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ABSTRACT

Aim Phylogenetic clustering, the coexistence of evolutionarily related organisms,
appears to be common in soil bacteria. This pattern has traditionally been attrib-
uted to the habitat-filtering of bacteria that are able to survive under particular
abiotic settings. According to the modern coexistence theory, however, phylogenetic
clustering can also arise from biotic interactions such as the competitive exclusion
of large clades with low competitive abilities. Here, we used phylogeny-based
methods to discern whether the coexistence of evolutionarily related soil bacteria
results from abiotic and/or biotic filtering.

Location Worldwide.

Methods We performed a Bayesian meta-analysis based on a literature review
(n = 231) to assess whether the net relatedness index (NRI) or the nearest taxon index
(NTI), two measures of the phylogenetic relatedness of taxa in local assemblages,
deviate from those in randomly configured communities. We then sought the best
abiotic (pH, total organic carbon and total nitrogen) and biotic predictors (relative
abundance of Proteobacteria, Actinobacteria and Acidobacteria) of NRI and NTI.

Results Phylogenetic clustering is pervasive in soil bacterial communities regard-
less of the spatial and taxonomic scales (NRI = 2.29; 95% CI [1.43, 3.29];
P < 0.001). Clustering is accentuated by productivity; that is, more fertile soils hold
communities with more closely related bacteria (estimate = 1.05 [0.03, 2.15];
P < 0.05). Proteobacterial abundance, which increases with organic carbon enrich-
ment, leads to higher relatedness among coexisting bacteria (estimate = 0.1 [0.02,
0.17]; P < 0.01) through the competitive exclusion of distantly related deep-
branching clades.

Main conclusions Our results, together with the dominance of proteobacterial
lineages in soils worldwide, suggest that the overrepresentation of this clade under-
lies the widespread coexistence of phylogenetically related bacteria. These results
are consistent with phylogenetic clustering arising via differences in competitive
ability as predicted by the coexistence theory. This supports the idea that biotic
filtering might have a role in driving the phylogenetic community assembly of soil
prokaryotes.
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INTRODUCTION

The processes that underlie community assembly in bacteria have

long enticed microbiologists (Baas Becking, 1934). A common

view is that bacteria have cosmopolitan distributions, and the

local abiotic scenario determines the species composition of

ecological communities (Baas Becking, 1934; Horner-Devine

et al., 2004; Fierer & Jackson, 2006; Martiny et al., 2006). Soil

bacteria are crucial components of the biosphere because they are

directly related to the soil’s fertility, and are ultimately linked to

plant productivity and diversity (van der Heijden et al., 2008).

Co-occurrence patterns of soil bacteria have been attributed to
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habitat sorting through abiotic factors such as pH, organic

carbon or mineral nitrogen (Fierer & Jackson, 2006; Smith et al.,

2008; Goberna et al., 2012). Here, we argue that biotic factors

(competition) might be more influential in shaping soil bacterial

communities than contemporary literature depicts.

The incorporation of phylogenetic information into the

analysis of co-occurrence patterns was initially designed to infer

the abiotic and biotic processes that structure communities

(Webb et al., 2002). Community phylogenetics uses

phylogenetic relatedness among taxa as an indicator of their

ecological similarity (Pausas & Verdú, 2010). This relies on the

phylogenetic conservatism of functional traits, an assumption

that holds true for prokaryotes, as Martiny et al. (2013) demon-

strated through analysis of the phylogenetic distribution of 89

metabolic traits using both genetic data (over 2220 genomes)

and phenotypic data (organic C consumption patterns of 738

strains). Phylogeny-based methods compare the relatedness of

taxa in a local community to those of randomly configured

communities assembled from the regional taxon pool (Webb

et al., 2002). Phylogenetic clustering, or the co-occurrence of

closely related taxa more often than expected by chance, seems

to prevail in soil bacteria (Horner-Devine & Bohannan, 2006;

Lozupone & Knight, 2007; Bryant et al., 2008; Jones et al., 2009),

although overdispersion and randomness have also been

detected (Horner-Devine & Bohannan, 2006; Costello et al.,

2009; Chong et al., 2012). Several authors have posited that a

dominance of phylogenetic clustering in bacterial communities

might emerge from working at broad spatial and/or taxonomic

scales (Horner-Devine & Bohannan, 2006; Bryant et al., 2008).

This is due to the increasing probability of detecting clustering

as the sampling area is enlarged, because the randomly built

communities will be more likely to include high-level clades

(e.g. phyla) that are absent from the local assemblage (Swenson

et al., 2006). The relevance of this process depends, however, on

the rate at which new taxa are sampled as the area is scaled out.

Bacteria have the lowest magnitude of change in the taxa–area

relationship among all major groups of organisms

(Horner-Devine et al., 2004), and the extent to which

phylogenetic community patterns of soil bacteria are scale-

dependent therefore remains to be elucidated.

Phylogenetic clustering has been traditionally interpreted as

the result of the environmental filtering of organisms that bear

phylogenetically conserved traits (Webb et al., 2002). The

habitat restricts the survival in a community to ecologically (and

phylogenetically) similar organisms that are able to thrive under

a specific abiotic setting. Organisms that are able to surpass such

a filter tolerate abiotic factors that determine their survival and

adaptation to the environment (e.g. pH, desiccation, radiation

and salinity) (Webb et al., 2002). Abiotic filtering is illustrated in

our hypothetical example in Fig. 1a, in which only the bacteria

with resistant cell walls (represented by contour thickness) are

not filtered out at high levels of radiation. In this example,

tolerance to radiation is phylogenetically conserved, and so the

members of the abiotically filtered communities are more

closely related than expected at random. Alternatively, Mayfield

& Levine (2010) have recently proposed, based on modern coex-

istence theory (Chesson, 2000), that biotic interactions (i.e.

competition) can also generate phylogenetically clustered pat-

terns. This occurs when competitive exclusion takes place

among distantly related organisms – that is to say, when a few

phylogenetic clades outcompete all others given their superior

competitive ability under the prevailing abiotic environment.

Such a biotic filter implies that certain organisms consume lim-

iting resources (e.g. organic substances or mineral ions) that are

no longer available to others. This competitive interaction

results in the simultaneous outgrowth and suppression of the

C sourceRadia�on

A. ABIOTIC FILTERING B. BIOTIC FILTERING

Figure 1 Phylogenetic clustering can be generated through abiotic or biotic filtering. In example (a), bacteria differ primarily in their
tolerance to radiation (contour thickness) and this trait is phylogenetically conserved. At high levels of radiation, only tolerant bacteria
survive the filter, generating phylogenetically clustered communities. In example (b), bacteria differ primarily in their growth response to
carbon substrates (cell size) and this trait is phylogenetically conserved. In the presence of a carbon source, fast-growers outcompete
distantly related clades, generating phylogenetically clustered communities. Note that organisms that survive an abiotic filter (a) show
tolerance to environmental conditions, whereas those surviving a biotic filter (b) have the ability to exploit limiting resources.

Phylogenetic clustering in soil bacterial communities
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strong and weak competitors, respectively. Biotic filtering is

exemplified in Fig. 1b, in which fast-growing bacteria (repre-

sented by cell size) stimulated by a carbon source outcompete

distantly related clades. In the example, growth rate in response

to the substrate is phylogenetically conserved; thus, the competi-

tive interaction leads to phylogenetic clustering. Following this

rationale, Mayfield & Levine (2010) broaden the definition of

environmental filtering to incorporate not only the abiotic but

also the biotic environment, the latter being understood as the

interactions that lead to exclusion through differences in com-

petitive ability. This idea is the phylogenetic extension of the

sequential deletion rules proposed by Keddy (1992), whereby

species that survive the abiotic filter grow and interact, and only

those with strong competitive ability persist. We suspect that this

nuanced version of the processes leading to phylogenetic clus-

tering might help explain the community structure of soil bac-

teria, which would be sculpted by two filters. First, the abiotic

scenario would pick out the organisms based on their ranges of

physiological tolerance to factors such as acidity or salinity

(Fierer & Jackson, 2006; Lozupone & Knight, 2007). Second,

competition for resources would filter out the weak competitors,

à la Mayfield & Levine (2010).

Evidence for this latter process has only recently become

available. Soils worldwide are dominated by a few lineages,

notably the phyla Proteobacteria and Actinobacteria (Janssen,

2006; Fierer et al., 2007). These are powerful competitors in

terms of growth response when carbon substrates are supplied

to the soil, which is typically carbon-limited (Goldfarb et al.,

2011). Furthermore, the increased dominance of Proteobacteria

and Actinobacteria in artificially enriched soil microcosms sig-

nificantly intensifies the phylogenetic clustering of the bacterial

community through the competitive exclusion of other phyla

(Goldfarb et al., 2011). These observations suggest that, analo-

gous to the example in Fig. 1b, the best heterotrophic bacterial

competitors have higher growth rates in the presence of carbon

substrates, outcompete the rest of the clades and generate

phylogenetically clustered patterns.

Here, we perform a literature review to identify general pat-

terns and knowledge gaps on bacterial community

phylogenetics with the aims of: (1) assessing with a formal meta-

analysis whether soil bacterial communities are phylogenetically

clustered; (2) testing if soil bacterial phylogenetic patterns show

spatial and/or taxonomic scale dependency; and (3) detecting

the abiotic (pH, total organic C and total N) and biotic factors

(relative abundance of Proteobacteria, Actinobacteria and

Acidobacteria) that underlie the phylogenetic community struc-

ture of soil bacteria. We discuss how competitive exclusion of

distantly related taxa, based on competitive ability differences,

might be a common process driving the community assembly of

soil bacteria.

MATERIALS AND METHODS

We performed a formal meta-analysis – a quantitative statistical

synthesis of data gathered from multiple studies that address a

common question. This procedure allows the combined analysis

of data that show heterogeneous variances and are not equally

reliable, primarily due to different sampling intensities

(Arnqvist & Wooster, 1995; Harrison, 2011). Weighting the

studies by sample size (in our case, sequencing depth) is the

critical difference between meta-analysis and other quantitative

review techniques that can lead to misleading conclusions

(Arnqvist & Wooster, 1995). In our study, we followed the

typical steps for meta-analyses (Arnqvist & Wooster, 1995;

Harrison, 2011), as summarized below.

Selection of studies and measures of effect size

We identified and critically selected the studies, and chose

appropriate measures of effect size, that is, statistics providing a

standardized measure of the dependent variable across surveys

(Arnqvist & Wooster, 1995; Harrison, 2011). We compiled arti-

cles that investigated the phylogenetic community structure of

soil bacteria, by performing a literature search until September

2012 in Web of Science and Google Scholar, using combinations

of keywords (‘phylogen*’, ‘soil’, ‘bacteria’, ‘communit*’, ‘diver-

sity’) (see Appendix S1 in Supporting Information for the

phases of the information flow through the meta-analysis,

depicted as a PRISMA flowchart). We found 44 studies through

database searching, and included two additional surveys with

unpublished results. After removing duplicates, this resulted in

20 studies, including 330 study cases. We excluded three studies

that investigated bacteria in ecosystems other than soil. Finally,

we only included those articles that used the net relatedness

index (NRI) or the nearest taxon index (NTI), because these

were the most commonly used metrics (n = 216 and n = 211

respectively; Appendix S2). We excluded one record that used

phylogenetic community metrics other than NRI or NTI,

because there were too few case studies for a robust analysis. The

final dataset included 231 case studies reported in 16 studies and

based on data generated in 43 surveys. Our meta-analysis was

constrained to those studies publishing measures of

phylogenetic diversity. Calculating these metrics de novo would

require not only access to the nucleotide sequences, which could

be downloaded from public repositories, but also the metadata,

which are often difficult to obtain.

Both NRI and NTI examine whether co-occurring taxa are

more (positive values) or less (negative values) closely related

than expected by chance. Whereas NRI provides information

about deep-level relatedness, NTI allows a finer-scale

phylogenetic inspection (Webb et al., 2002). More specifically,

NRI computes the average of all pairwise phylogenetic distances

(mean pairwise distance, MPD) between the taxa in a local

community (MPDobs) and compares it to the average of MPD

calculated in n randomly constructed communities con-

sidering the regional pool of taxa (MPDrand) as follows:

NRI = − (MPDobs − MPDrand)/sd_MPDrand, where sd_MPDrand is

the standard deviation of the MPDrand values (Webb et al., 2002).

Likewise, NTI is a standardized measure of the phylogenetic

distance to the nearest taxon (mean nearest-neighbour distance,

MNND) for each taxon in a local community (MNNDobs) com-

pared to that under a null model (as above). The studies

M. Goberna et al.
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included in our dataset reconstructed phylogenies for the com-

putation of NRI and/or NTI using neighbour-joining or

maximum-likelihood methods in 94% of all study cases, and

Bayesian algorithms in the remaining cases. All the selected

studies considered the regional pool of taxa as the sum of all taxa

detected in the local communities (i.e. in every site included in

the study). In 99% of all study cases, NRI and/or NTI were

calculated using null models that generate the same expected

phylogenetic distance between any pair of taxa over many

randomizations (Kembel, 2009). Particularly, the null commu-

nities were constructed by randomly drawing samples either

from the local pools (‘sample pool’; 58.9% of all cases) or the

regional pool (‘phylogeny pool’; 30.7%), or by randomly shuf-

fling taxon labels across the tips of the phylogeny (‘taxon labels’;

9.5%; Appendix S2).

Defining the meta-analytical model

Once the final set of studies and appropriate measures of effect

size (NRI or NTI) had been selected, we ran Bayesian meta-

analyses by fitting generalized linear mixed models (GLMMs)

using Markov chain Monte Carlo (MCMC) techniques in the

MCMCglmm package for R (Hadfield, 2010; R Development

Core Team, 2011). The effect size (NRI or NTI) was the depend-

ent variable in the model. In order to account for the varying

sampling effort across studies, all GLMMs were weighted by n,

the number of sequences (Arnqvist & Wooster, 1995), by passing

1/n to the ‘mev’ function of MCMCglmm (Hadfield &

Nakagawa, 2010). In addition, because separate global effect

sizes could come from the same publication, we used the pub-

lication as a random grouping factor in all calculations. The

effect of predictors was estimated by calculating the 95% cred-

ible interval of their posterior distributions (Nakagawa &

Cuthill, 2007). In all cases, we ran 13,000 MCMC iterations with

a burn-in period of 3000 iterations and the default priors. Con-

vergence of the chain was verified by means of the

autocorrelation function of the Markov chain.

Testing for confounding effects

Prior to the statistical comparison of effect sizes based on our

research questions (see below), we checked whether several

methodological variables had any effect on the dependent vari-

able (NRI or NTI) that describes the phylogenetic community

structure of soil bacteria (Verdú & Traveset, 2005). The meth-

odological variability across studies was mainly related to the

experimental setup, the target organisms and molecules (all bac-

teria, a particular taxon or functional guild), and the methods

used for community analysis and phylogeny reconstruction

(Appendix S2). We found out that none of the methodological

variables (i.e. experiment type, marker type, tree completeness,

analytical method and phylogeny reconstruction) had a signifi-

cant effect on NRI or NTI and thus none of these variables was

considered further (Appendix S3).

For the identification of bias against the publication of studies

with non-significant effect sizes, we constructed weighted histo-

grams for NRI and NTI in the weights package for R (Pasek,

2012). In these graphs, the height of the bars reflects the

weighted frequency of the studies within each class based on

their log-transformed number of sequences (Fig. 2a). The

absence of a depression in the region of no effect, i.e. that

approaching zero, suggests the absence of publication bias

(Rosenberg et al., 2000).

We expected that the sequencing depth would not alter the

NRI or NTI values, because these metrics ensure a within-study

standardization of the observed phylogenetic distance based on

the sample size through comparison with the expected

phylogenetic distance under a null model. This standardization

should therefore allow comparisons to be made between studies.

We nonetheless confirmed that the effect size was not related to

sequencing depth either for NRI [MCMCglmm; posterior mean

estimate of log(number of sequences) = 0.05, 95% credible

interval (−0.27, 0.37), n = 216] or NTI [−0.02 (−0.46, 0.18),

n = 211] (Fig. 2b). Similar results were obtained when the

weighted histograms and the regressions between NRI or NTI

and the number of sequences were performed exclusively with

the set of studies targeting the bacterial domain with

phylogenetic markers (Appendix S4) that was used in subse-

quent analyses (see below).

Statistical comparison of effect sizes

We ran several Bayesian GLMMs as described above in order to

address the following questions. First, we evaluated whether soil

bacterial communities show a phylogenetic structure that differs

from randomness: that is, whether NRI or NTI depart signifi-

cantly from zero. Second, we checked if the effect size depends

on scale-related variables, namely taxonomic breadth and geo-

graphical area (Appendix S2). The latter was the geographical

area occupied by all samples considered in the regional pool

either as reported in the literature or calculated from the geo-

graphical coordinates of the sampling points.

In order to test which abiotic and/or biotic parameters

explained the phylogenetic clustering, we used the subset of

study cases that exclusively targeted the bacterial domain, and

excluded studies focused on a particular taxon or a microbial

guild. We performed two separate Bayesian models using (1)

only abiotic or (2) abiotic and biotic parameters as independent

variables. The abiotic parameters used were pH, total organic C

(TOC) and total nitrogen (TN), which are linked to the bacterial

community structure (Fierer & Jackson, 2006; Smith et al., 2008;

Goberna et al., 2012). The biotic parameters used were the rela-

tive abundances of Proteobacteria, Actinobacteria and

Acidobacteria, which are typically the three most abundant bac-

terial phyla in soils (Janssen, 2006; Fierer et al., 2007). The rela-

tive abundances of these phyla were used as proxies of their

competitive success, because the outcome of competitive inter-

actions is the simultaneous outgrowth and suppression of

strong and weak competitors, respectively, as shown experimen-

tally by Goldfarb et al. (2011). All abiotic and biotic variables

were obtained from the studies included in the meta-analysis or

references therein (Appendix S2).

Phylogenetic clustering in soil bacterial communities
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Other factors known to influence bacterial communities (e.g.

soil moisture: Schimel et al., 2007) were not considered due to

the paucity of data (Appendix S2). The inclusion of soil mois-

ture in the analyses did not alter the conclusions of this study

(data not shown).

RESULTS

General patterns

Our dataset contained 231 study cases, covering a wealth of

ecosystems including cold and hot deserts, temperate grass-

lands, tropical rainforests, subalpine and alpine tundra, wet-

lands, Mediterranean shrublands and arid savannas, among

others (Appendix S2). Soils were collected under a broad range

of either natural or artificially induced environmental condi-

tions, including extreme temperatures, periodic water satura-

tion, intense radiation, high electrical conductivity, heavy-metal

contamination and nitrogen pollution (Appendix S2). Thus, the

abiotic soil properties that we explored were highly variable,

with pH values ranging from 2.2 to 9.6, total organic C from less

than 0.01% to 48% and total N from less than 0.01% to 9%

(Appendix S2). We also found a large range of study areas, from

2 m2 to 5.8 × 1013 m2. We detected a strong geographical bias

towards the Northern Hemisphere (80% of all study cases), with

most surveys covering North America and Europe (Appendi-

ces S2 & S5).

A total of 56.3% of all study cases investigated soil bacterial

communities at the domain level, using universal phylogenetic

markers specific to bacteria (mainly the 16S rRNA gene). Only

10.8% of all cases investigated soil bacteria at the phylum level,

all of them targeting Acidobacteria. The remaining 32.9% of all

cases investigated the community structure of nitrogen-cyclers,

either using phylogenetic markers (e.g. 16S rRNA gene of

ammonia-oxidizing Betaproteobacteria) or functional markers

of nitrogen fixation (nifH) or denitrification (nirK and nirS).

Finally, fewer than half of the study cases were accompanied by

a basic dataset with soil variables published in the same or other

articles.

The distribution of NRI and NTI of soil bacterial commu-

nities encompassed all overdispersed, random and clustered

phylogenetic patterns of community structure (Fig. 2a).

Phylogenetic clustering was the general trend, however, because

the average NRI and NTI across studies were significantly

greater than zero [NRI = 2.29 (1.43, 3.29), n = 216; NTI = 2.54

(1.63, 3.60), n = 211]. Similar figures were obtained when the

subset of studies that exclusively targeted the bacterial domain

were analysed independently [NRI = 1.99 (0.60, 3.52), n = 115;

NTI = 2.56 (1.23, 3.99), n = 130].

We found no significant effect of any of the scale-related

variables considered on NRI or NTI, and neither NRI [log

(area) = 0.037 (−0.053, 0.133), n = 212] nor NTI [log

(area) = 0.085 (−0.009, 0.189), n = 207] varied depending on the

study area. The same results were found when the studies tar-

geting the bacterial domain were analysed separately [NRI: log

(area) = −0.03 (−0.22, 0.19), n = 111; NTI: 0.100 (−0.076, 0.278),

n = 126]. NRI and NTI were not affected by the taxonomic

breadth either, because there were no significant differences

Figure 2 Net relatedness index (NRI)
and nearest taxon index (NTI) of soil
bacterial communities worldwide
(n = 216 and n = 211, respectively). NRI
or NTI values indicate phylogenetic
clustering (positive values) or
overdispersion (negative values). (a) NRI
and NTI weighted histograms by
sequencing depth suggest the absence of
publication bias in our dataset due to the
absence of a depression in the region
approaching zero. (b) NRI and NTI
values were not related to the number of
sequences in this meta-analysis. Dashed
lines show the 95% confidence intervals
and the dotted lines indicate the
prediction intervals for linear regression.
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among taxonomic ranks, as reflected by the overlapping credible

intervals of effect sizes (Fig. 3).

Discerning abiotic and biotic factors of
phylogenetic clustering

We tested the contributions of several abiotic and biotic pre-

dictors to the phylogenetic community structure of soil bacte-

ria. In the multifactorial model that included three abiotic

predictive variables, we found a significant and positive effect

of total organic C, but not of total N or pH, on both NRI and

NTI (Fig. 4a). In the second model, including all the abiotic

and biotic predictors, we found a significant and positive effect

of the relative abundance of Proteobacteria on both NRI and

NTI, although the relative abundances of Actinobacteria and

Acidobacteria, total organic C, total N and pH showed no sig-

nificant effect on either dependent variable (Fig. 4b).

Proteobacteria were significantly more abundant in soils with

higher contents of total organic C [0.307 (0.101, 0.477),

n = 43]. This relationship mainly responded to the increased

abundance of Alphaproteobacteria (0.517 [0.191, 0.813]) and

Gammaproteobacteria [0.371 (0.109, 0.636)]. Finally, we ana-

lysed the contribution of the five classes of Proteobacteria to

the patterns observed. When combining all proteobacterial

classes as predictors in a single model, the relative abundance

of Alphaproteobacteria was the only class that significantly

intensified the phylogenetic clustering, measured either as NRI

[0.165 (0.114, 0.214), n = 56] or NTI [0.075 (0.026, 0.125),

n = 71].

DISCUSSION

Soil harbours an enormous bacterial diversity (Curtis et al.,

2002), which makes it one of the most diverse ecosystems on

Earth. However, our meta-analysis confirmed that soil bacterial

communities are significantly less phylodiverse than expected by

chance, that is to say, soil bacteria tend to coexist with close

relatives. Lozupone & Knight (2007) noticed that, compared to

bacterial communities in other natural environments (e.g.

water, ice, sediments or mats), soil bacteria show particularly

low levels of phylodiversity, contrasting with their enormous

species-level diversity. Interpretations of why closely related soil

microbes co-occur have often been predicated on the particular

abiotic conditions filtering relatives that share traits relevant to

environmental tolerance (Horner-Devine & Bohannan, 2006;

Bryant et al., 2008; Jones et al., 2009). Some authors have also

alluded to methodological drawbacks to explain the prevailing

phylogenetic clustering (Horner-Devine & Bohannan, 2006;

Bryant et al., 2008). We discuss these methodological aspects

below, and argue that filtering is not only mediated by abiotic

factors but also by biotic interactions (sensu Mayfield & Levine,

2010).

Figure 3 Net relatedness index (NRI) and nearest taxon index
(NTI) of soil bacterial communities at the taxonomic levels
studied. Bayesian post-mean estimates and 95% credible intervals
for NRI and NTI values are shown for each taxonomic level.
Overlapping intervals across taxonomic levels indicate that NRI
and NTI values did not differ significantly based on the
taxonomic breadth. Sample size (n) is included for each group.

Figure 4 Phylogenetic community structure of
soil bacteria explained by (a) abiotic or (b) abiotic
and biotic factors. Bayesian post-mean estimates
and 95% credible intervals for net relatedness
index (NRI) and nearest taxon index (NTI) values
are shown. (a) In a single model including all
abiotic variables as predictors, total organic C was
the only factor significantly explaining NRI and
NTI (black intervals), whereas the remaining
abiotic factors did not have a significant effect on
NRI or NTI (grey intervals). (b) In a single model
using all abiotic and biotic variables as predictors,
proteobacterial relative abundance was the only
factor significantly explaining NRI and NTI
values. Note that these analyses were performed
only with the set of study cases considering the
whole bacterial domain for which abiotic and
biotic variables were available. Total organic C and
total N were log-transformed for models using
NRI as dependent variable.

Phylogenetic clustering in soil bacterial communities
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Methodological artefacts and phylogenetic clustering

One methodological issue that has been raised suggests that

certain phylogenetic markers that are used to identify the com-

munity members might produce phylogenetic but not func-

tional clustering. That is to say, co-occurring organisms are

phylogenetically closely related but they are not functionally

similar. This might occur if close relatives segregate their niches

due to horizontal gene transfer (HGT), a process that would not

be reflected in their evolutionary distance, defined as 16S rRNA

gene sequence identity (Lozupone & Knight, 2007). This envis-

ages HGT as being so rampant that phylogeny (reconstructed

based on the 16S rRNA gene) does not reflect function.

Although the contribution of HGT to bacterial genome evolu-

tion is still under debate, the fixation of transferred genes is not

substantial between phylogenetically distant organisms

(Kurland et al., 2003; Choi & Kim, 2007). This observation is

consistent with the congruence between trees based on the 16S

rRNA gene and those based on whole-genome gene-contents

(Snel et al., 1999), and consequently with the significant rela-

tionship between bacterial phylogeny and function (Barberán

et al., 2014). Another misleading use of phylogenetic clustering

as a proxy of functional clustering might arise from the fact that

bacteria identified through their rRNA genes can be active in

different temporal windows. In other words, the rRNA gene

(DNA) reflects not only active community members but also

dormant individuals. However, DeAngelis & Firestone (2012)

demonstrated that phylogenetic community patterns based on

RNA, i.e. culling only the active microbes, can be significantly

more clustered than those based on DNA. Phylogenetic cluster-

ing has been shown to be also dominant when functional rather

than phylogenetic markers are used for bacterial community

analysis (Jones & Hallin, 2010; Hamilton et al., 2011). Indeed, in

our meta-analysis we did not find significant differences in NRI

or NTI based on the use of phylogenetic versus functional

markers. Our dataset included two types of functional markers,

namely genes coding for enzymes involved in nitrogen fixation

and denitrification. The evolution of these genes does not differ

significantly from that expected under a Brownian model

(Martiny et al., 2013). This indicates that the phylogenetic con-

servatism of the functional markers that we analysed does not

differ significantly from that of the conserved taxonomic marker

(16S rRNA gene). This agrees with the significant relationship

found between 16S rRNA distance and functional distance

based on protein families’ domains (Barberán et al., 2014).

Kembel et al. (2011) also reported concordance between NRI

values calculated based on the 16S rRNA gene and on multigene

metagenomic phylogenies. Overall, phylogenetically clustered

patterns prevail regardless of the molecular marker used to

investigate soil bacteria, indicating that phylogenetic clustering

reflects a functional process at the community level.

Another methodological constraint has been associated with

the notion that phylogenetic community patterns are scale-

sensitive (Horner-Devine & Bohannan, 2006; Bryant et al.,

2008). In plant communities, it has been shown that the larger

the working area the stronger the phylogenetic clustering

(Swenson et al., 2006). The logic behind this tendency is that as

the regional taxon pool is scaled out, it is more likely that the

randomly assembled communities will include higher-level

clades that are absent in the local community. This process can

be remarkable in organisms for which the number of taxa

increases rapidly with the area, i.e. those with a steep slope of the

taxa–area plot, as is the case for plants (Horner-Devine et al.,

2004). We found no scale-dependency for the phylogenetic com-

munity structure of soil bacteria, however, either considering

geographical or taxonomic scale-related variables. This agrees

with the observation that bacteria have the lowest rate of change

in their taxa–area relationship of any group of organisms

(Horner-Devine et al., 2004). Taking the figures provided by

these authors, an increase in area similar to that in our dataset

(2–1014 m2) would augment the number of taxa 85 times more

for plants than for bacteria (defined as operational taxonomic

units at 97% sequence identity). Arguably, the taxa–area rela-

tionships calculated for bacteria might have been underesti-

mated because infrequent taxa are undersampled due to the

difficulties inherent in studying the vast diversity of soil

microbes (Woodcock et al., 2006). The lack of correlation

between NRI and NTI with sequencing depth in our study sug-

gests that adding infrequent taxa would not alter the

phylogenetic community structure.

Phylogenetic clustering driven by abiotic and
biotic filtering

Abiotic factors, such as acidity, salinity or moisture are the

primary determinants of bacterial community structure (Fierer

& Jackson, 2006; Lozupone & Knight, 2007; Schimel et al.,

2007). Abiotic filtering leads to the overrepresentation of certain

clades given their tolerance to particular environmental condi-

tions. As an illustration, Acidobacteria were more abundant in

our dataset at decreasing pH values [multifactorial

MCMCglmm; estimate = −0.32 (−0.71, −0.02); n = 40]. Indeed,

Jones et al. (2009) showed that acidobacterial phylogenetic clus-

tering increases as pH deviates from neutrality at the continental

scale.

Our meta-analysis suggests, however, that biotic filtering can

be also relevant in shaping bacterial communities. We found

that the overrepresentation of the efficiently carbon-using

proteobacteria can partly explain the widespread coexistence of

phylogenetically related soil bacteria. Soil productivity intensi-

fies such a pattern at a worldwide scale because proteobacteria

are increasingly favoured at high resource availability. These

observations, supported by an independent line of experimental

evidence (Goldfarb et al., 2011), are consistent with

phylogenetic clustering arising via the competitive exclusion of

deeply branching clades with low competitive abilities (Mayfield

& Levine, 2010).

The relative abundance of proteobacteria, which we used as a

surrogate of their competitive success, was the best predictor of

the phylogenetic clustering among a set of abiotic and biotic

factors known to influence the community assembly of soil

bacteria. Proteobacterial abundance, particularly that of

M. Goberna et al.
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Alphaproteobacteria and Gammaproteobacteria, was significantly

associated with the levels of total organic C. Proteobacteria have

been acknowledged before to be reflective of the natural soil’s

fertility and respond strongly to artificial C amendments (Fierer

et al., 2007; Philippot et al., 2010; Goldfarb et al., 2011; Ganz

et al., 2012). This has led to their consideration as copiotrophs,

with high maximum growth rates and hence competitive advan-

tage at high resource availability (Fierer et al., 2007). Impor-

tantly, the bacterial growth response to C substrates is

phylogenetically conserved across deep evolutionary clades

(Goldfarb et al., 2011). In a striking experiment, proteobacteria

were found to be the strongest competitors in terms of growth

response when labile C substrates, similar to root exudates, were

supplied to the soil (Goldfarb et al., 2011). More specifically,

over 300 taxa grew in response to the addition of either sucrose

or glycine, of which 78% were Proteobacteria and 21%

Actinobacteria. Furthermore, the mentioned single-C-source

amendments suppressed bacterial taxa belonging to over 20

phyla other than Proteobacteria or Actinobacteria (Goldfarb

et al., 2011), indicating that C generates asymmetric competi-

tion among whole bacterial clades. Such a competitive exclusion

of entire deeply branching clades from the bacterial tree drasti-

cally reduces the phylogenetic diversity of the community, and

ultimately generates phylogenetic clustering.

Addressing future questions

Our meta-analysis has uncovered general trends that may

explain the phylogenetic structure of bacterial communities but,

at the same time, it has detected gaps of knowledge that future

research should address. First, a thorough analysis of the spatial

and taxonomic scales is needed, including smaller sampling

scales (below the square metre) and finer taxonomic ranks

(below the class level), especially given that it seems to be a

tendency for lower taxonomic levels to be less clustered. Second,

it should be investigated whether methodological differences in

OTU delimitation (e.g. Koeppel & Wu, 2013) influence the esti-

mates of phylogenetic community structure by better capturing

the ecologically relevant units. Third, it should be noticed that

the relative abundances of bacterial phyla are calculated from

the number of 16S rRNA gene copies, which can vary from one

up to 15 copies (Pei et al., 2010). Recent mathematical simula-

tions have shown that using gene-copy numbers instead of indi-

vidual numbers underestimates the relative abundance of the

most abundant taxa (Kembel et al., 2012). On average,

proteobacteria have a comparatively high number of copies of

the 16S rRNA gene (Pei et al., 2010). Hence, we expect that

correcting our dataset for the 16S rRNA gene copy numbers

would further strengthen the phylogenetic clustering and

increase the effect of proteobacterial abundance. The inter-

species gene copy number variation should be accounted for in

future works inferring phylogenetic community structure

(Kembel et al., 2012). Future studies should also address the

complexity of ecological processes, such as predation, syntrophy

or competitive exclusion by limiting similarity, that simulta-

neously filter all functional traits involved in the survival and

adaptation of the multitude of taxa that shape the biological

communities (Mayfield et al., 2009). Finally, it should be inves-

tigated whether local diversification influences the phylogenetic

community structure of soil bacteria, because this process may

produce phylogenetic clustering (Pausas & Verdú, 2010). We

suspect that if the effect of in situ diversification were relevant,

then soil bacterial community assembly would be more closely

related to geographical distance (and less to environmental dis-

tance) than shown by current observations (Horner-Devine

et al., 2004; Fierer & Jackson, 2006; Martiny et al., 2006). Bacte-

ria are ideal organisms to perform long-term experimental evo-

lution, which can now be surveyed integrating functional and

genomic information, thus providing a promising scenario to

discern the relative magnitude of ecological and evolutionary

forces that underlie community assembly processes.
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