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ABSTRACT

Quantifying diversity with phylogeny-informed metrics helps understand the effects of diversity on ecosystem functioning
(EF). The sign of these effects remains controversial because phylogenetic diversity and taxonomic identity may
interactively influence EF. Positive relationships, traditionally attributed to complementarity effects, seem unimportant in
natural soil bacterial communities. Negative relationships could be attributed to fitness differences leading to the
overrepresentation of few productive clades, a mechanism recently invoked to assemble soil bacteria communities. We
tested in two ecosystems contrasting in terms of environmental heterogeneity whether two metrics of phylogenetic
community structure, a simpler measure of phylogenetic diversity (NRI) and a more complex metric incorporating
taxonomic identity (PCPS), correctly predict microbially mediated EF. We show that the relationship between phylogenetic
diversity and EF depends on the taxonomic identity of the main coexisting lineages. Phylogenetic diversity was negatively
related to EF in soils where a marked fertility gradient exists and a single and productive clade (Proteobacteria) outcompete
other clades in the most fertile plots. However, phylogenetic diversity was unrelated to EF in soils where the fertility
gradient is less marked and Proteobacteria coexist with other abundant lineages. Including the taxonomic identity of
bacterial lineages in metrics of phylogenetic community structure allows the prediction of EF in both ecosystems.

Keywords: competitive exclusion; fitness differences; phylogenetic diversity; phylogenetic clustering; Proteobacteria;
taxonomic identity

INTRODUCTION

The effect of biodiversity on ecosystem functioning has been
widely studied, numerous pieces of evidence indicating a pos-
itive effect but some also reporting neutral or negative relation-
ships (Zak et al. 2003; Hooper et al. 2005; Balvanera et al. 2006;
Cardinale et al. 2012). Soil bacteria are primary actors in this re-
lationship because of their exceptional diversity and key role
on ecosystem functioning, through decomposing organic mat-
ter and controlling the planetary flows of energy and nutrients

(Curtis, Sloan and Scannell 2002; Wardle et al. 2004; Van der
Heijden, Bardgett and van Straalen 2008).

Species richness has been the measure of biodiversity tra-
ditionally used in studies relating biodiversity and ecosystem
functioning (Cardinale et al. 2012). However, this approach dis-
regards the fact that functional similarities among species
are usually determined by their common evolutionary history,
and therefore, phylogenetically related species tend to perform
similar functions (Blomberg, Garland and Ives 2003; Martiny,
Treseder and Pusch 2013; but see Revell, Harmon and Collar 2008
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for other processes producing trait resemblance among close
relatives). This is the reason why phylogenetically informed
measures of diversity tend to be more informative than tradi-
tional richness measures (Lozupone and Knight 2007; Cadotte,
Cardinale and Oakley 2008). Empirical evidence on the effect of
phylogenetic diversity on ecosystem functioning is widespread
across the tree of life (e.g. bacteria, Gravel et al. 2012; fungi, Ma-
herali and Klironomos 2007; plants, Cadotte, Cardinale and Oak-
ley 2008; Cadotte 2013; Navarro-Cano et al. 2014). Most of these
studies have found a positive relationship between phylogenetic
diversity and ecosystem functioning parameters, as expected
when distantly related taxa perform complementary functions.
However, neutral and negative relationships have also been de-
scribed, particularly in bacteria, because phylogenetic diversity
and taxonomic diversity may interactively influence ecosystem
functioning (Severin, Östman and Lindström 2013; Venail and
Vives 2013).

Phylogenetic diversity of bacterial communities in soils is
low compared to those in other natural environments, contrast-
ing with their extremely high species richness and diversity
(Lozupone and Knight 2007). This paradoxical situation could be
explained by adding a phylogenetic context to themodern coex-
istence theory (Chesson 2000;Mayfield and Levine 2010; HilleRis-
Lambers et al. 2012; Godoy, Kraft and Levine 2014). The phyloge-
netic structure of soil bacterial communities is primarily driven
by abiotic factors, such as acidity (Jones et al. 2009) and avail-
ability of organic resources (Goberna, Garcı́a and Verdú 2014),
that overrepresent certain clades. The composition of ecologi-
cal communities is further determined by the balance between
mechanisms shaping niche differences and fitness differences
between lineages (Chesson 2000). Coexistence is maximized un-
der large niche differences (i.e. absence of niche overlap), a situa-
tion where species do not compete for resources. This increases
both diversity and productivity since the functional comple-
mentarity of coexisting organisms allows a more complete us-
age of resources. Complementarity effects have been shown to
underlie the positive relationship between bacterial diversity
and productivity in simple experimental communities, but it
seems to be relatively unimportant in natural communities due
to the high functional redundancy of bacteria (Griffiths et al.
2001; Bell et al. 2005; Venail and Vives 2013). In contrast, fitness
differences between lineages tend to favor competitive exclu-
sion because competitively superior lineages may consume too
much of the resource on which other lineages depend (Chesson
2000). Mayfield and Levine (2010) noticed that fitness differences
may produce outcompetition of entire clades when competitive
superiority is a phylogenetically conserved trait. The immediate
consequence of competitive exclusion of entire clades is the re-
duction of phylogenetic diversity in ecological communities, as
occurs in soil bacterial communities worldwide (Goberna, Garcı́a
and Verdú 2014).

Fitness differences may be produced by competitive asym-
metries in which some lineages produce more per unit resource
than others (Chesson 2000). This is the case of Proteobacteria and
Actinobacteria, two bacterial lineages which are extremely com-
petitive in terms of growth response when organic carbon sub-
strates of varying recalcitrance are supplied to the soil, which is
typically carbon limited (Goldfarb et al. 2011). This competitive
superiority is phylogenetically conserved and therefore compet-
itive exclusion leads to the overrepresentation of a few, very pro-
ductive, lineages resulting in phylogenetic clustering both in ex-
perimental and natural soil communities (Goldfarb et al. 2011;
Goberna et al. 2014). Under this scenario, highly productive com-
munities dominated by competitive clades would feature low

phylogenetic diversity levels, leading to an inverse relationship
between phylodiversity and ecosystem functioning.

Here, we selected two ecosystems contrasting in terms of
environmental heterogeneity, which is a main determinant of
bacterial diversity (Ramette and Tiedje 2007). Differences be-
tween sites were particularlymarked as regards the heterogene-
ity of resource availability, a factor that modifies the relation-
ship between bacterial diversity and productivity (Jousset et al.
2011). In both ecosystems, we test whether (i) soil physical and
chemical parameters determine the phylogenetic structure and
(ii) the phylogenetic structure of bacterial communities predicts
ecosystem functioning, measured through soil microbial pro-
ductivity,metabolic efficiency andnutrient cycling increases, via
overrepresentation of a particular productive clade.

MATERIALS AND METHODS
Study site

The study was carried out in two Mediterranean sites, differing
in their climate, plant cover, lithology and soil type. We inten-
tionally searched these contrasting ecosystems to test whether
the phylogenetic structure of soil bacterial communities pre-
dicts ecosystem function under two extremes of environmental
heterogeneity. Site 1 is characterized by the presence of a dense
shrubland (100% plant cover) dominated by Rosmarinus officinalis
L. and located in Teresa de Cofrentes (Valencia, Spain). Soils
are Haplic Leptosols (Calcaric, Humic) (FAO–ISRIC–IUSS 2006) de-
veloped on limestones, mean annual rainfall is 446 mm and
temperature 13.7oC. Topsoils (0–2 cm) were collected in ten 1
× 1m plots located within a 150 m2 area as described in Gob-
erna et al. (2012). Site 2 is covered by a patchy shrub steppe dom-
inated by Ononis tridentata L. and located in Algepsar dels Bu-
rutaus (Serra de Crevillent, Alacant, SE Spain). Soils are Leptic
Regosols (Gypsiric, Calcaric) (FAO–ISRIC–IUSS 2006) developed
on gypsum, mean annual rainfall is 220 mm and temperature
20oC. Topsoils (0–2 cm) were collected underneath 15 vegetation
patches (defined as groups of plants growing underneath the
canopy of an O. tridentata individual) and in the adjacent open
spaces, all plots being located within a 1-ha area as described
by Navarro-Cano et al. (2014). Sites 1 and 2, representing two
extremes of environmental heterogeneity will be hereafter re-
ferred to as ‘non-patchy’ and ‘patchy’ ecosystems, respectively,
based on the structure of their plant communities.

Plant community structure determined a low variance in the
soil physical and chemical properties in the non-patchy ecosys-
tem, which contrastedwith the high variability of the same vari-
ables in the patchy ecosystem (Table 1). Further details on the
soil physical and chemical environment in both sites can be
found in previous studies (Goberna et al. 2012; Navarro-Cano
et al. 2014). We characterized the soils of each plot with the
scores of the first principal component (PC1-Soil) including the
soil gravimetric humidity (GH), pH, electrical conductivity (EC),
total organic C (TOC), pyrophosphate oxidizable C (PPi-OC) and
total nitrogen (TN). PC1-Soil was then used as an abiotic predic-
tor of phylogenetic structure of soil bacterial communities as de-
scribed below. Both sites also exhibited large differences in the
variability of several biochemical properties that are commonly
used as proxies of ecosystem functioning, with the non-patchy
ecosystem showing lower coefficients of variation compared to
the patchy ecosystem (Table 1). Specifically, we used parame-
ters that are indicators of general microbial activity and specific
enzymatic activities involved in main steps of the nutrient cy-
cles (Nannipieri, Grego and Ceccanti 1990). In particular, general
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Table 1. Variability among sampling plots in physical, chemical and biochemical variables in the non-patchy and patchy ecosystems (data
published by Goberna et al. 2012 and Navarro-Cano et al. 2014).

Non-patchy ecosystem Patchy ecosystem

Variable Mean SD CV Mean SD CV

Gravimetric humidity (%) 23.34 5.27 22.57% 2.94 1.48 50.36%
Total organic C (g kg−1) 43.9 5.2 11.95% 59.7 39.7 66.53%
Pyrophosphate oxidizable carbon (g kg−1) 15.4 6.2 40.47% 1.87 1.57 83.65%
pH 8.05 0.17 2.14% 7.18 0.16 2.26%
Electrical conductivity (μS cm−1) 230 35.66 15.48% 2798 334 11.95%
Total N (%) 0.39 0.13 32.32% 0.39 0.29 73.78%

MBC (mg C kg−1) 469 194 41.32% 1411 1307 92.68%
MBC/TOC (%) 1.07 0.42 38.71% 1.89 1.11 58.95%
Basal respiration (mg C-CO2 kg−1 d−1) 15.75 6.27 39.78% 76.26 71.88 94.25%
qCO2 (μg C-CO2 mg−1 MBC h−1) 1.91 2.19 114.57% 2.18 1.08 49.47%
ATP (ng g−1) 2186 493 22.53% 424 310 73.11%
β-Glucosidase activity (μmol PNP g−1 h−1) 2.93 0.81 27.51% 5.88 6.07 103.28%
Phosphatase activity (μmol PNP g−1 h−1) 15.73 6.13 38.99% 16.11 14.78 91.73%
Urease activity (mg N-NH4

+ g−1 h−1) 1.07 0.36 33.52% 2.05 1.49 72.59%

indicators of microbial activity included: (1) microbial biomass C
(MBC) as a proxy of themicrobial biomass; (2) ATP content, as an
indicator of the total microbial activity; (3) basal respiration (BR),
as an indicator of the activity of decomposers that mineralize
organic C into CO2; (4) microbial coefficient (MBC/TOC), which
reflects the conversion efficiency of organic C into microbial C;
and (5) metabolic quotient (qCO2), which is the ratio between
CO2-C production and MBC and declines as the microbiota be-
comes efficient at conserving C. Specific indicators of microbial
activity included (1) β-glucosidase (GA), (2) alkaline phosphatase
(PA) and (3) urease activities (UA), which are hydrolytic enzymes
that are respectively involved in C, P and N cycling. Further de-
tails on the soil biochemical properties in both sites can be found
in previous studies (Goberna et al. 2012; Navarro-Cano et al. 2014).

Soil DNA extraction and pyrosequencing

Soil DNA from the non-patchy ecosystem was extracted within
24 h after sampling from ca. 0.25 g soil with the PowerSoil
DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA). Ex-
tracted DNA was checked for quality by electrophoresis in
1% agarose gels run in 0.5 × Tris–acetate–EDTA buffer. Am-
plifications of the 16S rRNA gene were carried out using the
universal bacterial primers 8F (5′-AGAGTTTGATCCTGGCTCAG-
3′; Turner et al. 1999) and 534R (5′-ATTACCGCGGCTGCTGGC-
3′; Muyzer, de Waal and Uitterlinden 1993). Each sample con-
tained a synthetized forward primer, including a 454 sequencing
adaptor (5′-CCATCTCATCCCTGCGTGTCTCCGACTCAG-3′) and a
unique 8-nucleotide barcode in its 5′ end randomly selected
from those published by Hamady et al. (2008). The reverse
primer incorporated a 454 sequencing adaptor in its 5′ end (5′-
CCTATCCCCTGTGTGCCTTGGCAGTCTCAG-3′).

PCR reactions were performed in a Flexcycler (Analytik Jena,
Jena, Germany) in 50 μl volumes. Each reaction contained a final
concentration of 1 × Platinum PCR SuperMix High Fidelity (Invit-
rogen, Carlsbad, USA), 0.3 μM of each primer and 0.4 mg mL−1

bovine serum albumin. A volume of 1.5 μl DNA was directly ap-
plied to the reaction mix. Thermal cycling consisted of 5 min
at 94◦C, 20 cycles including 45 s at 94◦C, 45 s at 54◦C and 90
s at 72◦C and terminated with 10 min at 72◦C. Purification of
PCR products (100 μl) was carried out with the NucleoSpin Ex-

tract II Kit (Macherey-Nagel, Düren, Germany). Afterwards, they
were eluted in 50 μl DNAase free 1 × TE (Tris-EDTA) buffer and
checked for quality and size in 2% agarose gels run in 1 × TAE
buffer (80 V, 45 min). Non-template controls followed the same
procedure. Purified tagged amplicons were quantified in dupli-
cate using the Quant-iT PicoGreen dsDNA Kit (Invitrogen, Carls-
bad, USA) and pooled in equimolar amounts. Pyrosequencing
was performed by GATC Biotech (Konstanz, Germany) with the
Roche 454 GS-FLX system using titanium chemistry.

Similar procedures were used for DNA extraction, PCR am-
plification and pyrosequencing of soil samples in 30 plots from
the patchy ecosystem. Details are given in Goberna et al. (2014).

Sequence analysis and phylogeny reconstruction

For the non-patchy ecosystem, 10 604 sequences were obtained.
Short sequences (<200 bp) were removed, along with those with
ambiguous base calls or with homopolymers exceeding 6 bp.
Primers and barcodes were trimmed. After denoising, chimeric
sequences and singletons were excluded from the analysis. Op-
erational taxonomic units (OTUs) were defined at an identity
level of 97% and taxonomically classified using BLASTn against
a curated GreenGenes database (DeSantis et al. 2006). This ini-
tial sequence processing was performed by MR DNA (Shallowa-
ter, TX, USA). A final 2289 OTUs were aligned with PyNAST
(Caporaso et al. 2010a) by using QIIME (Caporaso et al. 2010b).
Then, we constructed a community matrix showing the abun-
dance of the total 2289 OTUs in each of the 10 plots. As pro-
posed by Kembel et al. (2012), the relative abundance of each
OTU was corrected by the estimated number of 16S rRNA gene
copies. Bacterial phylogeny was reconstructed using RAxML
7.3.0 (Stamatakis 2006). We built five independent maximum-
likelihood phylogenetic trees with the GTRGAMMA substitu-
tion model. Previously, hypervariable regions were removed us-
ing the Lane mask (Lane 1991). To avoid high phylogenetic
uncertainty resulting from the usage of short sequences, tree
topology was constrained to match the basal relationships of
the megatree built from the Silva database (Release 108, Quast
et al. 2013). All phylogenetic trees were selected among the
best of 1000 iterations and rooted using Archaeoglobus profundus.
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Sequences were deposited in the European Nucleotide Archive
(http://www.ebi.ac.uk/ena/data/view/PRJEB6166).

In the patchy ecosystem, we worked with 24 162 sequences
after removal of low-quality sequences and artifacts. After ex-
cluding singletons, these were collapsed into a final 3290 OTUs.
Sequence processing and phylogeny reconstruction were sim-
ilar to those described above and details are given in Goberna
et al. (2014).

Phylogenetic community structure

We described the phylogenetic structure of bacterial communi-
ties by using two phylogeny-weighted metrics. First, we calcu-
lated the abundance-weighted net relatedness index (NRI), one
of the most commonly used metrics in community phylogenet-
ics, with the picante package for R (Kembel et al. 2010). This
computes NRI = −(MPDobs − MPDrand)/sd˙MPDrand, whereMPDobs

is the average of all pairwise phylogenetic distances between
the taxa in a local community, MPDrand is the average of MPD
calculated in n randomly constructed communities after shuf-
fling all taxa in the regional pool and sd˙MPDrand is the standard
deviation of MPDrand (Webb et al. 2002). This allows examining
whether co-occurring taxa are more (positive NRI) or less (nega-
tive NRI) closely related than expected by chance. Thus, positive
NRI values are related to phylogenetic clustering while negative
values indicate phylogenetic overdispersion.

Second, we used the phylogenetic fuzzy-weighting method
proposed by Pillar and Duarte (2010). Compared to NRI, which
is blind to the taxonomic identity of coexisting lineages (i.e.
similar NRIs can be obtained for communities dominated by
closely related Actinobacteria or for communities dominated by
closely related Proteobacteria), the fuzzy-weighting method iden-
tifies the representativeness of different lineages across the sites
(see Duarte, Prieto and Pillar 2012 for a detailed explanation).
Briefly, thismethod calculates amatrix (matrix P), that describes
the species phylogenetic composition of each plot taking into
account the phylogenetic neighborhood of each OTU. To obtain
matrix P, we transformed the pairwise phylogenetic distance
matrix on similarities between species. Then, we used similari-
ties to weight the species composition matrix by a fuzzy set al-
gorithm (Pillar and Duarte 2010). In matrix P, each OTU has a
value per plot that increases as the phylogenetic distance be-
tween neighboring OTUs decreases. Matrix P was calculated us-
ing the SYNCSA package implemented in R (Debastiani and Pil-
lar 2012). Principal components analysis (PCA) with Euclidean
distance was run to reduce the dimensionality of the matrix P.
The loadings of each OTU indicate the relative contribution of
that OTU to differentiate plots along the first principal compo-
nent axis (plot scores). Consequently, each plot score captures
the whole variation of species abundances weighted by phy-
logenetic relatedness. To identify which phyla were responsi-
ble for the phylogenetic community structure, we ran a linear
model with the plot scores along the first principal component
axis (PCPS1 hereafter) as the dependent variable and the rela-
tive abundance of themost abundant phyla as independent vari-
ables.

Statistical analyses

To check whether spatial autocorrelation in the bacterial com-
munity composition across plots should be taken into account
in subsequent analyses, we correlated OTU composition and ge-
ographic distance matrices through Mantel tests in the ADE4
package for R (Mantel 1967; Dray and Dufour 2007). We tested

whether physical and chemical soil parameters determine the
phylogenetic structure of bacterial communities by performing
Bayesian generalized linear models (GLMs) with NRI and PCPS1
used individually as the dependent variables and the PC1-Soil
as the independent variable. The NRI values per plot were very
similar across the five phylogenetic trees in both sites (r > 0.77; P
< 0.005 for all the correlations). Similarly, PCPS1 values per plot
were very similar for all the trees (r > 0.98; P < 0.005 for all the
correlations). Although these correlations indicate that phyloge-
netic uncertainty was small, we accommodated such small un-
certainty by running five GLMs for each site, each one using the
phylogenetic information calculated from an independent tree
and integrated over the posterior samples by drawing 1000 ran-
dom samples acrossmodels. Themodels were runwith the help
of MCMC techniques as implemented in the MCMCglmm pack-
age for R (Hadfield 2010). We used the default priors and ran 13
000 MCMC iterations with a burn-in period of 3000 iterations.
Convergence of the chain was tested by means of an autocorre-
lation statistic. The statistical significance of the factors in the
model was estimated by calculating the 95% credible interval of
their posterior distribution.

Bayesian GLMs were also used to test which metrics of phy-
logenetic community structure predicted the ecosystem func-
tioning more accurately. We ran five GLMs per site, using each
ecosystem functioning parameter individually as the dependent
variable and both NRI and PCPS1 as independent variables in
the same model. The relative abundance of the most abundant
clades was also used as a predictive parameter of ecosystem
functioning. Clade relative abundances were estimated as the
sum of the relative abundances of all OTUs that belonged to that
particular clade, which were corrected based on their estimated
16S rRNA gene copy numbers (see details above). All analyses
were performed using the software R 3.1.1 (R Core Team 2014).

RESULTS

Soil bacterial communities had 602 ± 13 and 430 ± 24 OTUs
per plot (mean ± SE) in the non-patchy and patchy ecosystems,
respectively. Proteobacteria was the most dominant phylum in
both ecosystems followed by Actinobacteria (Fig. 1). There was
not spatial autocorrelation across plots in the bacterial commu-
nity composition (non-patchy ecosystem, r = −0.205, P = 0.924;
patchy ecosystem, r = −0.054, P = 0.691; Mantel tests) nor in the
phylogenetic structuremeasured asNRI (non-patchy ecosystem,
r = 0.04, P = 0.349; patchy ecosystem, r = −0.049, P = 0.74) or
PCPS1 (non-patchy ecosystem, r = 0.29, P = 0.06; patchy ecosys-
tem, r = −0.044, P = 0.78).

The phylogenetic structure of the bacterial communities in
both ecosystems was clustered, as indicated by NRI significantly
higher than zero [NRI post-mean estimate (95% credible interval)
= 1.70 (0.68, 2.93) for the non-patchy and NRI = 2.49 (1.37, 3.56)
for the patchy ecosystems]. Phylogenetically clustered plots (i.e.
high NRI values) were those with higher abundances of Pro-
teobacteria and/orActinobacteria (see positive estimates in theNRI
models in Table 2). The contribution of both phyla was signif-
icantly positive but differed in their relative importance, with
Proteobacteria and Actinobacteria equally contributing in the non-
patchy ecosystem butActinobacteria contribution becoming non-
significant in the patchy ecosystem.

The metrics of the community structure that accounts for
the variability in the taxonomic identity and the phyloge-
netic relatedness (PCPS1) explained 50 and 71% of the total
variance of the phylogenetic structure in the non-patchy and

http://www.ebi.ac.uk/ena/data/view/PRJEB6166
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Figure 1. Phylogenetic tree of major basal groups in the non-patchy and patchy ecosystems showing the average relative abundances of each phylum across the study
plots. Error bars indicate the standard error of the mean.
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Table 2. Linear model explaining the contribution (% variance) of the abundance of the dominant phyla (% of OTUs belonging to Proteobacteria
and Actinobacteria) on the mean NRI and on the mean plot scores along the first principal component axis of the phylogenetic community
structure (PCPS1) across the five phylogenetic trees.

NRI PCPS1

Estimate ± SE t % variance Estimate ± SE t %variance

Non-patchy ecosystem

Intercept −11.9 ± 3.02 −3.96∗∗ 136.7 ± 36.26 3.77∗∗

% Proteobacteria 0.22 ± 0.05 4.49∗∗ 33.4 0.61 ± 3.64 3.64∗∗ 52.5
% Actinobacteria 0.21 ± 0.06 3.45∗ 41.9 −8.43 ± 0.741 −11.25∗∗∗ 45.2

Patchy ecosystem

Intercept −3.54 ± 1.35 −2.61∗ −197.4 ± 7.22 −27.37∗∗∗

% Proteobacteria 0.09 ± 0.02 3.28∗∗ 35.5 5.31 ± 0.14 35.64∗∗∗ 97.2
% Actinobacteria 0.07 ± 0.03 2.11∗ 0.09 −0.67 ± 018 −3.56∗∗ 0.009

∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

patchy ecosystems, respectively. The contribution of the most
abundant phyla to PCPS1 differed between ecosystems, with
similar contributions of Proteobacteria and Actinobacteria in the
non-patchy ecosystem but with an overwhelming contribution
of Proteobacteria in the patchy ecosystem (Table 2). Interestingly,
the phylogenetic position of both phyla in distant clades (see
trees in Fig. 1) was accounted for by PCPS1 and clearly segre-
gated the plots with preponderance of Proteobacteria in the right
extreme from those with preponderance of Actinobacteria in the
left extreme (see positive estimates for Proteobacteria and nega-
tive for Actinobacteria in the PCPS1 linear models in Table 2).

The first axis of the PCA grouping soil physical and chemi-
cal variables (PC1-Soil) accounted for 68 and 84% of the variance
in non-patchy and patchy ecosystems, respectively. The load-
ing factors showed that PC1-Soil represented a fertility gradient
of increasing oxidizable carbon and humidity contents in both
ecosystems (non-patchy ecosystem: TN 0.27, EC 0.36, pH 0.40,
TOC 0.43, GH 0.47, PPi-OC 0.48; patchy ecosystem: pH –0.32, EC
0.40, GH 0.40, PPi-OC 0.43, TN 0.44, TOC 0.44). While the mag-
nitude of such a gradient was slight in the non-patchy ecosys-
tem (e.g. TOC ranged from 3.3 to 5% across plots), it was ex-
tremely accentuated in the patchy ecosystem (e.g. TOC ranged
from 1.8 to 12.5% across plots; Table 1). This fertility gradient
could not predict the NRI in the non-patchy ecosystem where
both Actinobacteria and Proteobacteria had relevant contributions
[NRI versus PC1-Soil = 0.15 (–0.19, 0.56)]. However, once the iden-
tities of both phyla and the variability in phylogenetic relat-
edness across plots were accounted for, the fertility gradient
significantly explained the phylogenetic structure of the com-
munity [PCPS1 versus PC1-Soil = 11.66 (2.68, 23.19)]. In the
patchy ecosystem where the taxonomic relevance of a single
phylum (Proteobacteria) was disproportionate, the fertility gra-
dient significantly explained both NRI [NRI versus PC1-Soil =
0.59 (0.36, 0.84)] and PCPS1 [PCPS1 versus PC1-Soil = 17.61 (23.36,
11.33)].

NRI did not predict any of the ecosystem functioning vari-
ables related to soil microbial productivity, metabolic efficiency
and biogeochemical cycling in the non-patchy ecosystem while
PCPS1 significantly explained most of the general indicators of
microbial activity. Specifically, PCPS1 was negatively associated
to MBC and MBC/TOC and positively to BR and qCO2 (Fig. 2 up-
per panel, Model 1). Plots with high abundances of Actinobac-
teria were those with high MBC and high efficiency in convert-
ing organic C into microbial C (MBC/TOC) and conserving C (as
indicated by the negative relationship with qCO2) (Fig. 2 upper
panel, Model 2). Plots with abundant Proteobacteria were those

with high activity of decomposers that mineralize organic C into
CO2 (as indicated by BR) and PA (Fig. 2 upper panel Model 2). In
the patchy ecosystem, most of the ecosystem functioning pa-
rameters, including indicators of both general microbial activity
and specific enzymatic processes, were predicted by both NRI
and PCPS1 (Fig. 2 bottom panel, Model 1). All these relationships
were positive andwere also explained by the relative abundance
of Proteobacteria (Fig. 2 bottom panel, Model 2).

DISCUSSION

Our results show that the relationship between phylogenetic
diversity and ecosystem functioning is dependent on the tax-
onomic identity of the main coexisting bacterial lineages.
We show that the soil environment structures a phyloge-
netically clustered community and discuss the mechanisms
underlying the relationship between such phylogenetic commu-
nity structure and ecosystem functioning. To understand this
relationship, we invoke the need to include the species identity
in phylogenetic diversitymetrics to account for variation in phy-
logenetically weighted abundances across communities.

The soil abiotic variables determined a fertility gradient that
explained the phylogenetic structure of soil bacterial communi-
ties in both ecosystems. This correlates well with previous ob-
servations showing that the amount of oxidizable substances is
a good predictor of the phylogenetic community structure of soil
bacteria worldwide (Goberna, Garcı́a and Verdú 2014). Our abil-
ity to explain the bacterial phylogenetic community structure
through abiotic factors depended on the level of environmen-
tal heterogeneity. At high environmental heterogeneity (patchy
ecosystem), the abiotic environment explained the community
structure regardless the inclusion (PCPS1) or not (NRI) of lin-
eage identity, while at low environmental heterogeneity (non-
patchy ecosystem), only the most complex measure of com-
munity structure including lineage identity was predicted by
the abiotic environment. Future studies in other ecosystems
are needed to refine the relationship between environmental
heterogeneity and the power of phylogenetic metrics to detect
community structure in soil bacterial communities. Another
important picture emerging from the present study is that en-
vironmentally mediated changes in the composition of bacte-
rial communities left a phylogenetic signature in the community
structure with profound implications in ecosystem functions.
Detecting which lineage has been overrepresented under partic-
ular environmental parameters is key to understand the mean-
ing of the phylogenetic clustering in the communities.
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Figure 2. Bayesian post-mean estimates and their expected 95% credible intervals for the effect of NRI and PCPS1 (Model 1) and the relative abundance of Proteobacteria

and Actinobacteria (Model 2) on the eight soil microbial indicators from (A) non-patchy and (B) patchy ecosystems. All variables were log-transformed to improve
normality. Effects with intervals not including zero are significant (black-colored intervals), whereas those including zero are not significant (gray-colored intervals).

Ecosystem functioning was also better predicted by the met-
rics accounting for the identity of the lineages. In our non-
patchy ecosystem, both Actinobacteria and Proteobacteria were
key components structuring productive bacterial communities
(Goldfarb et al. 2011). As both phyla are distantly related, their co-
existence in more fertile plots was not translated into increased
phylogenetic clustering as shown by the lack of correlation be-
tween the fertility gradient and NRI. Similarly, NRI could not
predict any ecosystem function in this non-patchy ecosystem.
However, the phylogenetic structure metrics accounting for the
identity of both phyla predictedmost of the general indicators of
ecosystem functioning. On the other side, in the patchy ecosys-
tem we found that communities phylogenetically clustered be-
cause of the overrepresentation of a particular clade (Proteobac-
teria) were the most productive. In this case, the coexistence
of closely related Proteobacteria in fertile plots was translated
into increased phylogenetic clustering, and therefore NRI could
also predict high ecosystem functioning at low phylogenetic
diversities.

Our results contrast with the common findings in
‘macro’organisms that indicate that phylogenetic diversity
is positively related to ecosystem functioning (Cadotte, Car-
dinale and Oakley 2008; Flynn et al. 2011; Cadotte 2013). They
agree, however, with other lines of evidence showing variable
responses of ecosystem functioning parameters to bacterial
phylogenetic diversity. In simple experimental communities,
positive and neutral responses of community productivity to
increasing levels of phylogenetic diversity have been described

(Gravel et al. 2012; Venail and Vives 2013). In some instances,
positive responses could be experimentally attributed to
complementarity effects based on the overyielding of the
mixtures compared to their constituent species (Venail and
Vives 2013), but this pattern is not consistent in the literature
(Gravel et al. 2012). In more complex microcosms, bacterial
productivity showed mostly negative, but also neutral and
positive responses, to phylogenetic diversity (Severin, Östman
and Lindström 2013). These authors suggest that negative
responses are mediated by the overrepresentation of productive
ß-Proteobacteria with the ability to consume an aromatic carbon
compound. Similarly, our results in natural soil communities
indicate that fast growing, competitively superior clades in
the presence of soil organic carbon outcompete other clades,
thus reducing phylogenetic diversity but rising indicators
of ecosystem functioning. These results are consistent with
fitness differences as the predominant mechanism causing
high productivity at low phylodiversity through competitive
exclusion (Mayfield and Levine 2010; Carroll, Cardinale and
Nisbet 2011; HilleRisLambers et al. 2012).

In short, microbially mediated ecosystem functions can be
predicted by the phylogenetic structure of soil bacterial com-
munities because this metrics contains information on both the
outcome of the ecological processes determining species coex-
istence and the functionality of these coexisting lineages. We
suggest that outcompetition of big clades by very competitive
and productive lineages explains both the phylogenetic diversity
patterns of bacterial communities and the relationship between
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diversity and ecosystem functioning. Capturing the ecological
and evolutionary idiosyncrasies of the soil bacterial communi-
ties is crucial to understand the relationship between diversity
and ecosystem functioning. The improvement in our prediction
ability of the ecosystem functions performed by soil bacteria is
of paramount importance given the relevance of these processes
(i.e. biogeochemical cycling of nutrients, decomposition of or-
ganic matter, etc.) at the planetary level.
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