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Driven progressive evolution 
of genome sequence complexity 
in Cyanobacteria
Andrés Moya1,2,3*, José L. Oliver4,5,11, Miguel Verdú6,11, Luis Delaye7,11, Vicente Arnau1, 
Pedro Bernaola‑Galván8, Rebeca de la Fuente9, Wladimiro Díaz1, Cristina Gómez‑Martín4,5, 
Francisco M. González7, Amparo Latorre1,2,3, Ricardo Lebrón4,5 & Ramón Román‑Roldán10

Progressive evolution, or the tendency towards increasing complexity, is a controversial issue 
in biology, which resolution entails a proper measurement of complexity. Genomes are the best 
entities to address this challenge, as they encode the historical information of a species’ biotic 
and environmental interactions. As a case study, we have measured genome sequence complexity 
in the ancient phylum Cyanobacteria. To arrive at an appropriate measure of genome sequence 
complexity, we have chosen metrics that do not decipher biological functionality but that show 
strong phylogenetic signal. Using a ridge regression of those metrics against root‑to‑tip distance, 
we detected positive trends towards higher complexity in three of them. Lastly, we applied three 
standard tests to detect if progressive evolution is passive or driven—the minimum, ancestor–
descendant, and sub‑clade tests. These results provide evidence for driven progressive evolution at 
the genome‑level in the phylum Cyanobacteria.

Treatises on biological evolution reflect a conflict between the relative roles played by contingency and  necessity1. 
An important tradition in evolutionary biology, based on a large amount of empirical evidence, considers that 
contingency marks the dynamics of evolution in a way that makes it  unpredictable1–3. The trend towards the 
appearance of increasing complexity falls within the frame of contingent evolution insofar as it is inevitable given 
that, passively, we can expect that sooner or later more complex entities will evolve from the original, simpler 
entities. This is what  Gould2 referred to as ‘the passive tendency towards complexity marked by the minimum 
initial complexity wall’.

A central task for those studying complexity is to provide an accurate measure to ascertain if there is a trend 
of increasing  complexity3,4. In fact, a necessary condition for progressive and open-ended evolution is to prove 
the existence of a metric that increases with the evolutionary age of the corresponding  organisms4,5. We sug-
gest that we can find such metrics in the  genomes6. Genomes probably provide the best record of the biological 
history of a species. Not only do they enable us to reconstruct their phylogenetic relationships but they also 
contain information gained from their continuous biotic and environmental interactions over  time6–8. Standard 
genome parameters such as genome size, number of genes, and gene components (i.e., introns, exons) are insuf-
ficient indicators of genome complexity because they partially capture the historical information encoded in a 
 genome9,10. We suggest here that metrics unassociated with biological functions may improve our measurements 
of genome sequence complexity. However, some metrics that have been previously applied to genomes are too 
broad, and not all of them accurately capture all the necessary information gleaned from a genome during its 
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evolutionary  history6,11. For example, algorithmic  complexity12,13 is inconveniently maximized for randomness 
and the effective complexity of Gell-Mann and  Lloyd14 is recommended for collections or ensembles of sequences, 
but in several cases such as that seen in genome sequences, it is not clear how to define an appropriate ensemble. 
Likewise, those metrics based on mutual information or statistical  dependence15,16 also quantify the complexity 
of sequence ensembles rather than the complexity of a single sequence.

Here we consider six metrics that are calculated on individual genomes. The first four metrics are based on the 
Sequence Compositional Complexity (SCC) derived from a four-symbol DNA sequence or the binary sequences 
resulting from grouping the four nucleotides into S(C,G) versus W(A,T) or R(A,G) versus Y (T,C), or K(A,C) 
versus M(T,G), thus obtaining SCCSW, SCCRY and SCCKM metrics,  respectively17. These four metrics increase with 
the number of parts (i.e. compositional domains) as well as the length and compositional differences among them 
found in a genome sequence by a segmentation algorithm. These metrics parallel the concept of ‘pure complexity’ 
of  McShea18 and McShea and  Brandon3, where complexity is more closely related to the number of part types of 
an individual than with the number of functions.

The fifth metric we used is the Biobit (BB), a metric based on the difference between the maximum entropy 
for a k-mer of a random genome of the same length as the genome under consideration and the entropy of that 
genome for such a k-mer19. Lastly, we used the Genomic Signature (GS), also a k-mer-based metric, which is the 
value corresponding to the k-mer that maximizes the difference between observed and expected equi-frequent 
classes of mers. GS is based on the relative abundances of short  oligonucleotides20 and chaos game representa-
tion applied to  genomes21,22.

We tested the above-mentioned metrics by analyzing the genome evolution of an ancient and diverse group 
of organisms: the phylum Cyanobacteria. These microorganisms played a fundamental role in the evolution of 
life on Earth. The fossil record shows that they were here 2.0 Billion years ago (Bya) and molecular clock analyses 
indicate that the phylum originated over 2.5  Bya23,24. By releasing oxygen through photosynthesis, Cyanobacteria 
caused the Great Oxidation Event about 2.3 Bya and changed the history of life on  Earth25. The oxidation of 
the environment allowed the evolution of complex multicellular life  forms26, leading to the origin of eukaryotic 
crown groups including plants and  animals27. As it is well known, Cyanobacteria also were the progenitor of 
plastids through symbiosis with ancient  eukaryotes28.

Cyanobacteria are morphologically diverse. The group was traditionally classified into five subsections accord-
ing to several biological  criteria29,30. Unicellular cyanobacteria are classified in subsections I and II, depending on 
their mode of reproduction. Those from subsection I (Chroococcales) divide only by binary fission while those 
from subsection II (Pleurocapsales) are capable of reproducing also by multiple fission giving rise to small cells 
called baeocytes. Filamentous cyanobacteria are classified into subsections III, IV, and V. Those from subsection 
III (Oscillatoriales) are composed only by vegetative cells that reproduce by intercalary division. Cyanobacteria 
from subsections IV and V are capable of cell differentiation producing trichomes composed of vegetative cells 
and heterocysts for nitrogen fixation. In addition, some members also produce hormogonia for dispersal and 
akinetes for dormancy. Members of subsection IV (Nostocales) always divide in a plane at right angles to the 
long axis of the trichome; while those from subsection V (Stigonematales) may also divide at parallel axes rela-
tive to the long axes of the trichome.

Of the above subsections of Cyanobacteria, only Stigonematales are  monophyletic24,31. More recent classifica-
tion schemes using phylogenetic analysis from 31 conserved protein sequences divide Cyanobacteria into nine 
different  groups32. These include Gleobacterales, Synechococcales, Oscillatoriales, Chroococcales, Pleurocapsales, 
Spirulinales, Rubidibacter/Halothece, Chroococcidiopsidales, and Nostocales. Of these groups, Chroococcales, 
Oscillatoriales, and Synechococcales are not monophyletic. This classification scheme attempts to reconcile 
phylogenetic history with several aspects of morphology and cytology. Other phylogenetic analyses based on 31 
concatenated conserved proteins divide cyanobacteria into seven  groups33. These groups are named from A to G 
(groups B and C are further subdivided into B1, B2 and B3 and C1, C2 and C3) and all of them are monophyletic. 
Furthermore, taxon addition and subtraction analyses on a concatenated dataset of 137 conserved proteins and 
two rRNA sequences, allowed the identification of long-branch attraction  artifacts34. The resulting tree was used 
to classify cyanobacteria into 6 monophyletic groups, corresponding to some of the A to G lineages. Finally, 
phylogenetic analysis on a concatenated dataset of 43 proteins from 208 taxa, recovered all A–G groups and 
revealed the existence of novel monophyletic lineages located at the base of the  tree35. Clearly, the taxonomy and 
evolution of Cyanobacteria are active areas of research. The classification of Cyanobacteria is likely to change in 
the near future as more lineages are sequenced and analyzed.

In this study, we test whether there is a statistically and phylogenetically supported driven tendency towards 
increasing genome sequence complexity in the evolution of Cyanobacteria as reflected by some of their metrics 
of genomic complexity.

Results
Complexity measures throughout Cyanobacteria phylogeny. The values of the four SCCs, BB and 
GS metrics as well as three standard genome parameters (Genome size, %GC and No. of genes) (see “Methods” 
section) for 91 Cyanobacterial genomes are reported in Table S1. Figure 1 shows a maximum likelihood phy-
logeny of Cyanobacteria whose branch lengths are proportional to the number of amino acid substitutions (see 
“Methods” section). The phylogeny is in general agreement with the previous  analyses24,31,32.

Phylogenetic signal. All metrics of complexity and genome parameters showed a significant phylogenetic 
signal (Table 1), indicating that for all cases genomes of closely related cyanobacterial species tend to resemble 
more than two randomly selected genomes (Fig. 1). However, the magnitude of the phylogenetic signal differs 



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19073  | https://doi.org/10.1038/s41598-020-76014-4

www.nature.com/scientificreports/

Figure 1.  Phylogeny of Cyanobacteria with the metrics of sequence complexity and genome parameters for 
each chosen genome. The values of metrics and parameters are proportional to circle size. The colored species 
correspond to four monophyletic sub-clades that were used to test evidence of a driven trend for each sub-clade 
(see also Fig. S2).
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across metrics and parameters, with %GC and GS showing the highest values, which probably reflects different 
forces shaping the evolution of all these metrics and parameters (see “Discussion” section).

Phylogenetic correlations. To gain a better understanding of the metrics, after we corrected the phylo-
genetic signals, we evaluated how they correlate with each other and, particularly, with the genomic parameters 
(Table 2). It is worth noticing that two metrics, SCC and SCCRY correlate with other metrics and parameters (six 
correlations each one), accounting for 43% of all significant correlations.

Ridge regression of complexity metrics versus distance from the root. Using ridge regression 
of genome complexity metrics and genome parameters versus distance from the root, we have studied whether 
there is evidence of evolutionary trends, having detected interesting patterns (Fig. 2). Of the complexity met-
rics, four out of six show a statistically significant positive trend (SCC, SSCSW, SCCRY and GS), indicating that 
complexity, as determined by our proposed criteria, has increased with the distance from the root. In contrast, 
SCCKM shows no trend and BB reveals a significant negative trend. Interestingly, genome parameters show no 
evidence of any evolutionary trend.

Driven trends in Cyanobacteria. A critical question regarding trends is if they are passive or driven. To 
evaluate this, we have applied three types of tests (see “Methods” section for a detailed description): the mini-
mum (with three types of proofs), the ancestor–descendant, and the subclade (with two types of proofs) tests.

Regarding the first proof of the minimum test (i.e., skewness), we observed that the skewness of all metrics 
(except SCC and GC content) for the entire phylum exhibit significant and positive skewness (D’Agostino–Pear-
son test, n = 91; Table 3), which supports a left wall for these metrics and parameters that is compatible with 
either a passive or a driven trend. Nevertheless, it is expected that if the minimum value of a given metric or 
parameter increases with evolutionary time, then the trend will probably be driven. To test this we have taken 
as the minimum the estimated value of the most basal clade, xb, for each metric/parameter (Fig. 1). However, 
as it can be observed (Fig. 3), there are lower or higher values than the one corresponding to the basal clade 
for any metric/parameter. Then, it is necessary to study in greater depth the distribution of lower and higher 
values with respect to xb in order to have evidence of the putative existence of a driven trend. With this end, we 
carried out the second proof of the minimum test, where we measure |xd − xb|, the absolute difference between 
descendants’ clades and the most basal clade. Table 3 shows whether there is a statistical difference (Chi-square 
test) between those clades (179 in total) that are higher or lower than the basal clade, xb. As it can be observed, 
all the tests are significant with four metrics (SCC, SCCRY, SCCKM and BB) and two parameters (Genome size 
and No. of genes) showing a significant increase in the metric/parameter with respect to the corresponding 

Table 1.  Phylogenetic signals (K) of metrics of genome sequence complexity and genome parameters. The first 
six rows correspond to the metrics and the last three to genome parameters.

Metrics of genome sequence complexity and genome parameters K Probability, P

SSC 0.34 0.001

SCCRY 0.66 0.001

SCCSW 0.32 0.001

SCCKM 0.26 0.001

BB 0.15 0.001

GS 1.00 0.001

Genome size 0.46 0.001

%GC 3.96 0.001

No. of genes 0.31 0.001

Table 2.  Phylogenetic Pearson correlations (r) among metrics of genome complexity and genome parameters. 
Statistical significance was corrected by false discovery rates to control for multiple testing. ***P < 0.001; 
**0.001 < P < 0.01; *0.01 < P < 0.05; nsP > 0.05.

SCC SCCSW SCCRY SCCKM BB GS Genome Size %GC

SCCSW 0.66***

SCCRY 0.52*** 0.09ns

SCCKM 0.30** 0.09ns 0.03ns

BB 0.38*** − 0.02ns 0.53*** − 0.04ns

GS 0.34*** 0.20ns 0.41*** − 0.20ns 0.19ns

Genome Size 0.22* 0.10ns 0.31** − 0.05ns 0.32** 0.001ns

%GC − 0.06ns 0.26* − 0.38*** − 0.11ns − 0.09ns − 0.1ns − 0.11ns

No. of genes 0.12ns 0.07ns 0.26* − 0.09ns 0.26* − 0.09ns 0.86*** − 0.09ns
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Figure 2.  Phylogenetic trends of genomic complexity metrics (a) and standard genome parameters (b). The 
estimated genomic value for each tip (red circles) or node (white circles) in the phylogenetic tree is regressed 
against its evolutionary age (i.e., distance from the root). The statistical significance of the regression is tested 
against 10,000 slopes obtained under simulated Brownian evolution. The slopes and their P values are shown in 
Table S2.
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basal values. In contrast, two metrics (SCCSW and GS) and one parameter (%GC) present a significant decrease. 
Finally, employing a Student’s t-test (third proof of the minimum test), we tested if there is a statistical difference 
between the average value of the absolute difference (|xd − xb|) of a given metric or parameter higher or lower 
than xb. It can be observed (Table 3) that three metrics (SCCSW, SCCRY and SCCKM) show a statistical difference 
in favor of a higher value than xb and one metric (GS) and the three parameters (Genome size, %GC content, 
and No. of genes) present a statistical difference in favor of a lower value than xb.

Regarding the ancestor–descendant test (see “Methods” section for a detailed description) we tabulated the 
derived clades for all possible nodes and whether they present a higher, lower, or equal value of the metric/param-
eter than the ancestral clade corresponding to each node. In order to avoid bias due to proximity to the putative 
left wall,  McShea36 recommended applying the test only to those clades where both ancestor and descendent 
are higher than the average value of the metric/parameter. As it can be observed (Fisher exact test, Table 4) this 
exigent test shows that metrics SCC and GS and the three genome parameters are in favor of a driven trend. A 
good visualization of the ancestor–descendant proof on the phylogeny of the Cyanobacteria for each metric/
parameter has been obtained by estimating the values of internal nodes using a maximum likelihood function 
and interpolating the value along each edge (see “Methods” section). Figure 4 shows the mapping correspond-
ing to the SCC metric where the driven positive trend of this metric can be clearly appreciated (Fig. S1 for the 
mapping of the rest of metrics/parameters).

Finally, the last test applied is the sub-clade test, with the two associated proofs. In the first proof, we tested 
whether the trend observed at the phylum level is also observed in four selected monophyletic clades and second, 
we have also applied the skewness test to either the entire phylum (results are given in Table 3) and to the cho-
sen sub-clades. We have chosen four monophyletic clades formed by clusters 97, 132, 162, and 172 that harbor 
18, 22, 11, and 8 species, respectively (four-colors in Fig. 1 and Fig. S2). Clade 97 is formed by Synechococcus, 
Prochlorococcus, and Cyanobium; clade 132 corresponds to Nostocales (subsections IV and V); clade 162 con-
tains Cyanothece and Microcystis; and clade 172, among others, contains Geminocystis and Cyanobacterium. 
The most relevant result found was that some metrics of genome complexity show statistically significant positive 
trends (SCC, SCCRY, and GS) and some others show negative trends (SCCSW and SCCKM), whereas the genome 
parameters do not show any positive trends (Table S2; Fig. S3). Thus, we keep SCC, SCCRY and GS as the metrics 
showing positive trends at both levels of phylogenetic resolution.

Regarding the second proof for the sub-clade test, we have examined if the monophyletic sub-clade drawn 
from the right tail of the entire distribution should have a statistically significant average higher value than the 
one corresponding to the entire phylum. Regarding the skewness of the phylum (Table 3), we observe that all 
metrics (except SCC and %GC) exhibit significant and positive skewness. However, this test of skewness cannot 
be applied to the four chosen monophyletic sub-clades either because (a) the average value (median) of a given 
metric/parameter for each sub-clade was lower than the median of the phylum (16 cases out of 36) or, (b) there 
was no statistical evidence (the remaining 20 cases) of a higher median (Mood’s median test) of a given metric/
parameter for each sub-clade than the median of the entire phylum (see Table S3).

In summary, the overall results obtained in relation to the evidence found for a trend in a given metric or 
parameter, i.e., the phylogenetic signal, the number of significant correlations against the rest of metrics/param-
eters, as well as whether the trend is driven or not (Table 5) show that SCC, SCCRY and to a lower extent GS pre-
sent the highest scores, and can thus be considered metrics evidencing progressive evolution of Cyanobacteria.

Discussion
Genomes probably provide the best record of the biological history of species. Not only do they enable us to 
reconstruct their phylogenetic relationships but they also contain information gained from their continuous 
biotic and environmental interactions over  time6,8. This information is an elusive but crucial component of the 

Table 3.  Proofs of the minimum test. D’Agostino–Pearson test of skewness for the entire phylum (n = 91), 
number (n) of times that the metric/parameter of a given derived internal or terminal node (xd) is higher or 
lower than the basal node (xb) (Chi-square test), as well as the average absolute difference (|xd − xb|, Student’s 
t-test) between nodes that are higher or lower than xb. The first six rows correspond to the metrics and the last 
three to genome parameters.

Complexity measure Skewness P value

Higher than xb Lower than xb Chi-square test P 
value

Student’s t-test P 
valuen |xd − xb| n |xd − xb|

SCC 0.3470 2.78E−01 139 0.00265 40 0.00207 1.3659E−13 0.0848

SCCSW 0.9455 5.31E−04 48 0.00215 131 0.00108 5.5147E−10 5.8066E−07

SCCRY 2.1530 9.49E−12 130 0.00115 49 0.00051 1.1410E−09 0.0031

SCCKM 1.9214 6.76E−11 138 0.00079 43 0.00035 1.6496E−12 0.0005

BB 0.7018 2.31E−02 116 0.07421 63 0.07290 7.4510E−05 0.4452

GS 0.6050 4.30E−02 30 0.05647 149 0.07073 5.8695E−19 0.0460

Genome Size 0.3805 2.31E−01 112 1,117,595 67 1,959,615 0.0008 3.3185E−07

%GC 0.6496 4.53E−02 20 6.245 159 8.705 2.7724E−25 0.0053

No. of genes 0.3367 3.78E−01 105 796.8 74 1488.6 0.0205 1.1460E−07
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genome, whose study as a whole deserves deeper attention because it holds clues to answer many biological 
questions, particularly those of an evolutionary nature.

The genome has distinct layers of information encoded in DNA  sequences10,37. The most well-known are 
those involved in biological function, such as the typical genome division into coding and non-coding parts or 
the differential conservation shown by distinct codon positions due to the differential evolutionary constraints 
acting within  genes38–40. In the present study, we intend to capture or approximate the genome information held 
in these layers using certain metrics (collectively named ‘genome complexity metrics’) to determine whether 
they show phylogenetic signals and indicate some kind of evolutionary trend. To do so, we use a group of organ-
isms with a long phylogenetic history: the phylum Cyanobacteria. SCC accounts for the global compositional 
complexity of a DNA sequence encoded by the four nucleotides (A, T, C, and G) and shares similarity with 
McShea’s18 operational definition of biological complexity, or the degree to which the parts of a morphological 
structure differ from each other. SCCSW may account for the complexity due to the partition of the genome into 
GC-rich and GC-poor segments (e.g., the isochores), which are known to be associated with many functionally 
relevant properties such as gene density, gene length, retrotransposon density, or recombination  frequency41–46. 
Thus, SCCSW might capture the genome information gained throughout evolution by the selective forces act-
ing on these important functional elements. On the other hand, SCCRY accounts for the complexity due to the 

Figure 3.  Distribution of metrics and parameters according to root-to-tip distance. The interior dashed line 
corresponds to the value of the basal clade, xb. The histograms that appear above each figure correspond to the 
number of accumulated values of metrics and parameters (regardless of the age) ranging from lower (left) to 
higher (right) values than xb.
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partition of the genome into segments of different purine/pyrimidine richness. Such strand asymmetries are less 
directly related to biological function, but this alphabet has been useful to uncover long-range correlations and 
analyze the evolution of fractal structure in the  genomes47–49. Recently, a connection has been found between 
strand symmetry and the repetitive action of transposable elements during  evolution37 (see also  Koonin50 and 
his concept of ‘fuzzy meaning’ of sequences). The partition given by SCCKM has not been associated with any 
biological function. Finally, GS and BB explore the maximum deviation for a given k-mer between a real and a 
random genome. GS directly compares the observed distribution of k-mer classes of a real genome with respect 
to that corresponding to a random one. On the other hand, by calculating the entropy differences between both 
groups, BB measures the relative entropic and anti-entropic fraction of a real  genome19.

From a population genetics perspective, cyanobacteria can be considered proto-typical bacterial species 
whose populations are evolving under high effective population  sizes51, with intermediate mutation rates between 
those of RNA viruses (higher mutation rate) and lower or higher eukaryotes (lower mutation rates)52. Therefore, 
natural selection is expected to play a major role in the evolution of these organisms. Irrespective of whether 
mutations (or any source of genetic novelty) are deleterious or beneficial, their destiny will be dictated by the 
deterministic action of purifying or positive selection,  respectively53,54. This observation is highly pertinent when 
it comes to appropriately interpreting the phylogenetic signals observed in the metrics of complexity measures 
and genome parameters following the in silico evolutionary processes described by Revell et al.55. Considering, 
thus, that selection is a key force in the evolution of Cyanobacteria, most of the K-values estimated for the metrics 
may reflect the action of purifying or stabilizing selection, particularly those that are below 1 (all metrics and 
parameters, except GS and %GC). K from GS is 1, which could be interpreted either as a random drift effect or, 
more convincingly for this type of organism, as fluctuating selection for a relatively high rate of movement of 
the  optimum55. Finally, K associated with %GC is much higher than one, which can also be interpreted as the 
result of an evolutionary process with heterogeneous peak shifts.

Importantly, our study of the evolutionary trends in Cyanobacteria by means of ridge regression found clear 
differences between metrics of complexity and genome parameters. Four metrics (SCC, SCCRY, SCCSW, and GS) 
indicate changes toward higher complexity in more evolved clades (long-branch distance with respect to the 
root of the tree), while SCCKM does not show any signs of a trend and BB shows a negative trend. However, the 
genome parameters show no evidence of any trend (Fig. 2). These results are reinforced when comparatively ana-
lyzing trends between metrics and parameters at a lower phylogenetic resolution (i.e. in monophyletic subclades, 
Tables S2 and S3 and Fig. S3). Although metrics used in this work capture different aspects of the evolution of 
genome sequence complexity in Cyanobacteria (positive trends in SCC, SCCRY, and GS versus negative trends 
in SCCSW and SCCKM), the genome parameters never present any positive trends (Fig. S2 and Table S2). In that 
respect, although some metrics capture increasing sequence complexity, genome parameters do not.

It is worth noticing that the metrics to measure sequence complexity and the associated positive driven trends 
have captured something different from functional comparative genomics in Cyanobacteria. One interesting 
case is the comparison between those Cyanobacteria species that are multicellular and develop heterocysts or 
akinete from those that do not develop such traits. We tested this by considering which of the species chosen 
in our data set have heterocyst versus non-heterocyst and akinete versus non-akinete (Table S1). The presence 
of heterocysts or akinete could be taken as evidence of higher complexity against its absence. We carried out 
a test for each one of the metrics and genome parameters to see if there were a statistically significant differ-
ence and higher value of the groups of heterocyst or akinete with respect to the groups of non-heterocyst or 
non-akinete, respectively (Table S1). No statistically significant difference were found for any metric (except for 
SCCKM between akinete vs non-akinete, Mann–Withney test, P < 0.05). However, when comparing the average 
values corresponding to genome parameters (genome size, gene number and %GC), we repeatedly observed that 
species with heterocyst or akinete showed a statistically significant higher genome size, higher gene number, and 
lower %GC (Mann–Withney test, P < 0.05). From a functional point of view, the standard genome parameters 
have been found to differentiate between multicellular cyanobacteria, which is not the case for the metrics, 
particularly among those showing a consistent positive driven trend. (i.e., SCC, GS). These metrics are captur-
ing something different in the genomic sequence. Take, for instance, the three species (see Fig. 4) that present 

Table 4.  Ancestor–descendant test. For any complexity metric/genome parameter, we test whether the derived 
clades present higher or lower values than the corresponding ancestral clade for any node. The first six rows 
correspond to the metrics and the last three to genome parameters.

Complexity measure
Derived nodes with a higher value than the ancestor of a given 
clade

Derived nodes with a lower value than the ancestor of a given 
clade

Fisher exact text
P value

SCC 36 2 0.0001

SCCSW 19 9 0.2772

SCCRY 15 5 0.1908

SCCKM 15 15 1.0000

BB 58 32 0.0703

GS 33 5 0.0011

Genome Size 68 36 0.0018

%GC 68 8 0.0350

No. of genes 38 32 0.0143
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the highest SCC values: Cyanobacterium stanieri, C. aponirium, and Trichodesmium erythraeum. They present a 
larger distance from the root even more than the SynPro clade (see Fig. 1). None of these three species, nor all 
the Synpro clade, have heterocysts or akinete, and all appear to present a larger distance from the root than those 
species harboring these traits. It is clear, then, that the positive trend we have detected is reflecting something 
different. We speculate that the species showing a larger distance from the root may be more evolvable than 
those that present a shorter distance to it.

It is interesting, on the other hand, to point out the process of selection and genome streamlining of Syn-
echococcus and Prochlorococcus in clade 97 (SynPro clade), giving rise to more evolved shorter genomes, which 
are AT-rich and show a lower number of genes than the rest of Cyanobacteria (Table S1). As it can be observed, 
there are statistically significant negative trends in the three genome parameters but also positive trends of SCC 
(Fig. 4) and SCCRY metrics (Fig. S2 and Table S2). Therefore, genome reduction in this clade does not imply 
loss of genome complexity; on the contrary, our study shows that this clade also has a highly complex genome 
 sequence56. On the other hand, it is interesting to consider the comparison between this specialist clade with 
others that are generalistic, like Microcystis sp. (Figs. 1, 4). The genus Microcystis appears to be older than the 
Synpro clade. Both, however, have no heterocysts nor akinete (as examples of complex functionality; i.e., multi-
cellularity) but, in general, show a higher SCC or GS metric than the multicellulars. The higher SCC values that 
we observed in the SynPro clade indicate a higher intra-genome compositional diversity in these species (i.e., a 
higher number of compositional segments and/or higher compositional differences among them). In the same 
way that a high rate of genetic variability promotes a higher  evolvability57, it can also be considered that both 
groups have also developed a higher capacity to evolve, captured by some of the metrics that we have studied. 
On the other hand, apparently genome reduction and specialization in the SynPro clade, as already stated, is not 
equivalent to the loss of genome sequence complexity.

In summary, considering that selection is a major driver in the evolution of Cyanobacteria, the observed 
positive trends towards increasing sequence complexity captured by the SCC, SCCRY, and GS metrics cannot be 
explained, contrary to what  Gould2 holds as a passive tendency to increase. The three tests carried out in order 
to demonstrate whether positive trends are passive or driven show us that the positive trend is driven and is 
likely due to the action of natural selection, something that we have not tested for directly. Several of the metrics 
gathered in this study confirm this trend in the case of the evolutionary history of Cyanobacteria.

Figure 4.  Mapping of the SCC complexity metric on the Cyanobacteria tree.
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Methods
Phylogenetic analysis. Ninety-one complete and nearly complete cyanobacterial genomes were down-
loaded from GenBank and annotated using  Prokka58 (Table S1). To infer a phylogenomic tree we proceeded 
first to identify the set of homologous gene families conserved among Cyanobacteria (core genome) using 
get_homologues.pl  pipeline59. For this, we used BDBH and OMCL methodologies within get_homologues.pl 
with the following parameters: a threshold e-value ≤ 10—10 for BLAST searches; a minimum percent amino acid 
identity > 30% between query and subject sequences; and for OMCL, we set the inflation parameter (I) set to 2.0. 
The consensus core-genome was inferred by the intersection of BDBH and OMCL gene families. To select high-
quality phylogenetic markers from the core-genome (i.e. those gene families not showing recombination and/
or horizontal gene transfer), we used the software package  get_phylomarkers60. By this procedure, we obtained 
an alignment of 96 top markers comprising 36,760 amino acids. Clustal-Omega was used to align the protein 
 sequences61. The multiple alignment was cured by eliminating uninformative sites and misaligned positions 
with  Gblocks62. Finally, a maximum likelihood phylogeny was reconstructed using  PhyML63 with LG model + I 
(estimation of invariant sites) + G (gamma distribution) as selected by  ProtTest364. The root was located on the 
branch connecting both Gloebacter spp. to the rest of the cyanobacteria. This location of the root is based on 
cytologic (for instance, Gloebacter spp. lacks thylakoids) as well phylogenetic and molecular clock  analyses32–34,65.

Genome sequence complexity metrics. SCC. Sequence Compositional Complexity of genomes was 
calculated by using a two-step process. We first obtained the non-overlapping compositional domains com-
prising the genome sequence, and then applied an entropic complexity measurement able to account for the 
heterogeneity of such compositional domains. The compositional domains of a given genome sequence are ob-
tained through a segmentation algorithm that was properly  designed66 by using the Jensen-Shannon entropic 
 divergence67,68 to split the sequence—and iteratively the sub-sequences- into non-overlapping compositional 
domains which, at a given statistical significance, s, are homogeneous and compositionally different from the 
neighboring domains. It is worth mentioning that the segmentation algorithm we used, and hence the SCC 
complexity values derived from it, are invariable to sequence orientation, as Shannon entropy is invariant under 
symbol interchange.

Note also that the statistical significance level s, is the probability that the difference between each pair of 
adjacent domains is not due to statistical fluctuations. By changing this parameter one can obtain the underlying 
distribution of segment lengths and nucleotide compositions at different levels of  detail69 thus fulfilling one of the 
key requirements for complexity  measures14. Improvements to this segmentation algorithm also allow to segment 
long-range correlated  sequences70. Full details of the segmentation algorithm have been published  elsewhere71,72. 
Implementation details, as well as source codes and executable binaries for different operating systems can 
be downloaded from: https ://githu b.com/bioin foUGR /segme nt and https ://githu b.com/bioin foUGR /isofi nder.

Once a genome sequence was segmented into n compositional domains, we computed SCC as:

where S denotes the whole genomes and G its length, Gi the length of the i th domain, Si. H(·) = −

∑

flog2f  is 
the Shannon entropy of the distribution of relative frequencies of symbol occurrences, f, in the corresponding 
(sub)  sequence17. It should be noted that the above expression is the same one than that used in the segmentation 

SCC = H(S)−

n
∑

i=1

Gi

G
H(Si)

Table 5.  Summary of the results for each sequence complexity metric and genome parameter. K is the 
phylogenetic signal. The signs “ + ”, “−” or “0” indicate the existence of a positive, negative or no statistical 
evidence, respectively, for the corresponding test: the general trend, the driven trend, the three types of proof 
of the minimum (i.e., skewness, Chi-square test and Student’s t-test), the ancestor–descendant test and the 
trend in the case of the four sub-clades. The first six rows correspond to the metrics and the last three to 
genome parameters.

Sequence complexity metric/
parameter K

Number of significant 
correlations General trend

Driven trend

Minimum test

Ancestor–descendant test

Trend in 
the four 
sub-clades

Skewness Chi-square test Student’s t-test + − 0

SCC + 6 + 0 + 0 + 2 0 2

SCCSW + 2 + + − + 0 1 2 1

SCCRY + 6 + + + + 0 2 0 2

SCCKM + 1 0 + + + 0 0 2 2

BB + 4 − + + 0 0 0 1 3

GS + 2 + + − − + 3 0 1

Genome Size + 4 − + + − + 0 2 2

%GC + 2 − 0 − − + 0 2 2

No. of genes + 3 − + + − + 0 2 2

https://github.com/bioinfoUGR/segment
https://github.com/bioinfoUGR/isofinder
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process, applying it to the tentative two new subsequences (n = 2) to be obtained in each step. Thus, the two parts 
of the SCC computation are based on the same theoretical background.

We apply the above two-step procedure to each of the entire four-symbol cyanobacterial genomes, thus 
obtaining a SCC complexity value for each of them. In addition, we also apply the same procedure to the binary 
sequences resulting from grouping the four nucleotides into S(C,G) versus W(A,T) or R(A,G) versus Y (T,C), 
or K(A,C) versus M(T,G), then obtaining SCCSW, SCCRY and SCCKM metrics, respectively. These three additional 
metrics are partial complexities that provide complementary views of genome complexity to that obtained with 
the four-symbol  sequence71,72.

We provided additional details on the segmentation carried out in Cyanobacteria by using the UCSC Genome 
Browser. Genome maps of the compositional segments obtained for each Cyanobacteria genome analyzed in 
this paper can be found at the following link: https ://sites .googl e.com/go.ugr.es/olive r/datab ases/dna-compo 
sitio nal-segme nts/cyano bacte ria?authu ser=0. Note that, once at UCSC Genome Browser, the user can obtain a 
complete list of segment coordinates for each genome in plain text by clicking on Tools: Table Browser.

BB. Biobit is an informative measure of the complexity of a genome, which is a generalized logistic map that 
balances the entropic and anti-entropic components of genomes and appears to be related to their evolutionary 
dynamics. BB compares genomes of size n with random genomes of the same size to establish a measure of its 
complexity. More precisely, BB is a metric of genome sequence complexity that is derived from the comparison 
between the k-mer that yields the maximum entropy of a given random genome and the corresponding entropy 
of the real genome of the same  length19. The authors demonstrated that the entropy of a real genome of length G, 
E2L(G) takes a value between the maximum (2log4(G) or 2L(G)) and the minimum (L(G)) entropy. On the other 
hand, the authors define and measure two additional components, that they call entropic (E(G)) and anti-entropic 
(A(G)) of a real genome, in such a way that A(G) + E(G) = L(G). Then, the entropy of those components are given 
by E(G) = E2L(G) − 2L(G) and A(G) = 2L(G) − E2L(G), respectively. The BB of a genome (BB(G)) is a non-linear 
combination of the two entropic and anti-entropic components given by:

where A(G)L(G) is the anti-entropic fraction of the genome and 1− 2
A(G)
L(G) is the corresponding entropic fraction. Both 

components vary between 0 and 1. Implementation details, as well as source codes, can be downloaded from 
https ://www.uv.es/~varna u/adn/Biobi t32B.c.

GS. The Chaos Game Representation (CGR )21,22 is an image derived from a genome where each point of the 
image corresponds to a given k-mer level of analysis. If the genome sequence is a random collection of bases, 
the CGR  will be a uniformly filled square image. On the bases of building a CGR  for a particular genome, we 
define a corresponding Genomic Signature (GS) that is a numerical value obtained for a particular k-mer level 
by comparing point-by-point the difference between the CGR ’s of a real genome and a random genome of the 
same length. In order to make it comparable, the pixel values of the images are normalized. As stated, the size 
of the images generated depends on the k-mer used. For a given k-mer, we have  4k different words and the cor-
responding image  4k pixels too. To build a frequency table for each k-mer minus the expected frequency for a 
random genome is equivalent to the difference between the CGR  images of a real and a random genome. In fact, 
if G is the size of the genome to analyze, the expected value (EV) for a given k-mer is given by EV = (G-k + 1)/
(4k). This value is used to normalize to 1 the values of the k-mers obtained for each of the genomes analyzed. We 
then define the GS as:

where Pi is the relative frequency of the k-mer i. Implementation details, as well as source codes, can be down-
loaded from https ://www.uv.es/~varna u/adn/word_chaos _GS.c.

Standard genome parameters. Finally, we have also included three standard genome parameters: genome size, 
%GC and number of genes.

Phylogenetic signal. We used the phylogenetic tree of Cyanobacteria to test the existence of a phylogenetic 
signal in the genome complexity metrics and genome parameters through Blomberg et al.73 K-statistic in the 
picante package for  R74. K ranges from 0 to ∞. K values significantly higher than zero are indicative of the pres-
ence of a phylogenetic signal or, in other words, that closely related species resemble more in the studied trait 
than expected by chance. K = 1 is the value expected under Brownian evolution.

Phylogenetic correlations. We have examined the correlation between genome parameters and metrics 
of genome complexity after correcting the phylogenetic signal. Pearson r value between variables was computed 
as the phylogenetic trait variance–covariance matrix between two variables and significance tested against a 
t-distribution with n − 2 degrees of freedom. We used the R code provided by Liam Revell to perform Pear-
son correlation with phylogenetic data (https ://blog.phyto ols.org/2017/08/pears on-corre latio n-with-phylo genet 
ic.html). The P value obtained with this procedure is the same as that provided by a phylogenetic generalized 
linear square model. As we run multiple phylogenetic correlations, we corrected P values by false discovery rates.

BB(G) =
√

L(G)

√

A(G)

L(G)

(

1− 2
A(G)

L(G)

)3

,

GS = maxk

4k
∑

i=1

∣

∣

∣

∣

Pi

EV
− 1

∣

∣

∣

∣

https://sites.google.com/go.ugr.es/oliver/databases/dna-compositional-segments/cyanobacteria?authuser=0
https://sites.google.com/go.ugr.es/oliver/databases/dna-compositional-segments/cyanobacteria?authuser=0
https://www.uv.es/~varnau/adn/Biobit32B.c
https://www.uv.es/~varnau/adn/word_chaos_GS.c
https://blog.phytools.org/2017/08/pearson-correlation-with-phylogenetic.html
https://blog.phytools.org/2017/08/pearson-correlation-with-phylogenetic.html
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Evolutionary trends. We tested the existence of an evolutionary trend in the genomic complexity measures 
and genome parameters by fitting a ridge regression of each of these genomic values against tip-to-root or node-
to-root distances. The search.trend function in the RRphylo  package75 performs a phylogenetic ridge regression 
between the trait values of the tips/nodes of a phylogenetic tree and their distance to the root. The values of traits 
(in our case, genomic complexity and genome parameters) on internal nodes of the tree were reconstructed by 
the RRphylo package by applying a ridge regression for continuous ancestral character estimation, as explained 
 in76. Similar to other ancestral reconstruction methods, ancestral states are calculated as a weighted average 
of the tip values while taking into account the phylogenetic correlation structure of the data. However, ridge 
regression accounts for varying rates of evolution in different regions of the tree and estimates them with ances-
tral characters simultaneously. The significance of the ridge regression slope was tested against 10,000 slopes 
obtained after simulating a simple (i.e., no-trend) Brownian evolution of the trait in our phylogenetic  tree75.

Continuous character mapping. We used two functions (contMap and fastAnc) from the phytools R 
 package77. The contMap R function allows plotting a tree with a mapped continuous character, such as any of 
our complexity measures. Mapping is accomplished by estimating states at internal nodes using maximum likeli-
hood with the function fastAnc and interpolating the states along each edge using Equation 2  of78.

Testing trends: passive or driven. To unravel whether the positive trends are passive or driven we have 
applied three types of tests, called the minimum, the ancestor–descendant and the subclade test,  respectively3,36. 
These tests are well known in paleontology and evolutionary biology and, to the best of our knowledge, this is the 
first time they have been applied to genome evolutionary analyses. To gain a better understanding of the positive 
trends we have also applied those tests for comparative purposes to the metrics and genome parameters that do 
not show evidence of such a positive evolutionary trend.

Minimum test. Regarding the minimum test, we have applied three types of proofs. The first one evaluates if 
a positive skewness of the entire phylum gives support to the existence of a left wall. It is expected that if the 
minimum value of a given metric or parameter delimiting the left wall increases with evolutionary time, then the 
trend will probably be driven. To evaluate this, we considered as the minimum the estimated value of the most 
basal clade, xb, for each metric/parameter (Fig. 1). In the second proof of the minimum test we measure |xd − xb|, 
the absolute difference between descendants’ clades and the most basal clade in order to see if whether there is 
a statistical difference between those clades that are higher or lower than the basal clade, xb. Finally, the third 
proof of the minimum test, examines if there is a statistical difference between the average value of the absolute 
difference (|xd − xb|) of a given metric or parameter higher or lower than xb.

The ancestor–descendant test. According to  Gould2, the ancestor–descendant test is the most appropriate one 
to discover whether positive trends are passive or driven.  McShea36 indicates that in a passive system, increases 
and decreases should be the same, whereas in a driven trend the number of increases should occur more often. 
To test this, we tabulated the derived clades for all possible nodes and whether they present a higher, lower, or 
equal value of the metric/parameter than the ancestral clade corresponding to each node. In order to avoid bias 
due to proximity to the putative left wall,  McShea36 recommends applying the test only to those clades where 
both ancestor and descendent are higher than the average value of the metric/parameter.

The sub-clade test. The final test applied is the sub-clade test. According to  McSchea18 if the parent distribution 
is skewed (see histograms of Fig. 3; Table 3) and the mean skew of a sub-clade drawn from the right tail is also 
skewed, the system is probably driven. For this test, we have applied two types of proofs. First, we tested whether 
the trend observed at the phylum level is also observed in four selected monophyletic clades (colored species 
in Fig. 1) and second, we have also applied the skewness test proposed by  McShea18 properly to the entire phy-
lum. Regarding the second proof for the sub-clade test, we followed the criteria given by  McShea36 whereby the 
monophyletic sub-clade drawn from the right tail of the entire distribution should have a statistically significant 
average (median) higher value than the one corresponding to the entire phylum.

Basic statistical analyses and graphs were performed using Origin (OriginLab Corporation, Northampton, 
MA, USA) and R (R Core Team (2019). R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. URL https ://www.R-proje ct.org/).

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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