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Abstract
It is known that if the integral submanifolds of a foliation are totally geodesic
then this foliation satisfies a motion law in the space-time. In this work, we show
how this motion law can be extended by introducing some stability conditions be-
tween foliations. A particular case of stability (called regular stability) is studied
and characterized in terms of the Riemann curvature tensor. This allows us to
interprete regular self-stability as a motion law for flat foliations. We proof the
existence of regularly self-stable foliations of dimension greater than 1 in pp-wave
spacetimes, but we show that there are not any foliation of this kind in Schwarz-
schild and Robertson-Walker space-times.
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1. Introduction

We work on a n-dimensional space-time manifold M and we denote the Levi-
Civita connection by∇. We use the convention that span (X1, . . . , Xp) denotes
the subbundle spanned by the vector fields X1, . . . , Xp, and it is called distri-
bution. Usually, a distribution of dimension p is called a p-distribution. All
bases of distributions are local. A distribution that has an integral subman-
ifold (leaf) in every point is a foliation. We say that a foliation is a totally
geodesic foliation if its leaves are totally geodesic submanifolds.
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Let Ω be a foliation, X a vector field of Ω, c a maximal integral curve of
X and

τ c
t : Tc(0)M−→ Tc(t)M

the parallel transport along c (t), for all t ∈ I, where I is the domain of c.
Then, Ω verifies a motion law (see [1, 2]) if

τ c
t Ω(c (0)) = Ω (c (t)) , t ∈ I.

This motion law is equivalent to say that Ω is a totally geodesic foliation, i.e.
∇Y X ∈ Ω for all vector fields X, Y ∈ Ω.

2. Stability

Given two distributions Ω, Ω′ we will say that Ω is stable with respect to Ω′,
and it will be denoted by

∇Ω′Ω ⊂ Ω,

if ∇Y X ∈ Ω for all vector fields X ∈ Ω, Y ∈ Ω′.
It is easy to prove that, given Ω, Ω′ two distributions,∇Ω′Ω ⊂ Ω if and only

if ∇Ω′Ω⊥ ⊂ Ω⊥. It is known that a distribution Ω is univoquely determined
by its orthogonal distribution Ω⊥. In addition, this property says that Ω and
Ω⊥ have the same stability properties.

Let Ω be a distribution. We will say that Ω is self-stable if it is stable with
respect to itself. Clearly, Ω is self-stable if and only if it is a totally geodesic
foliation.

3. Regular stability

Given two distributions Ω, Ω′ we will say that Ω is regularly stable with respect
to Ω′, and it will be denoted by

∇Ω′Ω = 0,

if there exists a basis {Xi}p
i=1 of Ω such that ∇Y Xi = 0, for i = 1, .., p and

for all vector field Y ∈ Ω′. In this case, we will say that the basis {Xi}p
i=1 is

a regularly stable basis of Ω with respect to Ω′. Only some special bases of Ω
are regularly stable with respect to a given distribution Ω′.

Let Ω be a distribution. We will say that Ω is regularly self-stable if it is
regularly stable with respect to itself.

Given a regularly stable basis of Ω with respect to Ω′, we can build all the
regularly stable bases by means of linear combinations with constant functions
for Ω′:
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Proposition 1 Let Ω, Ω′ be two distributions such that ∇Ω′Ω = 0, and let
{Xi}p

i=1 be a regularly stable basis of Ω with respect to Ω′. Then,
{
Xi

}p

i=1
is

another regularly stable basis of Ω with respect to Ω′ if and only if there exists
a family of functions

{
αj

i

}p

i,j=1
such that

• det αj
i 6= 0,

• Xi = αj
iXj for all i = 1, . . . , p,

• Y
(
αj

i

)
= 0, for all i, j = 1, ..., p, and for all Y ∈ Ω′ (i.e.

{
αj

i

}p

i,j=1
is a

family of constant functions for Ω′).

The next theorem is the main result of the work. It is very useful to study
stability by means regular stability.

Theorem 2 Let Ω and Ω′ be a p-distribution and a q-foliation respectively
such that ∇Ω′Ω ⊂ Ω. Then, ∇Ω′Ω = 0 if and only if R (Y, Z) X = 0 for all
X ∈ Ω and for all Y,Z ∈ Ω′, where R is the Riemann curvature tensor.

A proof of the Theorem can be found in [3]. There are several important
corollaries of Theorem 2:

Corollary 3 In a flat space-time (Minkowski), given Ω a distribution and Ω′

a foliation, we have that ∇Ω′Ω ⊂ Ω if and only if ∇Ω′Ω = 0.

Corollary 4 Let Λ be a 1-foliation and let Ω be a distribution. Then ∇ΛΩ ⊂
Ω if and only if ∇ΛΩ = 0.

Corollary 5 Let Ω be a self-stable foliation. Then Ω is regularly self-stable if
and only if R (Y,Z) X = 0, for all X,Y, Z ∈ Ω.

Corollary 5 allows us to give a geometric interpretation of regular self-
stability: let Ω be a regularly self-stable foliation; on one hand, Ω is self-stable,
so each leaf has a differentiable submanifold structure with the induced metric;
on the other hand, it is satisfied that R (Y, Z) X = 0, for all X, Y, Z ∈ Ω. So,
each leaf is a flat submanifold with the induced metric. So, regular self-stability
is a motion law for flat foliations.
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4. Stable submanifolds

Theory of Stability of Distributions can be extended to Submanifolds. In this
way, there appear new concepts of Stability:

• (Regularly) Stable Distributions with respect to Submanifolds.

• (Regularly) Stable Submanifolds with respect to Distributions in the
tangent bundle of the submanifold.

• (Regularly) Self-stable Submanifolds.

5. Stability relations

Let Ω be a lightlike 3-foliation in a 4-dimensional space-time, and let U be a
future-pointing timelike unit vector field (i.e. the 4-velocities of a congruence
of observers). There exists a basis of Ω in the form {X1, X2, N + U}, where
X1, X2, N ∈ U⊥ and they are linearly independent (see [4]).

• Ω = span (X1, X2, N + U) is a foliation of wave-fronts of a congruence
of massless particles. So, N is the relative direction of propagation of Ω
observed by U .

• Ω⊥ = span (N + U) is the orthogonal foliation of Ω. Its integral curves
are the trajectories associated with these massless particles.

• U⊥ = span (X1, X2, N) is the physical spaces distribution of U .

• Ω ∩ U⊥ = span (X1, X2) is the spacelike wave-fronts distribution of Ω
observed by U .

• (
Ω ∩ U⊥)⊕ span(U) = span (X1, X2, U) is the timelike wave-fronts dis-

tribution of Ω observed by U .

• Ω−U := span (X1, X2,−N + U) is the opposite distribution of Ω observed
by U .

We have a lot of results of stability with respect to another given distrib-
ution Ω′ involving these distributions. For example:

• If U⊥ and Ω are stable, then Ω ∩ U⊥ is also stable. Moreover, if U⊥ or
Ω is regularly stable, then Ω ∩ U⊥ is also regularly stable.
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• If U⊥ and
(
Ω ∩ U⊥) ⊕ span(U) are stable, then Ω ∩ U⊥ is also stable.

Moreover, if U⊥ or
(
Ω ∩ U⊥)⊕ span(U) is regularly stable, then Ω∩U⊥

is also regularly stable.

• If U⊥ and Ω are stable, then Ω−U is stable if and only if
(
Ω ∩ U⊥) ⊕

span(U) is stable.

All these properties can be applied to self-stability too. Moreover, there
are some specific self-stability results:

• Let U be a timelike vector field, then span(U) is self-stable (i.e. U is
geodesic) if and only if its physical space distribution U⊥ is stable with
respect to span(U).

• Let Ω be a self-stable lightlike 3-distribution. Then Ω⊥ (that is a lightlike
1-distribution) is also self-stable. Nevertheless, the reciprocal does not
hold in general.

6. Stability of p-foliations with respect to vector
fields (1-foliations)

Let Ω be a p-foliation, and let U be a vector field. Taking into account Corol-
lary 4, we have that ∇span(U)Ω ⊂ Ω if and only if ∇span(U)Ω = 0, i.e. there
exist regularly stable bases {Xi}p

i=1 of Ω with respect to span(U). These bases
are parallelly transported along the integral curves of U , and so, we can recon-
struct the entire foliation Ω from only one leaf, by means of parallel transports
of a regularly stable basis along the integral curves of U .

If the dimension or the codimension of Ω is 1, then we can assure that
there exist a vector field U such that ∇span(U)Ω = 0.

An important case is the study of the stability of lightlike 3-foliations
with respect to observers congruences (timelike 1-foliations) in a 4-dimensional
space-time. If Ω is a lightlike 3-foliation, it represents the wave fronts of a
congruence of massless particles. Each observer, at each instant, observes
these wave fronts always in the same way.

7. Examples

Using Corollary 4 it is easy to give examples of (regularly) stable foliations with
respect to congruences of observers in Schwarzschild and Robertson-Walker
space-times, and examples of regularly self-stable foliations by Corollary 5.
They can be found in [3] and [5].
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In these space-times it can be proved that there are not any distribution
Ω of dimension greater than 1 satisfying R(Y,Z)X = 0 for all X, Y, Z ∈ Ω.
So, by the Theorem 2 there are not any regularly self-stable distribution of
dimension greater than 1.

In the pp-wave metric ds2 = dy2 + dz2 − 2Hdu2 − 2dudv, where H =
H(u, y, z), let us consider the lightlike 3-foliation

Ω :=
〈

∂

∂v
,

∂

∂y
,

∂

∂z

〉

which leaves have u = constant (see [6]). It is self-stable and satisfies R(Y, Z)X =
0 for all X, Y, Z ∈ Ω. So, it is regularly self-stable. Effectively, a regu-
larly self-stable basis is given by

{
∂
∂v , ∂

∂y , ∂
∂z

}
. Therefore, the subfoliations〈

∂
∂v , ∂

∂y

〉
,
〈

∂
∂v , ∂

∂z

〉
,
〈

∂
∂y , ∂

∂z

〉
are regularly self-stable 2-foliations (timelike, time-

like, and spacelike respectively). Moreover, the timelike 2-foliation
〈

∂
∂u , ∂

∂v

〉
is

regularly self-stable too. A regularly self-stable basis is given by
{

∂
∂u , ∂

∂v

}
.
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