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Abstract

Soil bacteria typically coexist with close relatives generating widespread phylogenetic clustering.
This has been ascribed to the abiotic filtering of organisms with shared ecological tolerances.
Recent theoretical developments suggest that competition can also explain the phylogenetic simi-
larity of coexisting organisms by excluding large low-competitive clades. We propose that combin-
ing the environmental patterns of traits associated with abiotic stress tolerances or competitive
abilities with phylogeny and abundance data, can help discern between abiotic and biotic mecha-
nisms underlying the coexistence of phylogenetically related bacteria. We applied this framework
in a model system composed of interspersed habitats of highly contrasted productivity and com-
paratively dominated by biotic and abiotic processes, i.e. the plant patch-gap mosaic typical of
drylands. We examined the distribution of 15 traits and 3290 bacterial taxa in 28 plots. Communi-
ties showed a marked functional response to the environment. Conserved traits related to environ-
mental stress tolerance (e.g. desiccation, formation of resistant structures) were differentially
selected in either habitat, while competition related traits (e.g. organic C consumption, formation
of nutrient-scavenging structures) prevailed under high resource availability. Phylogenetic cluster-
ing was stronger in habitats dominated by biotic filtering, suggesting that competitive exclusion of
large clades might underlie the ecological similarity of co-occurring soil bacteria.
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INTRODUCTION

Soil bacterial communities hold incommensurable levels of
species diversity (Curtis et al. 2002). This contrasts with the
low phylogenetic diversity detected in soil bacterial communi-
ties compared with those thriving in other terrestrial and mar-
ine ecosystems (Lozupone & Knight 2007). This observation
relates to the notion that soil bacteria typically co-occur with
evolutionarily related organisms more often than expected by
chance, a process that results in phylogenetic clustering
(Horner-Devine & Bohannan 2006; Bryant et al. 2008). Based
on classical community phylogenetics, such clustered patterns
have been assigned to the environmental selection of taxa shar-
ing conserved traits that allow them to surpass an abiotic filter
(Webb et al. 2002; Horner-Devine & Bohannan 2006; Costello
et al. 2009; Ganz et al. 2012). Under this traditional frame-
work, biotic interactions – mainly competition, the other major
force driving community assembly – lead to the co-existence of
phylogenetically distant organisms and hence create

overdispersed patterns. These result from the competitive
exclusion of ecologically (and phylogenetically) similar organ-
isms based on their niche similarities (Webb et al. 2002;
Horner-Devine & Bohannan 2006). Modern coexistence
theory has refined this vision arguing that competition can
generate phenotypic and phylogenetic clustering when it
operates through environmentally mediated differences in
competitive abilities among entire clades rather than through
limiting similarity (Mayfield & Levine 2010; HilleRisLambers
et al. 2012). We postulate that this mechanism might operate in
soil bacterial communities, which are typically carbon-limited,
driven by the superior competitive ability of the dominant
Proteobacteria and Actinobacteria under the presence of
carbon substrates such as those released by roots (Goldfarb
et al. 2011). Recently, a method has been proposed to test
whether phylogenetic clustering is determined by abiotic and/
or biotic filters by comparing the fundamental and realised
niches of co-occurring plants (de Bello et al. 2012). This
framework seems currently impracticable for bacteria owing
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to the lack of basic information on the vast majority of
organisms (Green et al. 2008). Here, we propose a trait-based
approach to discern between abiotic and biotic environmental
filters, which would differentially select traits associated with
abiotic stress tolerance or competitive abilities, respectively.
This approach requires assessing the existence of a phylo-
genetic signal (or anti-signal) in the traits so as to demonstrate
that the phylogenetic community structure responds to the
phenotypic patterns observed (Losos 2008).
Stressful water-limited ecosystems provide an appropriate

setting to test which processes dominate the community
assembly of soil bacteria. Gypsum soils developed in dry lands
are frequently characterised by a patchy plant distribution,
with sparse plant clumps surrounded by a low-cover matrix.
Soil bacteria living in open spaces withstand high tempera-
tures and desiccation, intense radiation, nutrient scarcity and
elevated concentrations of sulphur compounds (Bochet et al.
1999; Goberna et al. 2007). Abiotic stress is partly alleviated
within the plant patches, which filter the quantity and quality
of light and allow preferential accumulation of water and
resources (Bochet et al. 1999; Goberna et al. 2007). In the
densely populated plant clumps, biotic interactions are magni-
fied (Aguiar & Sala 1999). Particularly, soil bacterial commu-
nities underneath plant patches are denser, more active and
show higher microbial quotients (respiration-to-biomass
ratios) reflecting competitive stress (Goberna et al. 2007).
Therefore, these ecosystems can be viewed as a mosaic of low-
productive habitats (hereafter ‘gaps’) comparatively domi-
nated by abiotic filtering interspersed with high-productive
habitats (hereafter ‘patches’) comparatively driven by biotic
interactions (Aguiar & Sala 1999). The balance between biotic
and abiotic processes in both environments might have several
outcomes on the phenotypic and phylogenetic patterns of
community assembly of soil bacteria (Table 1). In plant gaps,
we expect that the abiotic environment will filter traits confer-
ring resistance to environmental stress (e.g. tolerance to desic-
cation, formation of resistant structures) leading to
phenotypic clustering and, in case these traits are conserved,
to phylogenetic clustering as well (Table 1). In plant patches,
we expect the overrepresentation of traits related to the com-
petition for resources (e.g. organic C consumption, nitrogen
fixation). In case these traits show a significant phylogenetic
signal, two outcomes can be expected depending on how com-

petition operates. In our hypothetic scenario (A) in Table 1,
competition operates by limiting similarity resulting in the
competitive exclusion of closely related organisms, and hence
in phenotypic and phylogenetic overdispersion (Webb et al.
2002). In this scenario (A), soil bacterial communities in gaps
will necessarily be phylogenetically more clustered, i.e. will
have a higher Net Relatedness Index (NRI) values (Webb
et al. 2002), than those in patches. In our hypothetic scenario
(B), competition operates by competitive ability differences,
leading to the exclusion of distantly related taxa and thus to
phenotypic and phylogenetic clustering (Mayfield & Levine
2010). In scenario (B), the relative magnitude of the biotic
and abiotic environmental filters will determine that soil bac-
terial communities are comparatively more clustered in either
habitat.
Here, we characterised the environment in 28 plant patches

and gaps in semi-arid Mediterranean gypsum soils, pyrose-
quenced a phylogenetic marker (16S rRNA gene) to identify
bacterial taxa and characterised their phenotypes on the basis
of fifteen functional traits potentially relevant to the survival
in either landscape component. We tested whether: (1) soil
bacterial communities are phenotypically clustered due to the
overrepresentation of competition-related traits in patches and
environmental tolerance traits in gaps, (2) traits relevant to
phenotypic clustering in either habitat are evolutionarily con-
served, and thus may underlie the phylogenetic structure of
soil bacterial communities and (3) soil bacterial communities
are phylogenetically more clustered in patches than gaps, due
to the exclusion of distantly related deeply branching bacterial
clades expected under carbon-enriched environments
(Goldfarb et al. 2011). We suggest that the overrepresentation
of phylogenetically conserved traits conferring environmental
stress tolerance or competitive abilities can be used to discern
the relevance of abiotic and biotic processes in driving the
phylogenetic community assembly of soil bacteria.

MATERIALS AND METHODS

Study area and characterisation of patches and gaps

The study site was located in Algepsar dels Burutaus (Serra
de Crevillent, Alacant, SE Spain; UTM 30 N 689062,
4238201). Climate is semi-arid Mediterranean (240 mm mean

Table 1 Expected phenotypic and phylogenetic patterns of community assembly of soil bacteria depending on the relevant structuring force (abiotic vs. bio-

tic) under two scenarios based on: (A) the classical framework by Webb et al. (2002), and (B) the assumptions by Mayfield & Levine (2010)

Structuring force Trait type

Phenotypic and phylogenetic structure

(A) Webb et al. scenario (B) Mayfield & Levine scenario

Abiotic Environmental tolerance traits Clustering due to abiotic filtering

NRI > 0

Clustering due to abiotic filtering

NRI > 0

Biotic Competition-related traits Overdispersion due to niche similarities

NRI < 0

Clustering due to competitive ability differences

NRI > 0

Abiotic filtering results in the overrepresentation of environmental tolerance traits leading to phenotypically clustered communities in both scenarios. Biotic

filtering results in the overrepresentation of competition-related traits generating either phenotypic overdispersion if competition proceeds through niche

similarities (scenario A) or phenotypic clustering if it proceeds through competitive ability differences (scenario B). If traits are conserved, phylogenetic

community structure is expected to reflect the phenotypic community structure. Positive Net Relatedness Index (NRI) values indicate phenotypic and phy-

logenetic clustering, while negative NRI indicate phenotypic and phylogenetic overdispersion.
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annual rainfall, 20 °C mean annual temperature). Soils are
Typic Xerorthents (Soil Survey Staff 1998) developed on gyp-
sum hills (40% slope, 350 m a.s.l.) and are covered with a
patchy shrub steppe dominated by the leguminous shrub
Ononis tridentata L. subsp. tridentata. This gypsophyte legume
is able to colonise bare gypsum and ameliorate the stressful
abiotic conditions, thus facilitating the establishment of other
plant species (Navarro-Cano et al. 2014). Plant patches
founded by O. tridentata cover 25% of the landscape and
open spaces are mostly covered by sealing crusts (Goberna
et al. 2007; Appendix S1).
Patches were defined as groups of plants growing under-

neath the canopy of an O. tridentata individual. Fifteen
patches were selected along two parallel 100 m long transects
located roughly 20 m apart. Patch area averaged
(mean � SD) 2.4 � 1.1 m2. Gaps were defined as the open
spaces between patches, and fifteen gaps were systematically
located one metre west beyond the vertical projection of the
canopy of each patch. Gaps were located at 0.5–1.5 m to any
other neighbouring plant patches. The sampling area of each
gap was equivalent to that of its adjacent patch. Soil samples
were collected on May 2010, which is the growing season in
the study area. This sampling season reflects the differences
that are found throughout the year between patches and gaps
with regard to soil chemical variables, as well as microbial
biomass and activity (Goberna et al. 2007). Surface soil
samples (0–2 cm) were collected from patches and gaps after
removing the litter layer when present. Five sub-samples
(c.100 g) were collected randomly from the area of each patch
or gap, and then bulked into a single composite sample. Soil
samples were transported to the laboratory on ice, immedi-
ately sieved through a < 1 mm mesh and stored at 4 °C.
Eleven soil variables were determined to characterise the
microbial environment in a previous study (Navarro-Cano
et al. 2014). Soils underneath plant patches were remarkably
more productive than those in gaps as indicated by their con-
trasted contents in total organic carbon, water-soluble carbon
and carbohydrates, total nitrogen, or ammonium nitrogen
(Navarro-Cano et al. 2014).

Soil DNA extraction and tag-encoded FLX-titanium amplicon

pyrosequencing

Soil DNA was extracted within 48 h after sampling and DNA
extracts were stored at �20 °C. Extractions were performed
from 1 g soil using the UltraClean� Soil DNA isolation kit
(MO BIO Laboratories, Carlsbad, CA, USA). Extracted
DNA was electrophoresed in 1% agarose gels run in
0.5 9 TAE buffer (Tris-acetate-EDTA; 100 V, 15 min) and
quantified with the Quant-iTTM PicoGreen� dsDNA Kit (Invi-
trogen, Carlsbad, CA, USA).
Soil DNA was submitted to Polymerase Chain Reaction

(PCR) amplification of the 16S rRNA gene, using the universal
bacterial primers 8F (50-AGAGTTTGATCCTGGCTCAG-30;
Turner et al. 1999) and 534R (50-ATTACCGCGGCTGCTG
GC-30; Muyzer et al. 1993). One forward primer was synthes-
ised per sample, including a 454 sequencing adaptor (50-
CCATCTCATCCCTGCGTGTCTCCGACTCAG-30) and a
unique 8-nucleotide barcode in their 50-end which was

randomly selected from those published by Hamady et al.
(2008). The reverse primer had a 454 sequencing adaptor in its
50-end (50-CCTATCCCCTGTGTGCCTTGGCAGTCTCAG-
30). PCR amplifications were performed in a Flexcycler (Analy-
tik Jena, Jena, Germany) in 50 lL volumes, with each reaction
containing a final concentration of 19 Platinum� PCR Super-
Mix High Fidelity (Invitrogen), 0.3 lM of each primer and
0.4 mg mL�1 bovine serum albumin. A volume of 1.5 lL
DNA was directly applied to the reaction mix. Thermal cycling
was initiated with 5 min at 94 °C, followed by 20 amplification
cycles consisting of 45 s at 94 °C, 45 s at 54 °C and 90 s at
72 °C, and terminated with 10 min at 72 °C. PCR products
(100 lL) were purified with the NucleoSpin Extract II kit
(Macherey-Nagel, D€uren, Germany), eluted in 50 lL DNAase
free 1 9 TE (Tris-EDTA) buffer and checked for size and
quality in 2% agarose gels run in 1 9 TAE buffer (80 V,
45 min). Non-template controls followed the same procedure.
Purified tagged amplicons were quantified in duplicate using
the Quant-iTTM PicoGreen� dsDNA Kit (Invitrogen) and
pooled in equimolar amounts. Pyrosequencing was performed
by GATC Biotech (Konstanz, Germany) with the Roche 454
GS-FLX system using Titanium chemistry.
Sequences were sorted out according to their tags and

trimmed to remove sequencing adaptors and primers with the
RDP 10.26 pyrosequencing pipeline (Cole et al. 2009). After
removal of low quality sequences and artefacts, 24 486
sequences were aligned using the Infernal aligner (Nawrocki
& Eddy 2007) and visually inspected. Originally, the sequenc-
ing depth did not vary significantly between patches and gaps,
with (mean � SE) 1624 � 66 and 1818 � 392 reads, respec-
tively. After initial processing, patches had 1175 � 53 and
gaps 835 � 91 sequences. Operational taxonomic units
(OTUs) were defined using the complete-linkage clustering
method in RDP 10.26 (Cole et al. 2009) at a maximum iden-
tity level of 97% to avoid an overestimation of diversity
(Kunin et al. 2010). The total 24 486 bacterial sequences were
assigned to 6823 OTUs. After removal of 3209 singletons and
324 chimeric sequences detected by ChimeraSlayer, using
QIIME (Caporaso et al. 2010), we obtained a final 3290
OTUs. Sequences representative of each OTU were assigned
to bacterial taxa using the Na€ıve Bayesian Classifier at a con-
fidence threshold of 80%. This algorithm can classify 400-base
pair 16S rRNA sequences (in this study, mean � SD sequence
length was 410 � 4 bp) down to the genus level (Wang et al.
2007) into the taxonomy proposed by Garrity et al. (2007). A
community matrix (OTU 9 plot) was constructed using RDP
10.26, showing the abundance of the total 3290 OTUs in
patches and gaps. The relative abundance of each OTU in
each plot was calculated based on the total number of
sequences in the same plot, and subsequently corrected by the
number of 16S rRNA gene copies as proposed by Kembel
et al. (2012) (Appendix S2). A total 3290 sequences, one rep-
resentative of each OTU, was deposited in EMBL within the
study with accession number PRJEB4887 (http://www.embl.
de/).
Bayesian generalised linear models (GLM) were used to

assess the overrepresentation of bacterial phyla in patches or
gaps using the patch-gap block as a random grouping factor
with the MCMCglmm package for R (Hadfield 2010). We
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used the default priors and ran 13.000 MCMC iterations with
a burn-in period of 3.000 iterations. Convergence of the chain
was tested by means of an autocorrelation statistic. The statis-
tical significance of the factors in the model was estimated by
calculating the 95% credible interval of their posterior distri-
bution.

Bacterial functional traits

Fifteen traits that potentially determine the differential sur-
vival of soil bacteria in plant patches and gaps were binary
coded (1: trait has been reported; 0: trait has not been
reported). We categorised these traits as conferring either
competitive abilities or environmental tolerance as follows.
We considered that traits confer competitive abilities if they
allow organisms to consume resources (organic substances,
mineral ions, light, etc.), which might potentially become
restricted to be consumed by others (Tilman 1982). This
implies the existence of a biological interaction, particularly
competition by exploitation of limiting resources (Birch
1957). Alternatively, we considered that traits confer
tolerance to environmental stress if they allow organisms to
tolerate abiotic factors that determine their survival and
adaptation to the environment (e.g. pH, desiccation, salinity,
etc.) (Odum 1959). In contrast to resources, the latter abiotic
factors cannot be consumed and do not imply biological
interactions.
We specifically considered eight traits that confer competi-

tive abilities either by providing the ability to consume
limiting resources in the study soils, obtain them from alterna-
tive sources (e.g. the atmosphere), intensify their acquisition
from the environment, or store them in the cell. We also
considered that if the possession of these traits implies a supe-
rior competitive ability, this should be ultimately reflected in a
trait indicating higher bacterial growth rates. In particular, we
considered two limiting resources in the study soils, i.e. car-
bon and nitrogen (Navarro-Cano et al. 2014). We coded: (1)
organic C consumption, that allows growth on organic mole-
cules through aerobic oxidation or anaerobic fermentation,
either facultative or obligate, detected under laboratory condi-
tions (e.g. Reddy et al. 2006), (2) phototrophic C fixation,
that allows aerobic or anaerobic growth either using CO2 as a
sole carbon source or through the light-stimulated consump-
tion of reduced organic compounds, either facultative or obli-
gate detected under laboratory conditions (e.g. Overmann &
Garcia-Pichel 2006; Madigan & Jung 2009), (3) N fixation,
that is, the bio-assimilation of atmospheric N2 in the form of
ammonium, either due to the possession of nif genes (coding
for nitrogenase reductases) or detected under laboratory con-
ditions (e.g. Martinez-Romero 2006), (4) ammonia oxidation
to hydroxylamine, which is the first step of nitrification, either
due to the possession of amo genes (coding for ammonia
monooxygenases) or detected under laboratory conditions
(e.g. Wess�en 2011), (5) nitrate reduction to nitrite, which is
the first step of denitrification but is not unique to denitrifying
organisms (Jones et al. 2008), either due to the possession of
nap genes (coding for nitrate reductases) or detected under
laboratory conditions (e.g. Kurahashi et al. 2009), (6) denitri-
fication, involvement in any step from the reduction of nitrite

to the production of molecular nitrogen, either due to the
possession of nir, nor and/or nos genes (respectively, coding
for nitrite, nitric oxide and nitrous oxide reductases) or
detected under laboratory conditions (e.g. Shapleigh 2006;
Jones et al. 2008), (7) formation of prosthecae, which act as
nutrient-scavenging antennas that become more effective
under nutrient limitation (McAdams 2006) and (8) formation
of polyhydroxyalkanoate (PHA) inclusions, including granules
composed by polyhydroxyvalerate, polyhydroxybutyrate or
undetermined polysaccharides, which serve as carbon and
energy storage materials that are formed in response to nutri-
tional imbalances (e.g. Kanso & Patel 2003). Finally, we used
the number of 16S rRNA gene copies as a proxy for growth
rate (Klappenbach et al. 2000), as a competition-related trait
which eventually determines the overrepresentation of compet-
itively superior clades.
Seven traits were considered to confer tolerance to environ-

mental stress, namely: (1) formation of resistant structures,
which are triggered by (and can tolerate) environmental stress
and germinate under favourable conditions (Dworkin 2006);
in particular, we coded independently the formation of en-
dospores, which are the most resistant structures to extremes
of temperature, desiccation, radiation, physical disruption,
chemical agents (Dworkin 2006), exospores, other spores and
spore-like elements, cysts and akinetes, (2) tolerance to desic-
cation and/or radiation, either known to be due to the pres-
ence of a particular morphological feature (i.e. resistant cell
walls, formation of capsules, sheaths, or extracellular poly-
mers) or observed under laboratory conditions (e.g. Albur-
querque et al. 2005; Buczolits et al. 2006) and (3) tolerance to
salts, including from slightly halotolerant to highly halophilic
organisms, either known to be due to a particular adaptation
(i.e. production of salt-stress proteins, accumulation of osmo-
protective compounds) or observed under laboratory condi-
tions (e.g. Lau et al. 2005; Oren 2006).
Coding of each trait was based on an extensive review of

both published literature and databases of functional genes
involved in biogeochemical cycling up to February 2012
(http://fungene.cme.msu.edu). Trait value assignment (pres-
ence/absence) to each OTU was based on the features
described for its nearest known taxon according to the Na€ıve
Bayesian Classifier (Wang et al. 2007). This trait assignment
was performed at the genus level in 85% of the cases on
average for all traits. Trait values for each OTU, the taxo-
nomic level at which each trait value was assigned to each
OTU and the references used to generate the information for
each OTU are given in Appendix S2. We detected 632
bacterial OTUs belonging to taxa known to form resistant
structures (14 endospore-, 5 exospore-, 570 spore-, 37 cyst-
and 7 akinete-formers), 450 tolerant to desiccation, 1850
tolerant to salts, 3136 organic C consumers, 334 phototrophic
C fixers, 360 N fixers, 7 ammonia oxidisers, 1489 nitrate
reducers, 343 denitrifiers, 115 that form prosthecae, and 468
that form PHA inclusions (Appendix S2). The number of 16S
rRNA gene copies for each OTU was estimated using the pro-
cedure by Kembel et al. (2012) (Appendix S2). The average
number of 16S rRNA gene copies of all the organisms in each
patch or gap was calculated as the weighted average of the
number of copies of each OTU by its relative abundance in

© 2014 John Wiley & Sons Ltd/CNRS

1194 M. Goberna et al. Idea and Perspective



the community. Relative abundance was calculated as the pro-
portion of sequences of each OTU in patch or gap. Candidate
divisions, for which no trait information is available in the lit-
erature, constituted only 1.0 and 0.6% of the total community
in patches and gaps, respectively.
Trait assignment to environmental sequences was based on

the state of the nearest taxon rather than in the ancestral
trait state reconstruction since non-random taxon sampling
seemed to bias character reconstruction towards the most
frequent state in our data set (data not shown), likely due to
community assembly processes favouring certain trait states
(Ackerly 2000; Hearn & Huber 2006). In order to account
for the uncertainty associated with the assignment of trait
values to environmental sequences based on their taxonomic
affiliation, we explored the consistency of our results by
repeating all analyses with the subset of OTUs that were
classified at the finest taxonomic level with confidence thresh-
olds equal or over 80% according to the Na€ıve Bayesian
Classifier (Wang et al. 2007). The conclusions reached with
this second data set (including 1387 OTUs) were identical to
those obtained with the original data set (including 3290
OTUs) (Appendix S3).

Phenotypic community structure

Multiple traits selected by simultaneously operating ecological
filters determine community membership (Mayfield et al.
2009). Increasing the number of traits to define the phenotype
increases the biological realism and the statistical power to
detect community assembly processes (Kraft et al. 2007). For
this reason, we evaluated the phenotypic community structure
by computing a single metric, the NRI, on the basis of multi-
ple traits. To test for the co-existence of similar phenotypes,
we computed phenotypic NRI values based on trait distance
matrices (de Bello et al. 2012). Phenotypic NRI was calculated
separately for traits conferring environmental tolerance or
competitive abilities in patches and gaps using the picante
package for R (Kembel et al. 2010). This computes NRI =
�(MPDobs � MPDrand)/sd_MPDrand, where MPDobs is the
average of all pairwise phenotypic distances between the taxa
in a local community weighed by their abundances, MPDrand

is the average of MPD calculated in n randomly constructed
communities considering the regional pool of taxa (in our
case, the sum of all taxa identified in all plots), and
sd_MPDrand is the standard deviation of MPDrand (Webb
et al. 2002). The Jaccard Distance index was used to calculate
phenotypic distances between binary trait matrices using the
stats package in R (R Core Team 2013). Phenotypic NRI
allows examining whether co-occurring taxa are more (posi-
tive NRI) or less (negative NRI) phenotypically similar than
expected by chance. Thus, positive NRIs are indicative of phe-
notypic clustering while negative NRIs indicate phenotypic
overdispersion. To test for the existence of a significant phe-
notypic community structure, i.e. phenotypic NRI departure
from zero, we calculated the mean phenotypic structure of the
community as the average NRI of all patches or gaps. If the
mean NRI for all plots statistically differs from zero, it can be
concluded that the community is significantly phylogenetically
clustered or overdispersed on average, since both NRIs are

standardised effect sizes whose expected values are zero for
randomly structured communities (see Kembel & Hubbel
2006 for a similar procedure). This test was performed inde-
pendently for NRI values calculated from the set of traits
conferring competitive abilities or environmental tolerance by
means of Bayesian GLMs using the MCMCglmm package for
R (Hadfield 2010).
To assess the individual traits underlying the phenotypic

community structure, we used Bayesian GLMs to explore the
overrepresentation of bacterial taxa possessing each trait in
patches or gaps using the patch-gap block as a random group-
ing factor. The same test was used to explore differences in
the average number of 16S rRNA gene copies in patches and
gaps.

Phylogenetic trait conservatism

Testing for the evolutionary conservatism of traits requires
combining information on trait distribution across taxa and
their phylogenetic relationships (Pausas & Verd�u 2010). To
assess the phylogenetic conservatism of all fifteen traits, we
used a reference bacterial tree based on full 16S rRNA
sequences contained in the Silva Database (Release 111,
Quast et al. 2013). In particular, we selected 385 reference
organisms, covering the diversity of genera to which our
3290 OTUs resembled with the highest probability according
to the Na€ıve Bayesian Classifier (Wang et al. 2007) by using
ARB software (Ludwig et al. 2004). A total 99% of these
reference sequences corresponded to cultured organisms,
90% of which were type strains. Trait values (presence/
absence) were assigned to each organism at the genus level
as above. Trait values for the reference organisms, the litera-
ture reviewed to generate the information for each genus,
and the accession numbers of the reference organism are
given in Appendix S4.
Phylogenetic trait conservatism was assessed by testing the

existence of a phylogenetic signal for each trait by calculating
the statistic D (Fritz & Purvis 2010). This metrics allows test-
ing the existence of a phylogenetic signal in binary traits and
provides a measure of its strength (Fritz & Purvis 2010). It
has been previously applied to the study of the evolutionary
conservatism of bacterial traits (Martiny et al. 2013). The
statistic D is defined as:

D¼
X

dobs�mean
X

db

� �h i,
mean

X
dr

� �
�mean

X
db

� �h i
;

∑dobs being the observed sum of sister-clade differences, ∑db
the distribution of sums expected under Brownian evolution
and ∑dr the distribution of sums of sister-clade differences
expected for a random phylogenetic pattern. We tested the
departure of D values from those estimated after a random
shuffle of trait values in the tree by using the caper package
for R (Orme et al. 2012).
We recalculated all phylogenetic signals by using a second

approach in which traits were assigned to OTUs based on
their taxonomic affiliation. These phylogenetic signals were
highly consistent with those calculated based on the reference
organisms (Appendix S5).

© 2014 John Wiley & Sons Ltd/CNRS

Idea and Perspective Abiotic and biotic filtering of bacterial traits 1195



Phylogenetic community structure

Bacterial richness in patches and gaps was measured as the
number of OTUs. Phylogenetic community structure was
quantified as the phylogenetic NRI values, with MPDobs being
the average of all pairwise phylogenetic distances between the
taxa in a local community weighed by their abundances
(Webb et al. 2002), using the picante package for R as above.
This allows examining whether co-occurring taxa are more
(positive NRI) or less (negative NRI) closely related than
expected by chance. Thus, positive NRIs are indicative of
phylogenetic clustering while negative NRIs indicate phylo-
genetic overdispersion. To reconstruct the phylogenetic
relationships of soil bacteria in our data set, we calculated
three independent maximum likelihood trees using RAxML
7.3.0 (Stamatakis 2006) with the GTRGAMMA substitution
model in the CIPRES portal (Miller et al. 2011; Appendix
S6). Prior to phylogenetic inference, hypervariable regions
were screened out using the Lane mask (Lane 1991) to
improve downstream analyses (Capella-Guti�errez et al. 2009).
To avoid high phylogenetic uncertainty resulting from the
usage of short sequences, tree topology was constrained to
match that of the megatree built from the Silva database
(Quast et al. 2013). Archaeoglobus profundus was used as the
outgroup. Each tree was selected among the best of 1000
iterations.
The existence of a phylogenetic community structure signifi-

cantly differing from randomness, i.e. phylogenetic NRI
departure from zero, was tested by means of Bayesian GLMs
using the MCMCglmm package for R (Hadfield 2010). The
same tests were performed for comparison of bacterial
richness and phylogenetic community structure between
patches and gaps using the patch-gap block as a random
grouping factor. The use of Bayesian GLMs allowed us to
accommodate the uncertainty associated with phylogenetic

reconstruction (Huelsenbeck et al. 2000). In particular, we ran
three Bayesian GLM models with the NRIs calculated from
the three independent phylogenetic trees using the
MCMCglmm package for R (Hadfield 2010). Then, we inte-
grated over the posterior samples by drawing 1000 random
samples across models.
Metrics of phenotypic and phylogenetic community struc-

ture other than NRI, specifically the Nearest Taxon Index
(NTI; Webb et al. 2002), Faith’s Phylogenetic Diversity (PD;
Faith 1992), the Phylogenetic Species Variability (PSV) and
the Phylogenetic Species Evenness (PSE; Helmus et al. 2007),
were calculated using the picante package for R (Kembel
et al. 2010). Absolute correlation coefficients between NRI
and these other metrics ranged from 0.60 (NTI, PD) to 0.88
(PSV, PSE), with P ≤ 0.001. All Bayesian GLM models were
repeated using NTI instead of NRI and yielded the same
results (Appendix S7). All analyses were performed using the
R 3.0.1 software package (R Core Team 2013).

RESULTS

Soil bacterial communities in patches had (mean � SE)
506 � 19 OTUs compared with 334 � 31 OTUs in gaps.
Thus, bacterial communities were significantly richer in
patches than in gaps [MCMCglmm; number of OTUs poster-
ior mean-estimate = 180, (108, 252) 95% credible interval].
Richness trends were consistent at several rarefaction levels,
regardless the inclusion or not of singleton OTUs in the
analysis (Appendix S8). The two dominant phyla, Proteobac-
teria and Actinobacteria, accounted for 80% of the commu-
nity in patches compared to 60% in gaps (Fig. 1).
Proteobacteria was the dominant phylum in both environ-
ments, but was significantly more abundant in patches than
gaps (Fig. 1). Four out of ten of the subdominant phyla were
significantly more abundant in the gaps (Acidobacteria,

Figure 1 Relative abundance of the bacterial phyla that represented > 0.2% of the total community in plant patches and gaps in semi-arid gypsic soils.

Asterisks indicate significant differences (P < 0.05). Bars represent standard errors.
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Gemmatimonadetes, Cyanobacteria, and Firmicutes), while
seven phyla were equally abundant in patches and gaps
(Actinobacteria, Planctomycetes, Bacteroidetes, Chloroflexi,
TM7, Verrucomicrobia and Nitrospira; Fig. 1).
Soil bacterial communities in patches were phenotypically

clustered, as shown by their phenotypic NRI values signifi-
cantly larger than zero, both for traits conferring tolerance to
environmental stress and competitive abilities (Fig. 2a). Also
in gaps, bacteria that were phenotypically similar in terms of
environmental tolerance tended to co-exist, but this result did
not apply to competition-related traits which showed a ran-
dom structure (Fig. 2a). Thus, phenotypic clustering was dri-
ven by traits conferring tolerance to environmental stress both
in patches and gaps, whereas traits conferring competitive
abilities were relevant exclusively to patches. Among these sets
of traits determining phenotypic community structure, we
detected those individual traits being overrepresented in each
habitat (Fig. 3). Specifically, traits conferring environmental
tolerance that were overrepresented in gaps were tolerance to
desiccation and formation of endospores, while the same type
of traits overrepresented in patches were tolerance to salts,
formation of other spores, and cysts (Fig. 3). Relevant traits
conferring competitive abilities, which only determined a sig-
nificant phenotypic community structure in patches, were

organic C consumption, nitrogen fixation, nitrate reduction
and formation of prosthecae (Fig. 3). Finally, the number of
16S rRNA gene copies, which was used as a proxy of growth
rate ultimately determining the overrepresentation of competi-
tively superior clades, was 2.80 � 0.01 gene copies in patches
and 2.70 � 0.05 gene copies in gaps. Therefore, the number
of 16S rRNA gene copies was significantly higher in patches
than gaps [Log (Average 16S rRNA gene copies) = 0.037
(0.002, 0.079)].
All traits analysed (except one) were phylogenetically con-

served, although the magnitude of the signal varied across
traits (D value; Table 2). Formation of endospores, other
spores, organic C consumption, and formation of prosthecae
showed the highest phylogenetic signals indicated by their
negative D values.
Soil bacterial communities were phylogenetically clustered

in both environments, that is, NRI was significantly larger
than zero in patches and gaps (Fig. 2b). Phylogenetic cluster-
ing was significantly stronger in bacterial communities thriv-
ing in patches compared to gaps [NRI = 2.45 (1.33, 3.68)].
This result was consistent when the number of sequences per
plot was introduced as a factor in the model (data not
shown).

DISCUSSION

Soil bacterial communities were phylogenetically clustered, as
has been repeatedly reported in the literature across biomes
(Horner-Devine & Bohannan 2006; Bryant et al. 2008; Costel-
lo et al. 2009; Chong et al. 2012; Ganz et al. 2012). Using a
trait-based approach, here we provide evidence supporting
that phylogenetic clustering in soil bacteria can arise from the
environmental selection of conserved functional traits either
conferring tolerance to environmental stress or competitive
abilities.
Bacterial communities presented a clear taxonomic and

functional response to the soil environment. Soil bacterial
communities underneath plant patches were richer, in terms
of OTU numbers, but were composed of phenotypically and
phylogenetically more closely related microbes than those in
gaps. Proteobacteria dominated both environments as is com-
mon for soils worldwide (Janssen 2006), but were significantly
overrepresented in patches with their high resource availabil-
ity. This correlates well with the observation that Proteobacte-
rial abundance increases with total organic carbon from the
local to the global scales (Fierer et al. 2007; Ganz et al. 2012).
Furthermore, the overrepresentation of Proteobacteria in car-
bon-rich soils was associated with the underrepresentation of
four major phyla (Fig. 1). This is consistent with the experi-
mental increase in Proteobacterial abundance induced by
organic carbon additions to soil, which have been shown to
generate asymmetric competition among bacterial phyla
(Fierer et al. 2007; Goldfarb et al. 2011). Under such carbon-
enriched conditions Proteobacteria are superior competitors
which exclude other bacterial lineages, and this process results
in intense phylogenetic clustering of soil bacterial communities
(Goldfarb et al. 2011). This suggests that Proteobacteria com-
petitively excluded deeply branching bacterial clades more
strongly in the fertile plant patches than in inter-patch areas.

(a) (b)

Figure 2 Phenotypic and phylogenetic bacterial community structure in

plant patches and gaps in semi-arid gypsic soils. Bayesian post mean

estimates and 95% credible intervals are shown for the Net Relatedness

Index (NRI) values calculated based on (a) phenotypic distance matrices

including traits conferring either environmental tolerance or competitive

abilities, and (b) phylogenetic distance matrices. Soil bacterial

communities in patches were phenotypically clustered for both trait types

(i.e. effects with positive intervals not including zero). Bacterial

communities in gaps were phenotypically clustered for traits associated to

environmental tolerance (as above), but showed a random structure for

competition-related traits (i.e. effects with intervals including zero). Soil

bacterial communities were phylogenetically clustered in both

environments (i.e. effects with positive intervals not including zero).

© 2014 John Wiley & Sons Ltd/CNRS

Idea and Perspective Abiotic and biotic filtering of bacterial traits 1197



Therefore, our results indicate that more bacterial ecological
strategies coexist in the harsh gaps, while the milder patches
increase the ecological and phylogenetic similarities among
coexisting bacteria via competitive dominance.
We also detected differential bacterial trait selection based

on the soil environment. Traits conferring tolerance to
environmental stress determined the phenotypic community
structure of soil bacteria in both environments, indicating that
abiotic filtering was a generally relevant process in this
eco-system affected by water-limitation and high soil electrical

conductivity (Navarro-Cano et al. 2014). Open spaces exposed
to high radiation and temperature variation (Goberna et al.
2007) had more bacterial traits associated with tolerance to
desiccation and formation of endospores, which are the most
resistant structures to environmental extremes (Dworkin
2006). Plant patches filtered bacteria able to form other resis-
tant structures (exospores, other spores, and cysts) and a wide
diversity of salt-tolerant organisms. Competition-related traits,
however, exclusively generated a significant phenotypic com-
munity structure in plant patches, i.e. in the high productive
environments of intensified biotic interactions (Aguiar & Sala
1999; Goberna et al. 2007). Phototrophic C fixing bacteria
were overrepresented in gaps, but this pattern did not suffice
to generate a phenotypic community structure significantly dif-
fering from random. Plant patches promoted organic C con-
sumers, N fixers, nitrate reducers and prosthecate nutrient
scavengers (McAdams 2006). This was eventually reflected in
the higher growth rates of bacteria thriving in patches com-
pared to gaps, as broadly indicated by their larger average
number of 16S rRNA gene copies (Klappenbach et al. 2000),
which is the necessary determinant leading to the overrepresen-
tation of competitively superior clades.
Phylogenetic community structure reflects phenotypic com-

munity structure only if traits are phylogenetically conserved
(Kraft et al. 2007; Pausas & Verd�u 2010). This was the case
of the majority of traits analysed, as derived from their signifi-
cant phylogenetic signals across a reference phylogeny (Fritz
& Purvis 2010). Thus, our results support the notion that bac-
terial traits tend to be phylogenetically conserved, as reported
by Martiny et al. (2013) who detected significant phylogenetic
signals in 16 out of 19 genomic traits and in 56 out of 57
organic C consumption-related traits. Therefore, in our study,
phylogenetic clustering was likely mediated by the selection of
conserved traits conferring environmental tolerance in both
environments, and it was further strengthened in patches by
the filtering of conserved traits conferring competitive abilities.

Figure 3 Relative abundance of seven traits conferring environmental tolerance and eight traits conferring competitive abilities to bacteria in plant patches

and gaps in semi-arid gypsic soils. Asterisks indicate significant differences (P ≤ 0.05). Bars represent standard errors.

Table 2 Phylogenetic conservatism of bacterial traits calculated based on

385 reference organisms

Traits D value N = 0 N = 1

Environmental tolerance

Tolerance to desiccation 0.608 345 40

Formation of endospores �0.748 379 6

Formation of akinetes NA 383 2

Formation of exospores NA 383 2

Formation of cysts 0.678 ns 377 8

Formation of other spores �0.565 323 62

Tolerance to salts 0.521 190 195

Competitive abilities

Phototrophic C fixation 0.342 347 38

Formation of PHA inclusions 0.438 320 65

Ammonia oxidation NA 383 2

Denitrification 0.597 332 53

Formation of prosthecae �0.160 374 11

N fixation 0.507 341 44

Nitrate reduction 0.807 223 162

Organic C consumption �0.239 10 375

Traits with D values smaller than 1 show a phylogenetic signal, whose

intensity increases as D value decreases. Traits with significant phyloge-

netic signals are marked in bold (P < 0.001). For each trait, the number

of taxa with each trait value (absence: N = 0, presence: N = 1) are given.

NA indicates that the test was not performed due to extremely low vari-

ability in the trait.
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These observations fit well to our hypothetic scenario (B) in
Table 1, according to which there is a predominant abiotic
filter under harsh low productive conditions while the compet-
itive exclusion of low competitive clades becomes significant
under high resource availability (Mayfield & Levine 2010). In
both cases, the overrepresentation of bacteria bearing
conserved traits results in phylogenetic clustering, but the
mechanisms underlying such a pattern are radically distinct in
either environment. Most importantly ours is the first evidence
of phylogenetic clustering in bacterial communities being
partly driven by the promotion of conserved traits that confer
competitive abilities. Thus, our results support the theoretical
framework by Mayfield & Levine (2010) and the experimental
demonstration by Goldfarb et al. (2011), and lead us to the
conclusion that this process is realistic under natural condi-
tions. This is necessarily a simplified version of the balance of
forces that might structure the soil bacterial communities,
since various ecological filters (e.g. predation, facilitation,
competition based on niche similarity, competition by interfer-
ence) operate simultaneously on the multiple traits that condi-
tion the survival and adaptation of the myriad of clades
shaping the community (Mayfield et al. 2009).
Bacterial phylogenies and phenotypes are ongoing hypothe-

ses, and hence we necessarily assume uncertainty associated
with our work. The inherent difficulty related to the recon-
struction of bacterial phylogenetic trees is further complicated
by the usage of short sequences of a single phylogenetic mar-
ker, as is our case and that of most microbial ecology studies.
We have tried to reduce the uncertainty of phylogenetic recon-
struction by assuming the topology of the deep relationships
between bacterial lineages of a well resolved tree based on over
285.000 full 16S rRNA sequences (Quast et al. 2013). Further-
more, we have used Bayesian inference to obtain the probabi-
listic distribution of the phylogenetic community structure
based on replicated phylogenetic trees (de Villemereuil et al.
2012). Similarly, assigning phenotypes to bacterial OTUs bears
high complexity for several reasons (Green et al. 2008). The
most obvious is that only a fraction of the microbiota has yet
been cultured, and thus many physiological, morphological
and ecological characters remain unexplored (Green et al.
2008). Therefore, using high-throughput sequencing allows a
deeper exploration of microbial diversity, but still trait defini-
tion is constrained to the closest cultured representative to
each query sequence. In order to account for the uncertainty
associated with assigning traits to environmental sequences, we
explored the consistency of our results by using a subset of
OTUs classified at a high confidence threshold at the finest
taxonomic level. Trait assignment to closely related bacteria is
supported by the widespread phylogenetic conservatism of
functional traits in prokaryotes (Martiny et al. 2013). Similar
approaches to ours based on trait assignment to close relatives
have been recently proposed for the prediction of gene con-
tents (Kembel et al. 2012; Langille et al. 2013). Further efforts
to enlarge our functional trait database for reference organ-
isms will hopefully help understanding the community assem-
bly processes of prokaryotes.
In summary, by combining abundance data, phylogeny and

traits capturing functional responses to the abiotic and biotic
environment, we conclude that the phylogenetic clustering of

soil bacteria can be mediated by the filtering of traits either
conferring resistance to abiotic stress or competitive abilities
(Mayfield & Levine 2010; HilleRisLambers et al. 2012).
Together with other lines of evidence (Goldfarb et al. 2011),
our results suggest that the competitive exclusion of large
bacterial clades based on their low (environmentally mediated)
competitive abilities might help explain the widespread coexis-
tence of evolutionarily related soil bacteria.
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