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Abstract 
Aims  Plant-soil interactions play a pivotal role in 
governing ecosystem dynamics. Plants directly inter-
act with rhizosphere microorganisms, providing them 
with labile carbon in exchange for mineral nutrients 
that are the product of decomposition. Such processes 
are modulated by ecological interactions between 
plant species in ways that are not fully understood. 
We assessed whether rhizosphere respiration rates, as 
a proxy for decomposition, are influenced by i) het-
erospecific versus conspecific plant interactions, and 
whether these effects are positive or negative, and ii) 
how these effects are linked to the identity and the 
below- and aboveground functional traits of the inter-
acting plant species.

Methods  We conducted a greenhouse experiment 
with 300 pairwise hetero- and conspecific combinations 
of ten Mediterranean herbs and shrubs species, cover-
ing a range of functional distances calculated based on 
33 traits. In addition, we quantified heterotrophic respi-
ration in the rhizosphere as a proxy of decomposition.
Results  Plant neighbour identity was the main factor 
explaining changes on respiration rates. Respiration 
increased along with the functional distance between 
heterospecific pairs of interacting plants when consid-
ering aboveground or nutritional traits. Morphologi-
cal and belowground traits were not significant pre-
dictors of changes on respiration rates.
Conclusions  Interspecific plant-plant interactions 
lead to faster respiration rates in the rhizosphere as 
functional distance between neighbours increases. This 
study provides experimental support that functional 
trait dissimilarities between heterospecific neighbour-
ing plants promote the rates of organic matter decom-
position, showing cascading effects of aboveground 
interactions on belowground ecosystem processes.

Keywords  Organic matter decomposition · 
Ecosystem function · Plant-plant interaction · Plant-
soil interaction · Plant traits · Soil microorganisms

Introduction

The interaction between plants and soil microorganisms 
plays a crucial role in the structure and functioning of 
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natural communities (Wurst & Ohgushi 2015; De Deyn 
2017), regulating essential ecosystem processes such 
as organic matter decomposition and biogeochemi-
cal cycling (Taylor et al. 2009). Plants release organic 
compounds into the rhizosphere through exudation and 
rhizodeposition, where they are decomposed by hetero-
trophic microorganisms mainly through aerobic respira-
tion, partly incorporating them into their biomass and 
partly releasing carbon into the atmosphere in the form 
of carbon dioxide (Nguyen 2003; Canarini et al. 2019). 
In turn, the presence of microorganisms in the rhizhos-
pere stimulates root exudation (Přikryl & Vančura 
1980). Plants benefit from these processes because 
microorganisms secrete hydrolytic enzymes into the 
soil solution, the end-products of which (e.g. phospho-
rus, nitrate) are indispensable nutrients for plant growth 
and reproduction (Lambers et al. 2009).

Plant communities are main determinants of the rates 
of soil heterotrophic respiration, which vary along with 
community composition (Phoenix et al. 2008), vegeta-
tion type (e.g. coniferous vs. broadleaf) (Raich & Tufek-
cioglu 2000) and litter quantity and quality (Buchmann 
2000; Schaefer et al. 2009; Joly et al. 2016). In addition, 
plant-soil interactions are mediated by root-derived car-
bon and nutrients, such as root exudates, as well as fine 
root biomass turnover or root biomass loss derived from 
mortality (Ma & Chen 2018; Canarini et al. 2019).

The outcome of plant-soil interactions may be 
altered by the presence of other plants, the identity 
of neighbours being particularly relevant in micro-
bial-mediated soil functions (Eisenhauer et al. 2010). 
Turner and Schweitzer (2023) observed that neigh-
bouring plants influenced the focal plant they grew 
alongside, the effects varying depending on the neigh-
bour’s identity. This partly stems from the ability of 
a plant to modify the trait values of its neighbour, 
which is related to the functional differences between 
interacting species (Semchenko et  al. 2013; Jimeno-
Alda et  al. 2025). Such functional differences – or 
functional distances (FD) – have been shown to have 
a reflection in belowground systems (Valverde-Bar-
rantes et  al. 2013), ultimately explaining microbial-
mediated soil ecosystem functions (Gould et al. 2016).

The effect of plant-plant interactions on the func-
tionality of soil microbial communities can be theo-
retically explained by two ecological mechanisms that 
underlie species coexistence (Goberna et  al. 2016). 
The first scenario corresponds to the trait dissimilar-
ity mechanism, whereby larger functional distances 

between plants enhance soil microbial processes 
through niche complementarity (Fig. 1, left, referred 
to hereafter as the "trait dissimilarity mechanism"). 
In support of this scenario, basal respiration has been 
shown to be promoted in tree mixtures compared 
with monocultures, several root traits such as root 
diameter, specific root length or branching intensity 
being significant predictors of soil microbial activ-
ity and biomass (Khlifa et al. 2017). Additionally, an 
experiment with tree mixtures showed that microbial 
biomass was promoted under higher levels of plant 
functional diversity based on aboveground traits such 
as the specific leaf area and leaf phosphorus (P) and 
nitrogen (N) contents (Chen et  al. 2020). A meso-
cosm experiment helped delving into the mechanisms 
that might partly underlie these patterns, by showing 
that more diverse artificial cocktails of root exudates 
significantly enhance microbial biomass (Steinauer 
et al. 2016).

Conversely, the second mechanism is based on 
relative fitness differences, where a group of plants 
with traits that confer superior competitive ability 
outcompetes species lacking those traits (Carmona 
et al. 2019) (Fig. 1, right; hereafter referred to as the 
’trait hierarchy mechanism’). Plants with competi-
tive traits—such as rapid growth, efficient nutrient 
uptake, or high photosynthetic rates—often produce 
more biomass, leading to increased deposition of 
leaf litter, root turnover or exudation into the soil that 
ultimately serve as organic sources for soil microor-
ganisms (Guyonnet et al. 2018; Cardenas et al. 2021; 
Wan et al. 2022).

Our study aims to investigate how interspecific 
plant interactions across a wide range of functional 
distances affect respiration rates of soil microbiota. 
We conducted a greenhouse experiment where respi-
ration rates were measured in the rhizosphere of 10 
focal species in 300 pairwise combinations. We char-
acterized functional distances between neighbours 
by considering a broad spectrum of traits, including 
both above- and belowground morphological and 
nutritional traits. Finally, we assessed whether rhizos-
phere respiration rates, as a proxy for decomposition, 
are influenced by i) heterospecific versus conspecific 
plant interactions, and whether these effects are posi-
tive or negative, and ii) how these effects are linked 
to the identity and the below- and aboveground func-
tional traits of the interacting plant species. We antici-
pate that the identity of the species, which reflects 
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their functional traits (including those not measured 
by us), will primarily explain variations in rhizos-
phere respiration rates. Previous studies suggest that 
the impact of plant interactions on the soil micro-
biome is mediated primarily by the identity of the 
interacting plants, rather than by other factors such as 
plant species richness (Eisenhauer et al. 2010). Addi-
tionally, functional differences between interacting 
plants might also influence soil respiration (Valverde-
Barrantes et  al. 2013) either positively or negatively 
based on the prevalence of mechanisms of trait dis-
similarities or trait hierarchies.

This study provides experimental evidence that 
heterospecific plant interactions influence rhizosphere 
respiration rates at the individual level. We measured 
functional differences of the individuals with a com-
prehensive set of traits, offering a more detailed phe-
notypic characterization, that are not usually observed 

in previous experiments (e.g. Zuo et  al. 2016; Chen 
et  al. 2020). Moreover, functional changes are 
assessed at the individual trait level, accounting for 
intraspecific variation driven by specific plant-plant 
interactions and their impact on microbiota rather 
than the usual species level approach (e.g. Chen & 
Stark 2000; Turner and Schweitzer 2023).

Material & methods

Plant interaction experiment

To study the impact of plant-plant interactions at 
varying functional distances (FD) on microbial het-
erotrophic respiration, we conducted a greenhouse 
experiment where pairs of individuals from ten spe-
cies were cultivated on an agricultural soil alongside 

Fig. 1   Schematic representation of the two possible mecha-
nisms (Trait Dissimilarity and Trait hierarchy) explaining how 
trait-mediated plant-plant interactions can affect plant-soil 
interactions and microbial ecosystem functions such as soil 
basal respiration. (BR). Functional Distance between plants 
(FD) is a multi-trait characterization of the functional differ-
ences between the interacting individuals that encompass a 
broad spectrum of above and belowground morphological and 

nutrient traits. High values of FD are indicative of functionally 
dissimilar individuals while low FD values indicate function-
ally similar individuals. Respiration rates are proportional to 
the size of the circle containing the CO2. Under the trait dis-
similarity scenario, individuals growing up with dissimilar 
neighbours (high FD) tend to have larger BR rates. In contrast, 
under the trait hierarchy mechanisms scenario, BR rates are 
larger when functionally similar plants (low FD) grow together
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either heterospecific or conspecific neighbours in 
various combinations (Fig. S1). After 6 months from 
February 2021, the experiment finished, and we 
measured 33 plant traits at the individual level to cal-
culate the FD between every pair of plants growing 
together. In our previous study (Jimeno-Alda et  al. 
2025) we analysed the effect of functional distance 
between plants on plant performance. Our results sug-
gest that trait differences between pairs of interacting 
plants are reflected in trait dissimilarity mechanisms, 
while relative fitness differences are represented by 
trait hierarchy mechanisms and both mechanisms can 
operate simultaneously during a plant heterospecific 
interaction, depending on the specific trait measured. 
For example, for biomass-related traits, focal plants 
growing with a functionally similar neighbour (low 
FD values) presented higher trait values, thus better 
performance. However, root weight trait values were 
enhanced with the presence of a functionally differ-
ent neighbour (high FD values) in comparison with 
the same focal species coexisting with a functionally 
similar neighbour.

We also quantified the respiration rates from the 
rhizosphere soil of all individuals. In order to discern the 
mechanisms (i.e. trait dissimilarities vs. trait hierarchies) 
explaining the outcomes of interspecific plant interac-
tions on belowground microbial processes, we evaluated 
the effect of FD on a standardized metrics of basal res-
piration (BR), that is, the relative change (RC) of BR in 
heterospecific compared to conspecific interactions.

Study site

We collected seeds of Mediterranean herbs and shrubs 
from two distinct regions in Spain, Sierra de Guadar-
rama and Sierra Ministra, respectively characterized by 
granite and limestone lithologies and a cold semi-arid 
steppe climate (Bsk, Köppen classification). A total of 
ten species from diverse evolutionary lineages were 
selected to encompass a broad spectrum of functional 
distances. Species included Trifolium angustifolium 
(Fabaceae), Vicia villosa (Fabaceae), Bromus tectorum 
(Poaceae), Hordeum murinum (Poaceae), Andryala 
integrifolia (Asteraceae), Helichrysum stoechas (Aster-
aceae), Thymus mastichina (Lamiaceae), Micropus 
erectus (Asteraceae), Hirschfeldia incana (Brassi-
caceae) and Plantago coronopus (Plantaginaceae).

The soil used as the substrate for seeding these spe-
cies was collected in February 2021 at La Canaleja 

Agricultural Research Field Station (INIA, CSIC) in 
Alcalá de Henares, central Spain (40.51, −3.31), a 
semi-arid area with low and irregular rainfall averag-
ing 353 mm per year. Soils are sandy-loam Calcic Hap-
loxeralfs, have low organic carbon content (7.5  g  kg⁻1 
in the topsoil), low salinity (0.123 dS m⁻1), and neutral 
pH (7.9) (Martín-Lammerding et  al. 2015). We sam-
pled soils from a depth of 5–20 cm to minimize the seed 
bank, sieved it (< 5 mm) and heated it at 120 °C for one 
hour to reduce the microbial load. With this procedure, 
we aimed to standardize the initial conditions across soil 
samples ensuring that any differences in soil respiration 
could be attributed to plant species interactions and not 
to variations in microbial activity from the original soil 
communities. Soils were subsequently mixed with silica 
sand in a 9:1 volume ratio, which we used to fill 5.7-L 
pots (dimensions 12 × 25 × 18 cm) for plant cultivation.

Experimental design

To examine plant interactions, 300 pots were seeded 
in a greenhouse with two individuals each to include 
all possible pairwise combinations of the ten species 
in a fully randomized design. This design resulted 
in 45 heterospecific pairs and 10 conspecific pairs, 
each replicated six and three times, respectively, 
to capture the variability in response to neighbour-
ing plants. In total, 600 plants were grown, with 540 
individuals in heterospecific pairings across 270 pots 
and 60 individuals in conspecific pairings across 30 
pots. Due to plant mortality, 50 pots (100 individu-
als) were excluded from subsequent analyses (see 
Table S1 and S2 for further information). We selected 
2–5 seeds per species sown at 1 cm depth to ensure 
the germination of at least one individual per species 
and pot. Seeds were seeded at an equal distance from 
each other and from the edges of the pots (approx. 
5–6 cm). When more than one individual per species 
emerged, the surplus seedlings were removed, retain-
ing only one individual. The experiment started with 
the first watering on February 10th, 2021, with pulses 
of 60  s, five times a day (1.83 ± 0.24 L/m2 every 
5 min). No fertilization was applied.

Plant trait measurement and rhizosphere soil 
sampling

Plants were harvested and rhizosphere soil sampled 
between June 22th and July 30th 2021 as individuals 
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reached senescence, thus completing their life cycle. 
Immediately after harvesting a plant, we measured 
aboveground traits, separated the roots from the 
bulk soil to measure belowground traits, and gently 
shook the roots to collect the soil adhered to them, 
ensuring no root fragments remained in the sample. 
Rhizosphere soil samples were immediately frozen at 
−20 °C until the respiration assay was performed.

Plant morphological, physiological, and reproduc-
tive traits were measured on 500 mature individuals 
(Table S3 and Table S4). After harvesting and sam-
pling, for 234 individuals with sufficient biomass, 
macro- and micronutrient contents in leaves and roots 
were also analysed. Leaf and root samples were oven-
dried at 60 °C, ground, and analysed for carbon (C) 
and nitrogen (N) using a LECO TruSpec CN elemen-
tal analyser (LECO, USA). Macro- and micronutri-
ent concentrations were determined after digestion in 
HNO₃ and H₂O₂ with an Ultraclave microwave (Mile-
stone SRL, Milan, Italy) and quantified by ICP-OES 
(THERMO ICAP 6500 DUO, Thermo Fisher Scien-
tific Inc., USA) (Table S3 and Table S4).

Microbial basal respiration in rhizosphere soils

Out of a total of 500 rhizosphere samples collected, 
we selected those corresponding to 234 individu-
als for which we had leaf and root nutrient data and 
respiration measurements (see Table  S5 for further 
information).

Prior to setting up the incubation assay to meas-
ure respiration rates, we quantified soil gravimetric 
humidity at 105  °C with the aim to standardize the 
soil water content across samples. We weighed 2  g 
of rhizosphere soil into 10  ml air-tight containers 
with silicone caps, and added distilled water to each 
sample as needed up to a common value of 19% soil 
gravimetric humidity for all samples (i.e. to force all 
samples match the humidity value of the sample with 
the highest water content). We incubated the sam-
ples in the dark at 28  °C for 7  days. At the end of 
the incubation, CO2-C accumulated in the headspace 
was extracted by using a syringe and injecting it into 
an infrared NDIR CO2 sensor 5700 Headspace Car-
bon Dioxide Analyser (Illinois instruments, USA). 
Basal respiration was calculated as the amount of car-
bon mineralized daily per unit mass of dry (105 ºC) 
weight soil ( mgC − CO2kg

−1d−1).

Statistical analysis

To assess whether soil basal respiration (BR) rates in the 
rhizosphere of a focal plant species are influenced by the 
identity of (and functional distance between) neighbour-
ing plants, we calculated the Relative Change (RC) of BR. 
This metrics captures how BR rates shift when influenced 
by a heterospecific versus a conspecific neighbour (Eq. 1).

where RCab refers to the Relative Change of BR rates 
provoked by the individual of species a when interact-
ing with its neighbour of species b; BRab is the BR of 
the individual of species a growing with the neighbour 
individual of species b, BRaa is the mean BR of the 
conspecific combinations of species a. We used BRaa 
to compare effects derived from a conspecific combi-
nation with the effects derived from a heterospecific 
combination at equivalent densities (pairwise combina-
tions). RC was log-transformed to achieve the normal-
ity assumptions in the subsequent statistical models.

Although BR measurements were taken for 234 
individuals, only 110 pairs have BR measurements for 
both individuals that constitute the pair (see Table S1, 
bottom, for the combinations).

For testing the interspecific differences in RC val-
ues we applied a one-way analysis of variance using 
aov function of the package stats R v 4.3.2.  In these 
models, the dependent variable was RC, and the inde-
pendent variable was the species to which the focal 
individual belonged. We subsequently tested whether 
RC values for each focal species significantly depart 
from zero using Student’s t-test analyses with the t.test 
function in the R package stats. Despite neighbour 
identity being a key factor affecting respiration rate 
(RC) values, we performed this test as a first step with 
this analysis to check for the existence of interspecific 
differences in RC overall. Then, we added layers of 
complexity by examining the potential effects of the 
focal and neighbour species and, finally, the effect of 
the functional diversity (FD) between them.

The functional distance between pairs of individu-
als growing together were quantified using the gowdis 
function within the FD package for R (Laliberté et al. 
2014), which allows considering both quantitative 
and categorical traits. Gowdis employs the Gower 
similarity coefficient, described by Podani (1999), and 

(1)RCab =
BRab − BRaa

BRaa
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afterwards transforms it into a dissimilarity coefficient. 
As FD varies with the traits included in its calculation 
(Sheng et  al. 2022), we used different sets which are 
informative from a morpho-physiological perspective 
(morphological or nutrient traits), multi-compartment 
perspective (aboveground or belowground traits), or 
multi-functional perspective (integrating all the traits 
mentioned above together with reproductive traits) 
(See Class 1 and Class 2 columns in Table S3).

To test how trait differences described as FD influ-
ence BR, we employed linear mixed-effects regres-
sion (LMER) models. We fitted five separate LMERs, 
each incorporating different FDs calculated with dif-
ferent subsets of traits to specifically assess the influ-
ence of trait types on RC values of basal respiration. 
Analyses were run with the function lmer from the 
lmerTest package for R (Kuznetsova et al. 2017). Trait 
values were log-transformed before calculating FD, 
which is included in the LMER models. (Eq. 2).

where RC(BRfocal) as response factor, is the Relative 
Change of the BR rates measured in the focal indi-
vidual, and FD as explanatory factor is the functional 
distance between focal and neighbour individuals. The 
species identities of the focal and neighbour individu-
als were included as random effects in all models. We 
included species identity as a random effect to account 
for variation between focal and neighbor species with-
out emphasizing them in the fixed effect analysis. This 
approach enables generalization of the functional diver-
sity (FD) effect across species, rather than focusing on 
individual species. Treating species identity as random 
allows control of species-specific variation, directing 
attention to the overall impact of functional distance.

Finally, we tested the relationship between coarse 
roots, fine roots and root to shoot ratio with rhizos-
phere basal respiration using the aov function in the 
lmer package for R.

Results

Effects of focal plant species identity on microbial 
respiration

BR ranged from 1.07 to 10.14 mgC − CO2kg
−1d−1 

across the rhizosphere soils of plant individuals, 

(2)RC
(
BRfocal

)
∼ FD + (1|focal) + 1(1|neigbour)
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while RC values for the focal species ranged from 
−0.81 to 1.36. Overall, there were marginally sig-
nificant differences in the RC values of the ten focal 
species (F9,154 = 1.89, p = 0.058). Most species exhib-
ited lower basal respiration rates in the presence of a 
heterospecific compared to a conspecific neighbour, 
although only for three species (Bromus tectorum, 
Helichrysum stoechas, and Vicia villosa) differences 
were significant (i.e. RC values departed significantly 
from zero; Fig. 2; Table 1).

Effects of focal and neighbour plant species identity 
on microbial respiration

When calculating the RC values for each focal-neigh-
bour combination, we found that the BR rates of focal 
species increased in 15 heterospecific combinations 
compared to conspecific ones, while they decreased 
in 37 heterospecific combinations out of a total 45 
heterospecific combinations (Table  2). Interestingly, 
most species showed both positive and negative 
responses in RC values depending on the identity of 
its neighbour (Table 2).

Effects of functional distance between pairs of plant 
individuals (FD) on microbial respiration

The FD between the focal plant and its neighbour 
calculated with all 33 traits, did not explain the RC 
in BR (Table 3, Trait Class All). However, when FD 
was calculated with either aboveground or nutri-
ent traits (i.e. macro- and micronutrient contents 
in leaves and roots), a significant and positive rela-
tionship emerged between FD and RC (Table  2) 
indicating that growing with a heterospecific indi-
vidual differing in these traits promotes BR in the 
rhizosphere of focal species. However, growing 
with similar individuals in terms of morphological 
and belowground traits did not alter BR (Table  3). 
In all models, the identity of focal and neighbour 
plant species were significant factors explaining the 
variance observed in RC values, indicating that: 1. 
individuals of the same focal species tend to share 
similar RC values, and 2. individuals of the same 
neighbour species tend to exert similar effects on 
focal species (Table  3, Random effect Focal and 
Random effect neighbour, respectively).

Fig. 2   Mean val-
ues ± standard error of the 
relative change of BR rates 
experienced by the ten focal 
species interacting with 
a heterospecific neigh-
bour (n = 234). RC values 
are averaged across all 
heterospecific pairs for each 
species. Negative RC values 
represent a decrease on BR 
rates and positive RC values 
an increase of BR rates due 
to the neighbour effect. 
Numbers above bars rep-
resent sample size for each 
species (see Table S5 for 
further information about 
the individuals measured). 
Asterisks (*) indicate that 
RC effects received by focal 
species significantly differ 
from 0 (p < 0.05)
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These identity effects were the largest con-
tributors to the variance explained in the models 
(Table 2, Marginal and Conditional R2 values). For 
extended information about results obtained from 
LMER models see Table S6, Table S7, Table S8.

The relationship between the biomass of coarse 
versus fine roots and BR showed opposing (yet 
non-significant) trends (Fig.  S2). Coarse roots 
showed a negative non-significant relationship with 
BR (F1,71 = 1.37, p = 0.25; r = −0.13, p = 0.25), 
while that of fine roots was positive and margin-
ally significant (F1,71 = 3.06, p = 0.085; r = 0.11, 
p = 0.16) (Fig. S2). Additionally, root to shoot ratio 
showed a positive non-significant relationship with 
BR (F1,47 = 4.38, p = 0.25; r = −0.13, p = 0.071) 
(Fig. S2).

Discussion

Our experiment examined the effects of interspecific 
plant-plant interactions on the rates of heterotrophic 
respiration of microbial communities thriving in the 
rhizosphere. We found that plant species identity of 
both focal and neighbour individuals were the main 
factors explaining respiration rates. In addition, the 
functional difference between interacting individu-
als in terms of aboveground traits and nutritional 
traits enhanced respiration rates, adding experimen-
tal support to the scenario according to which trait 
dissimilarities between neighbouring plant species 
promote microbial-driven ecosystem processes as 
discussed below.

Respiration rates changed depending on the focal 
species with which rhizosphere microorganisms 

interacted, supporting species-specific effects of 
plants on microbial respiration (Khlifa et al. 2017). 
Our results from different focal-neighbour combi-
nations also showed species-specific dependencies, 
as the magnitude and sign of respiration rates were 
strongly dependent on the neighbour identity. For 
example, during the experiment Plantago corono-
pus showed a decrease in RC(BR) rates (−0.53, 
Table  2, column 6), while Trifolium angustifolium 
exhibited the greatest increase (0.78, Table  2 col-
umn 9) because of the presence of a heterospe-
cific neighbour. Moreover, Trifolium angustifo-
lium presented the most positive neighbour effect 
(0.66, Table  2), whereas Vicia villosa exerted the 
most negative neighbour effect on respiration rates 
(−0.66, Table  2). However, these overall values 
do not necessarily indicate which species had the 
greatest influence on others or which was most 
affected by the presence of a neighbour, as this 
effect varies between species pairs. The mechanism 
behind this specificity involves neighbour effects 
altering the traits of the focal plant, which indi-
rectly influences its interactions with other taxa, 
such as soil microorganisms (Underwood et  al. 
2014). Altogether, these results emphasize the cru-
cial role of plant interactions in altering plant traits, 
showing that these effects extend beyond the plants 
to the surrounding rhizosphere, ultimately influenc-
ing soil microorganisms and microbially-mediated 
ecosystem functions (Kardol et  al. 2013; Wurst & 
Ohgushi 2015). It becomes evident that compre-
hending the mechanisms underlying these species-
specific dependencies requires a thorough examina-
tion of the traits inherent to each species involved 
in the interaction.

Table 3   Linear mixed-effects regression (LMER) models testing the effects of Functional Distance (FD) between pairs of plant indi-
viduals on the rate of change (RC) of basal respiration (BR)

Each row represents a model in which FD has been calculated with all traits, aboveground, belowground, nutrient or morphological 
traits, as classified in Table S3. The identity of focal and neighbour species was included in the model as random factor

Trait class Estimate ± S.E. D.F t-Student P-value Random 
effect: Focal
P—value

Random effect: 
Neighbour
P—value

Marginal R2 
/ Conditional 
R2

All 0.61 ± 0.47 156.32 1.33 0.19  < 0.001  < 0.001 0.009 / 0.269
Aboveground 0.92 ± 0.39 158.03 2.34 0.02  < 0.001  < 0.001 0.027 / 0.294
Belowground −0.35 ± 0.42 126.86 −0.82 0.41 0.018 0.005 0.005 / 0.253
Nutrient 2.55 ± 1.10 23.12 2.32 0.03 0.03 0.03 0.099 / 0.844
Morphological 0.27 ± 0.43 160.15 0.62 0.54 0.01  < 0.001 0.002 / 0.255
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Our results did not reveal a significant effect of 
plant functional distance on respiration rates when all 
traits were considered together. This may be due to 
the fact that the combination of different trait types 
(e.g., morphological, nutritional, above- and below-
ground traits) can mask the effect of individual traits, 
since each trait may play a distinct role in plant-soil 
microbial interactions (Chen et  al. 2020). However, 
when the functional distance between interacting 
individuals was calculated based on the plant con-
tents in total carbon, macro- and micronutrients in 
their leaves and roots we detected a significant effect 
of functional distance on respiration rates. This find-
ing is consistent with several previous studies. Joly 
et al. (2016) demonstrated that variations in nutrient 
concentrations in litter leachates can determine soil 
microbial respiration, as leachates of broadleaf lit-
ter containing higher amounts of carbon and nitro-
gen than those of conifers produced longer-lasting 
effects on microbial respiration. Leaf N content is 
highly related to leaf CO2 assimilation rates (Sinclair 
& Hory 1989) and net photosynthesis (Reich et  al. 
1998). A relevant proportion of C fixed during pho-
tosynthesis in aboveground tissues is exported below-
ground, and part of root C ends up entering the soil 
solution via exudation and rhizodeposition (Farrar 
& Jones 2000; Nguyen 2003). Also, the contents of 
fine root N are directly associated with root exudation 
(Sun et al. 2020), and so root N correlates with soil 
fungal and bacterial biomass as high levels of nitro-
gen inputs promote decomposition rates and nutrient 
transference from plants to soil microorganisms (De 
Long et  al. 2019). Such relationships are, however, 
not always obvious depending on the ecosystem con-
sidered, as Ferlian et al. (2017) showed when analys-
ing the effect of leaf and fine root N and C contents 
and ratios of over 30 temperate tree species on soil 
microbial biomass and respiration. Here, we argue 
that the positive impact of functional dissimilarity 
in nutrient contents between interacting plants on 
rhizosphere respiration rates suggests the relevance of 
resource complementarity in determining microbial 
responses. The same mechanism can be invoked to 
explain the positive impact of functional dissimilar-
ity in experimental exudate cocktails (Steinauer et al. 
2016) or leachate nutrient traits (Joly et al. 2016) on 
soil microbial responses.

The functional distance in aboveground traits 
between interacting species exhibited a subtle yet 

significant influence on basal respiration in the rhizo-
sphere. These patterns were primarily driven by leaf 
and shoot nutrient contents, and secondarily by leaf 
and shoot morphological traits (Table S6, Table S7). 
In our case, leaves and shoots exhibited higher con-
tents of C, N and P, compared to the roots of the same 
individual (Table S8). Furthermore, the weight of leaf 
and shoot tissues was significantly larger than that of 
root tissues (Table  S8). Additionally, root to shoot 
ratio presented a slightly negative and marginally sig-
nificant influence of basal respiration (Figure S2, c). 
Leaf and shoot traits might have influenced rhizos-
phere respiration rates through the mechanisms dis-
cussed above. In addition, plants may resorb carbon 
and nutrients from senescent aboveground tissues to 
new sink tissues and may be redistributed among liv-
ing tissues (Brant & Chen 2015) and finally released 
into the soil. This would result in an increased con-
tribution of nutrients from plants to the soil, thereby 
enhancing rhizosphere respiration rates.

Contrary to our expectations, we did not find a 
significant influence of belowground traits on soil 
respiration rates. These traits are expected to exert a 
strong influence on soil functions due to its close con-
tact with the rhizosphere (Wurst & Ohgushi 2015). 
Variations in root architecture, size and exudation rate 
can be linked to the plant ecological strategy (Reich 
et  al. 2008; Guyonnet et  al. 2018). While fine roots 
are associated with an acquisitive strategy that relies 
on fast growth and reproductive activity, coarse roots 
associate with a conservative strategy that is based on 
the production of accumulative and structural struc-
tures (Sun et  al. 2020; Navarro-Cano et  al. 2024). 
Root exudates, which play a key role in stimulating 
microbial activity are secreted primarily from fine 
root tips (Guyonnet et al. 2018; Canarini et al. 2019), 
thus differential root traits may have various impacts 
on ecological processes. This was partly reflected in 
our results, as we obtained a marginal positive influ-
ence of the biomass of fine roots on rhizhospheric 
respiration, but a marginally negative (yet non-signif-
icant) influence of coarse roots and root to shoot ratio 
(Fig. S2). These opposing trends possibly masked the 
overall influence of belowground traits, although the 
correlations found were weak.

Lastly, the predictive strength for most of our 
models is primarily driven by the variable plant iden-
tity, with a smaller contribution from the variable 
functional distance between the interacting plants. 
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Despite its subtle influence, it remains significant, 
as plant functional diversity is a key factor mediat-
ing plant–soil microorganism feedback, which in turn 
influence ecosystem processes (e.g., Sardans 2013; 
Kardol et  al. 2013; Lange et  al. 2014). This leaves 
room to include other relevant factors influencing 
plant-soil interactions. For instance, harsh environ-
mental conditions can intensify positive relationships, 
thereby clarifying trends and effects (see Navarro-
Cano et  al. 2016). Thus, changing the experimental 
conditions towards more stressful conditions could 
shed light on other plant-microbial relationships. Fur-
thermore, incorporating measurements of fine root 
turnover, quantifying the utilization of exudates as 
biomass sources by soil microorganisms, and deter-
mining the amount of carbon consumed and incorpo-
rated into microbial biomass would help further eluci-
date the mechanisms underlying our results.

Conclusions

Our extensive phenotyping of individual plants inter-
acting with heterospecific neighbours highlights how 
functional differences driven by both intraspecific 
and interspecific trait variability, promote microbial-
driven processes in the rhizosphere. This contributes 
to the growing body of evidence linking plant traits 
with soil microbiota (e.g., Buchmann et  al. 2000; 
Bardgett et  al. 2014; De Deyn 2017; De Long et  al. 
2019) and giving support to the idea that ecological 
interactions among primary producers regulate eco-
system processes controlled by decomposers.
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