike vector field M defined in β, tangent to β
and parallelly transported along β (i.e. ∇MM = 0), called mass vector field of β. Given
p ∈ β and u an observer at p, the mass of β observed by u is given by m := −g (Mp, u). The
mass of a test particle does not modify the spacetime metric. The 3-moment of β observed
by u is given by ρ := Mp − mu. So, ρ ∈ u⊥ and Mp = mu + ρ. Given a free-falling test
particle β with 4-velocity U and mass vector field M , the proper mass of β (also known as
rest mass) is given by m0 := −g (Mp, Up), where p ∈ β. The proper mass is well defined, i.e.
it does not depend on the point p. Moreover M = m0U .

A light ray is given by a lightlike geodesic λ and a future-pointing lightlike vector field F
defined in λ, tangent to λ and parallelly transported along λ (i.e. ∇FF = 0), called frequency
vector field of λ. Given p ∈ λ and u an observer at p, there exists a unique vector w ∈ u⊥
and a unique positive real number ν such that

Fp = ν (u+ w) . (2)
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As consequences, we have ‖w‖ = 1 and ν = −g (Fp, u). We will say that w is the relative
velocity of λ observed by u, and ν is the frequency of λ observed by u. In other words, ν
is the module of the projection of Fp onto u⊥. A light ray from q to p is a light ray λ such
that q, p ∈ λ and exp−1

q p is future-pointing.
Given two observers u and u′ at the same event p of a light ray λ, using (2), the frequency

vector Fp of λ is given by
Fp = ν (u+ w) = ν′ (u′ + w′) , (3)

where ν, ν′ are the frequencies of λ observed by u, u′ respectively and w, w′ are the relative
velocities of λ observed by u, u′ respectively. Applying (1), we obtain that

ν′ = γ (1− g (v, w)) ν. (4)

Expression (4) is the general expression of Doppler effect. For example, if v
‖v‖ = w, i.e.

the direction of the relative velocity of u′ observed by u coincides with the direction of the
relative velocity of λ observed by u, we have the usual redshift expression

ν′ =

√
1− ‖v‖
1 + ‖v‖

ν.

On the other hand, taking into account (3) and (4), we have

w′ =
1

γ (1− g (v, w))
(u+ w)− u′. (5)

The fact that w′ is different from w causes an aberration effect [5]. It is easy to prove that

cos θ =
cos θ′ − ‖v‖

1− ‖v‖ cos θ′
, (6)

where θ is the angle between −w and v, and θ′ is the angle between −w′ and the projection
of v onto u′⊥ (θ′ is also the angle between −w′ and −v′, where v′ is the relative velocity of u
observed by u′). The expression (6) is the general expression of light aberration phenomenon
[6], and the scalar function given by θ′ − θ is the aberration angle of u′ observed by u
corresponding to λ.

Let p ∈M and ϕ :M→ R defined by

ϕ (q) := g
(
exp−1

p q, exp−1
p q

)
.

Then, it is a submersion and the set

Ep := ϕ−1 (0)− {p} (7)

is a regular 3-dimensional submanifold, called horismos submanifold of p [3]. In other words,
an event q in the spacetime is in Ep if and only if q 6= p and there exists a lightlike geodesic
joining p and q (i.e. a light ray from q to p). The submanifold Ep has two connected
components, E+

p and E−p [7]; E+
p (respectively E−p ) is the future-pointing (respectively past-

pointing) horismos submanifold of p, and it is the connected component of (7) in which,
for each event q ∈ E+

p (respectively q ∈ E−p ), the preimage exp−1
p q is a future-pointing

(respectively past-pointing) lightlike vector.
We can construct horismos foliations in this way [1,8]: let β be an observer; then, we define

M+
β := ∪p∈βE+

p and M−β := ∪p∈βE−p . So, there exists a foliation E+
β (respectively E−β ) de-

fined inM+
β (respectivelyM−β ) whose leaves are future-pointing (respectively past-pointing)

horismos submanifolds of events of β. The foliations E+
β and E−β are called respectively

future-pointing and past-pointing horismos foliation generated by β.
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Figure 2: The extension of U at q is given by τpqUp, where p ∈ β and there exists a light ray
λ from q to p. So, we can build a reference frame from a single observer.

3 Comoving observers in the framework of lightlike si-
multaneity

As we discussed in the Introduction, we are going to work in the framework of lightlike
simultaneity. So, for checking if an observer β is comoving with another observer β′, we have
to parallelly transport the 4-velocity of β′ to β along lightlike geodesics joining β′ with β
in the leaves of the foliation E−β , and finally compare it with the 4-velocity of β (see Figure
1-right). This is a non-symmetric method, i.e. if β is comoving with β′ then β′ is not
necessarily comoving with β.

Given an observer β with 4-velocity U , we can construct an observers congruence extend-
ing U to M−β by means of parallel transports along light rays from events of M−β to events
of β:

Definition 3.1. Let β be an observer with 4-velocity U . The observers congruence associated
with β is the extension of U defined onM−β ∪β such that Uq := τpqUp, where p ∈ β, q ∈M−β ,
and there exists a light ray from q to p (see Figure 2).

Let β, β′ be two observers. We will say that β is comoving with β′ if β′ is an observer of
the observers congruence associated with β, i.e. β′ is an integral curve of this vector field.

Since parallel transport conserves metric and causality, the observers congruence asso-
ciated with a given observer β is actually an observers congruence, because it is a future-
pointing timelike unit vector field defined in the open set M−β ∪ β. Moreover, β observes
that its 4-velocity is the same as the 4-velocity of any observer of this congruence. So, they
define a reference frame associated with the observer β in a natural way. According to this
method, we state the next definition.

Definition 3.2. Let λ be a light ray from q to p and let u, u′ be two observers at p, q
respectively. We will say that u is comoving with u′ if τqpu

′ = u.

3.1 Relative velocity of an observer

We can generalize the concept of “relative velocity of an observer” (given in Section 2) for
observers at two different events of the same light ray:

Definition 3.3. Let λ be a light ray from q to p and let u, u′ be two observers at p, q
respectively. The relative velocity of u′ observed by u is the relative velocity of τqpu

′ observed
by u, according to (1).
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So, the relative velocity of u′ observed by u is given by the unique vector v ∈ u⊥ such
that τqpu

′ = γ (u+ v), where γ is the gamma factor corresponding to the velocity ‖v‖. Note
that τqpu

′ is the way u observers u′, and so, it is the natural adaptation of u′ at p.
We can generalize this definition for two observers β and β′:

Definition 3.4. Let β, β′ be two observers, and let U , U ′ be the 4-velocities of β, β′

respectively. The relative velocity of β′ observed by β is a vector field V defined on β such
that Vp is the relative velocity of U ′q observed by Up (in the sense of Definition 3.3), where
p, q are events of β, β′ respectively and there exists a light ray from q to p.

By Definitions 3.2 and 3.3, we have that u is comoving with u′ if and only if the relative
velocity of u′ observed by u is zero. Analogously, by Definitions 3.1 and 3.4, we have that β
is comoving with β′ if and only if the relative velocity of β′ observed by β is zero.

For example, in the Schwarzschild metric with spherical coordinates

ds2 = −a2 (r) dt2 +
1

a2 (r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
,

where a (r) =
√

1− 2m
r and r > 2m, we have that λ : [r1,+∞)→M with r1 > 2m given by

λ (r) :=

(
2m ln

(
r − 2m

r1 − 2m

)
+ r − r1, r,

π

2
, 0

)
(8)

is a radial light ray emitted from q := λ (r1) = (0, r1, π/2, 0) and moving away from the
event horizon r = 2m. Given a radius r2 > r1, let p := λ (r2) be an event of λ and let

u1 = ut1
∂
∂t

∣∣
q

+ ur1
∂
∂r

∣∣
q

+ uθ1
∂
∂θ

∣∣
q

+ uϕ1
∂
∂ϕ

∣∣∣
q

be a vector in TqM. Taking into account the

Christoffel symbols of the metric, it can be proved that

τqpu1 =
1

2a2
2

((
a2

2 + a2
1

)
ut1 +

(
1− a2

2

a2
1

)
ur1

)
∂

∂t

∣∣∣∣
p

+
1

2

((
a2

1 − a2
2

)
ut1 +

(
1 +

a2
2

a2
1

)
ur1

)
∂

∂r

∣∣∣∣
p

+
r1

r2
uθ1

∂

∂θ

∣∣∣∣
p

+
r1

r2
uϕ1

∂

∂ϕ

∣∣∣∣
p

, (9)

where a1 := a (r1) and a2 := a (r2).

• If u1 is a stationary observer, then u1 = 1
a1

∂
∂t

∣∣
q
. Let u2 be a stationary observer at p.

By (9) and taking into account Definition 3.3, the relative velocity v of u1 observed by
u2 is given by

v = a2
a2

1 − a2
2

a2
1 + a2

2

∂

∂r

∣∣∣∣
p

, (10)

and hence, ‖v‖ =
a22−a

2
1

a22+a21
< 1. If r1 → 2m then ‖v‖ → 1. This accords with the fact

that “a particle at rest in the space at r = 2m would have to be a photon” [9].

• If u1 is a radial free-falling observer, then u1 = E
a21

∂
∂t

∣∣
q
−
√
E2 − a2

1
∂
∂r

∣∣
q
, where E is

a constant of motion given by E :=
(

1−2m/r0
1−v20

)1/2

, r0 is the radial coordinate at which

the fall begins, and v0 is the initial velocity [10]. Let u2 be a stationary observer at p.
So, by (9) and taking into account Definition 3.3, the relative velocity v of u1 observed
by u2 is given by

v = −a2

(
a2

2 + a2
1

)√
E2 − a2

1 + E
(
a2

2 − a2
1

)
(a2

2 − a2
1)
√
E2 − a2

1 + E (a2
2 + a2

1)

∂

∂r

∣∣∣∣
p

,

and hence, ‖v‖ =
(a22+a21)

√
E2−a21+E(a22−a

2
1)

(a22−a21)
√
E2−a21+E(a22+a21)

< 1. If r1 → 2m then ‖v‖ → 1.
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Figure 3: If β is comoving with β′ then β observes that β′ uses the same clock as its.

An observer with r > 2m is unable to observe a free-falling particle crossing the event
horizon, since light rays cannot escape from the zone r ≤ 2m. Hence, it can never observe
a free-falling particle reaching the speed of light. The only observer being able to observe a
particle at r = 2m is an observer which crosses the event horizon at the same time and at
the same point as the particle. The relative velocity of the particle observed by this observer
is smaller than the speed of light, as it is shown in [10].

3.2 Doppler effect and gravitational redshift

Taking into account Definition 3.3, we can generalize the expression of Doppler effect (4) for
observers at different events of the same light ray:

Proposition 3.1. Let λ be a light ray from q to p and let u, u′ be two observers at p, q
respectively. Then

ν′ = γ (1− g (v, w)) ν, (11)

where ν, ν′ are the frequencies of λ observed by u, u′ respectively, v is the relative velocity
of u′ observed by u, w is the relative velocity of λ observed by u and γ is the gamma factor
corresponding to the velocity ‖v‖.

Proof. Let F be the frequency vector field of λ. Then, ν′ = −g (Fq, u
′). Since parallel

transport conserves metric, we have ν′ = −g (τqpFq, τqpu
′) = −g (Fp, τqpu

′). So, the frequency
of λ observed by τqpu

′ is also ν′. Taking into account (4) and Definition 3.3, expression (11)
holds.

Note that the proof of Proposition 3.1 assures that the frequency of λ observed by u′ is
the same as the frequency of λ observed by τqpu

′. Taking into account Definition 3.2, if u
is comoving with u′ then they observe λ with the same frequency. This result can be also
obtained from expression (11), since the relative velocity v of u′ observed by u is zero if u is
comoving with u′.

So, given β an observer comoving with another observer β′ and given λ a light ray from β′

to β, we have that β and β′ observe λ with the same frequency. Hence, within the framework
of lightlike simultaneity, “β is comoving with β′” means “β is spectroscopically comoving with
β′”. This fact can be interpreted in this way: if β′ emits n light rays in a unit of its proper
time, then β observes also n light rays in a unit of its proper time. So, β observes that β′

uses the “same clock” as its (see Figure 3).
Given two stationary observers (i.e. with constant spatial coordinates, for a given coor-

dinate system) β, β′, and a light ray λ from β′ to β, the frequency of λ observed by β is, in
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general, different from the frequency observed by β′. This phenomenon is known as gravita-
tional redshift. Since two stationary observers are in “rest” with respect to each other, they
are supposed to be “comoving”. Thus, gravitational redshift effect has been always consid-
ered independent from Doppler effect, arguing that photons lose or gain energy when rising
or falling in a gravitational field. Nevertheless, in our formalism, stationary observers are
not comoving in general. Hence, there appears a Doppler shift given by (11) that coincides
with the known gravitational shift, explaining it in a natural way.

A clear example can be found in the Schwarzschild metric with spherical coordinates,
considering the radial light ray λ given in (8). Let u1 be a stationary observer at q := λ (r1),
and let u2 be another stationary observer at p := λ (r2), with r2 > r1 > 2m. Taking
a1 := a (r1) and a2 := a (r2), we have that the relative velocity v of u1 observed by u2 is
given by (10). Moreover, the relative velocity w of λ observed by u2 is a2

∂
∂r

∣∣
p
. Applying the

general expression for Doppler effect (11), we have

ν1 =
a2

a1
ν2, (12)

where ν1, ν2 are the frequencies of λ observed by u1, u2 respectively. This redshift is produced
because u2 is not comoving with u1 in our formalism. Effectively, if we parallely transport
u1 to p along λ, we obtain the vector

τqpu1 =
1

2

(
a1

a2
2

+
1

a1

)
∂

∂t

∣∣∣∣
p

+
1

2

(
a1 −

a2
2

a1

)
∂

∂r

∣∣∣∣
p

,

that it is obviously different from u2.

Hence, given two equatorial stationary observers β1 (τ) :=
(

1
a1
τ, r1, π/2, 0

)
and β2 :=(

1
a2
τ, r2, π/2, 0

)
with τ ∈ R, and a radial light ray λ from β1 to β2, equation (12) holds,

where ν1, ν2 are the frequencies of λ observed by β1, β2 respectively. Equation (12) is the
known expression for gravitational redshift in Schwarzschild metric, and so, it is a particular
case of the generalized Doppler effect given by expression (11). Note that ν → 0 when
r1 → 2m, according to the fact that ‖v‖ → 1 when r1 → 2m (see (10)).

Another example is the cosmological redshift produced by the expansion of the universe
in the Robertson-Walker metric with spherical coordinates

ds2 = −dt2 + a2 (t)

(
1

1− kr2
dr2 + r2

(
dθ2 + sin2 θdϕ2

))
,

where a (t) is the scale factor and k = −1, 0, 1. Such redshift is too a particular case of
Doppler effect because stationary observers (usually called “comoving”, unfortunately for
our formalism) are not comoving. This effect can be calculated using the Killing (2, 0)-
tensor K (X,Y ) := a2 (t) (g (X,Y ) + g (X,U) g (Y,U)), where X,Y are two vector fields and
U := ∂

∂t is the 4-velocity vector field of the congruence of stationary observers. So, given X a

geodesic vector field, we have that K (X,X) = a2 (t)
(
g (X,X) + g (X,U)

2
)

is constant along

its integral curves. Therefore, since the frequency vector field F of the light ray λ is geodesic
and lightlike, we have that a (t) g (F,U) is constant along λ. So, a (t) ν is constant too, where
ν is the frequency of λ observed by a stationary observer of the congruence U . Hence, given
two stationary observers β1, β2 and a light ray λ emitted by β1 at coordinate time t1 and
observed by β2 at coordinate time t2, we have that the expression (11) for Doppler effect has
the form

ν1 =
a (t2)

a (t1)
ν2, (13)

where ν1, ν2 are the frequencies of λ observed by β1 and β2 respectively.
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The functions a (r) of (12) and a (t) of (13) are responsible for the gravitational redshift
in Schwarzschild and Robertson-Walker metrics. This functions are usually called lapse
functions.

A discussion about these facts can also be found in [11].

3.3 Light aberration

Taking into account Definition 3.3, we can also generalize expressions (5) and (6) of light
aberration effect for observers at different events of the same light ray:

Proposition 3.2. Let λ be a light ray from q to p and let u, u′ be two observers at p, q
respectively. Then

τqpw
′ =

1

γ (1− g (v, w))
(u+ w)− τqpu′, (14)

where w, w′ are the relative velocities of λ observed by u, u′ respectively, v is the relative
velocity of u′ observed by u, and γ is the gamma factor corresponding to the velocity ‖v‖.
Moreover, if τqpw

′ 6= w then

cos θ =
cos θ′ − ‖v‖

1− ‖v‖ cos θ′
, (15)

where θ is the angle between −w and v, and θ′ is the angle between −τqpw′ and the projection

of v onto (τqpu
′)
⊥

.

Proof. Let F be the frequency vector field of λ. Then, Fp = ν (u+ w) and Fq = ν′ (u′ + w′).
Since F is tangent to λ and geodesic, we have Fp = τqpFq = ν′ (τqpu

′ + τqpw
′). So, τqpw

′ =
ν
ν′ (u+ w) − τqpu

′. Applying Proposition 3.1, expression (14) holds. If τqpw
′ 6= w then

expression (15) is obtained from (14) by simple algebraic manipulations.

If u is comoving with u′, then τqpu
′ = u, v = 0 and so, from (14), we have τqpw

′ = w.
Since τqpw

′ is the way u observes w′, we can say that u and u′ observes λ with the “same”
relative velocity, and hence there is not light aberration between comoving observers.

4 Affine distance

To measure distances in our formalism we have to measure “lengths” of light rays, as we told
in the Introduction. But light rays are lightlike curves and they have no length. To measure
distances and angles, an observer has to project these light rays onto its physical space (i.e.
the orthogonal space of its 4-velocity). This idea drives us to the next definition of distance.

Definition 4.1. Let λ be a light ray from q to p and let u be an observer at p. The affine
distance from q to p observed by u, denoted as du (q, p), is the module of the projection of
exp−1

p q onto u⊥ (see Figure 4).

This concept of distance is defined according to the concept of lightlike simultaneity given
by the past-pointing horismos submanifolds, because we measure distances between an event
p and events that are observed simultaneously at p (i.e. events of E−p ).

Taking into account Definition 4.1, we have du (q, p) = −g
(
exp−1

p q, w
)
, where w is the

relative velocity of λ observed by u (see Figure 4). So, it is easy to prove that

du (q, p) = g
(
exp−1

p q, u
)
. (16)

In the tangent space TpM we have that w and exp−1
p q are proportional and opposite. Taking

into account Definition 4.1, we have exp−1
p q = −du (q, p) (u+ w). Given another observer u′

9



Figure 4: Scheme in TpM of the affine distance from q to p observed by u, given in Definition
4.1. In this case, q is an event of a world line β′. Note that du (q, p) does not depend on β′.

at p, we have exp−1
p q = −du′ (q, p) (u′ + w′), where w′ is the relative velocity of λ observed

by u′. Therefore, we obtain

du′ (q, p) = γ (1− g (v, w)) du (q, p) , (17)

where v is the relative velocity of u′ observed by u and γ is the gamma factor corresponding
to ‖v‖.

If we compare (17) with (4), we realize that frequency and affine distance have the same
behavior when a change of observer is done. Hence, if λ is a light ray from q to p and u, u′

are two observers at p, we have

du (q, p)

ν
=
du′ (q, p)

ν′
, (18)

where ν, ν′ are the frequencies of λ observed by u, u′ respectively.
The next proposition shows that the concept of distance given in Definition 4.1 coincides

with the known concept of affine distance introduced in [12].

Proposition 4.1. Let λ be a light ray from q to p, let u be an observer at p, and let w be

the relative velocity of λ observed by u. If we parameterize λ affinely (i.e. ∇ .

λ(s)

.

λ (s) = 0)

such that λ (0) = p and
.

λ (0) = − (u+ w), then λ (du (q, p)) = q (see Figure 5).

Proof. By the properties of the exponential map (see [4]), we have λ (s) = expp (−s (u+ w)).
So λ (du (q, p)) = expp (−du (q, p) (u+ w)) = q.

Hence, given a light ray λ from q to p and an observer u at p, we can interpret the affine
distance from q to p observed by u as the distance (or time) traveled by the light ray λ,
measured by an observer at p with 4-velocity u. An equivalent result is given in the next
corollary.

Corollary 4.1. Let λ be a light ray from q to p, let u be an observer at p, and let w be
the relative velocity of λ observed by u. If we parameterize λ affinely such that λ (0) = q,

λ (d) = p and
.

λ (d) = u+ w, then d is the affine distance from q to p observed by u.

Now, we are going to generalize Definition 4.1.

Definition 4.2. Let β, β′ be two observers. The affine distance from β′ to β observed by β
is a real positive function dβ defined on β such that, given p ∈ β, dβ (p) is the affine distance
from q to p observed by u, where u is the 4-velocity of β at p, and q is the unique event of
β′ such that there exists a light ray from q to p.

10



Figure 5: Scheme of Proposition 4.1, where q is an event of a world line β′. Note that du (q, p)
does not depend on β′.

Note that even if β is comoving with β′, the affine distance dβ from β′ to β observed by
β is not necessarily constant. Inversely, if dβ is constant then β is not necessarily comoving
with β′, as we will see in Section 5.2. Only in some special cases we have that dβ is constant if
and only if β is comoving with β′. For example, in the Minkowski spacetime if the observers
β and β′ are geodesic.

Finally, we can define a distance on E−p extending the concept of affine distance given
in Definition 4.1, using the idea that an observer has to project light rays onto its physical
space:

Definition 4.3. Let u be an observer at p, and q, q′ ∈ E−p ∪ {p}. The affine distance from

q to q′ observed by u, denoted as du (q, q′), is the module of πu⊥
(
exp−1

p q
)
− πu⊥

(
exp−1

p q′
)
,

where πu⊥ is the map “projection onto u⊥”.

It can be easily proved that

du (q, q′) =
(
g
(
exp−1

p q − exp−1
p q′, exp−1

p q − exp−1
p q′

)
+g
(
u, exp−1

p q − exp−1
p q′

)2)1/2

. (19)

Moreover, expression (19) generalizes expression (16) in the sense that if we substitute q′ by
p in (19), we obtain (16).

The affine distance given in Definition 4.3 is symmetric, positive-definite and satisfies the
triangular inequality. So, it has all the properties that must verify a topological distance
defined on E−p ∪ {p}.

5 Some examples of affine distance

In this Section we are going to show that affine distance is a particular case of radar distance
in the Minkowski spacetime (concretely, for geodesic observers), and generalizes the proper
radial distance in the Schwarzschild spacetime. Finally, we show that affine distance gives us
a new concept of distance in Robertson-Walker spacetimes, according to Hubble law.

5.1 Minkowski

In the Minkowski metric with rectangular coordinates ds2 = −dt2 + dx2 + dy2 + dz2, let
us consider an event q = (t1, x1, y1, z1) observed at p = (t2, x2, y2, z2) by an observer u =

γ

(
∂
∂t

∣∣
p

+ vx ∂
∂x

∣∣
p

+ vy ∂
∂y

∣∣∣
p

+ vz ∂
∂z

∣∣
p

)
, where γ is the gamma factor 1√

1−(vx)2−(vy)2−(vz)2
.

11



Then, using (16), we have the general expression for the affine distance from q to p observed
by u:

du (q, p) = g (q − p, u)

= γ ((t2 − t1) + vx (x1 − x2) + vy (y1 − y2) + vz (z1 − z2)) . (20)

Note that (t2 − t1) =

√
(x1 − x2)

2
+ (y1 − y2)

2
+ (z1 − z2)

2
because there is a light ray from

q to p.
There exists a known method to measure distances between an observer β (that we

can suppose parameterized by its proper time τ) and an observed event q, called “radar
method”, consisting on emitting a light ray from β (τ1) to q, that bounces and arrives at
p = β (τ2). The radar distance between β and q observed by β is given by 1

2 (τ2 − τ1)
[13]. So, considering a geodesic observer β passing through p with 4-velocity at p given by

u = γ

(
∂
∂t

∣∣
p

+ vx ∂
∂x

∣∣
p

+ vy ∂
∂y

∣∣∣
p

+ vz ∂
∂z

∣∣
p

)
, we have that

β (τ) = (γ (τ − τ2) + t2, γv
x (τ − τ2) + x2, γv

y (τ − τ2) + y2, γv
z (τ − τ2) + z2) (21)

is the parameterization by its proper time. Setting out that q−β (τ1) is lightlike and τ2−τ1 6=
0, from (21) we obtain

1

2
(τ2 − τ1) = γ ((t2 − t1) + vx (x1 − x2) + vy (y1 − y2) + vz (z1 − z2)) . (22)

Comparing (22) with (20), we state that affine distance coincides with radar distance for
geodesic observers in Minkowski spacetime.

The radar distance between a non geodesic observer β and an observed event q depends
on the world line β between β (τ1) and β (τ2). On the other hand, the affine distance only
depends on the 4-velocity of the observer at p = β (τ2), i.e. at the instant when the light ray
arrives from q. So, it is easier to calculate and it has more physical sense.

5.2 Schwarzschild

In Schwarzschild metric with spherical coordinates, let β1 and β2 be two stationary observers
like in Section 3.2. We are going to calculate the affine distance d from β1 to β2 observed by
β2. Since

λ (s) =

(
−a (r2) s+ 2m ln

(
1− s

r2 a (r2)

)
, r2 − a (r2) s, π/2, 0

)
is a light ray parameterized as in the hypotheses of Proposition 4.1, with p := λ (0) ∈ β2 and

q := λ
(
r2−r1
a(r2)

)
∈ β1, we have that the affine distance from q to p observed by u (where u is

the 4-velocity of β2 at p) is given by du (q, p) = r2−r1
a(r2) . This expression only depends on r1

and r2, i.e. the events q and p can be any events of β1 and β2 respectively, such that there
exists a light ray from q to p. Hence the affine distance d from β1 to β2 observed by β2 is
given by

d =
r2 − r1

a (r2)
. (23)

So, d is constant, but β2 is not comoving with β1.
Expression (23) is precisely a known expression for the proper radial distance between

spheres of radius r1 and r2 (see [13]). So, the affine distance generalizes the proper radial
distance given in Schwarzschild metric.
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5.3 Robertson-Walker

In Robertson-Walker metric with spherical coordinates, let β1 and β0 be two stationary
observers at r = r1 > 0 and r = 0 respectively. Let us suppose that β1 emits a light ray λ at
t = t1 that arrives at β0 at t = t0. For studying distances in cosmology it is usual to consider
the scale factor in the form

a (t) = a (t0)

(
1 +H0 (t− t0)− 1

2
q0H

2
0 (t− t0)

2

)
+O

(
H3

0 (t− t0)
3
)

(24)

where a (t0) > 0, H (t) =
.
a (t) /a (t) is the Hubble “constant”, H0 = H (t0) > 0, q (t) =

−a (t)
..
a (t) /

.
a (t)

2
is the deceleration coefficient, and q0 = q (t0) > 0, with |H0 (t− t0)| � 1

[13]. This corresponds to a universe in decelerated expansion and the time scales that we are
going to use are relatively small.

The proper distance, dproper, between two stationary observers at a given instant t is
defined as the coordinate distance multiplied by the scale factor a (t) (see [13]). The proper
distance between β1 and β0 at t = t0 is given by dproper := r1a (t0). Obviously, this distance
is not the same as the affine distance (which we are going to denote daffine). We define the

redshift parameter z := a(t0)
a(t1) − 1, obtaining that

dproper =
z

H0

(
1− 1

2
(1 + q0) z

)
+O

(
z3
)
. (25)

Moreover, the luminosity distance, dluminosity, between a stationary observer and a sta-

tionary light source at a given instant t is defined as dluminosity :=
√

L
4πA , where L is the

absolute luminosity and A is the apparent luminosity (see [13]). Applied to β0 and β1 at
t = t0, we have

dluminosity =
z

H0

(
1 +

1

2
(1− q0) z

)
+O

(
z3
)
. (26)

Comparing (26) with (25), we obtain that dproper < dluminosity for z � 1. This distance is
related to the geodesic deviation method, and it is studied in [14].

Finally, we are going to calculate the affine distance daffine from β1 to β0 observed by
β0 at t = t0. It can be interpreted as the distance traveled by the light ray λ measured by
the observer β0, and it will satisfy r1a (t1) < daffine < r1a (t0) = dproper. The vector field

− 1
a
∂
∂t +

√
1−kr2
a2

∂
∂r is geodesic, lightlike and its integral curves are radial light rays that arrive

at r = 0 (i.e. at β0). So, to parameterize λ like in Proposition 4.1, we have to set out the
system 

.

λ
t
(s) =

−a (t0)

a (λt (s))

.

λ
r

(s) =
a (t0)

√
1− kλr (s)

2

a2 (λt (s))

λt (0) = t0; λr (0) = 0

, (27)

where λt and λr are the temporal and radial components of λ respectively. Using (24) and
taking into account that λt (daffine) = t1 (by Proposition 4.1), from the integration of the
first equation of (27) we obtain that

daffine = (t0 − t1)− 1

2
H0 (t0 − t1)

2 − 1

6
q0H

2
0 (t0 − t1)

3
+O

(
H3

0 (t0 − t1)
3
)
. (28)

Since H0 (t0 − t1) = z −
(
1 + 1

2q0

)
z2 +O

(
z3
)
, from (28) we have

daffine =
z

H0

(
1− 1

2
(3 + q0) z

)
+O

(
z3
)
, (29)
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that is consistent with the Hubble law (for z of first order approximation). If we compare
(29) with (25) we obtain that, effectively, daffine < dproper for z � 1.
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