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Predicting microbial traits with phylogenies

Marta Goberna and Miguel Verdú
Centro de Investigaciones Sobre Desertificación (CIDE; CSIC-UV-GV), Valencia, Spain

Phylogeny reflects genetic and phenotypic traits in Bacteria and Archaea. The phylogenetic
conservatism of microbial traits has prompted the application of phylogeny-based algorithms
to predict unknown trait values of extant taxa based on the traits of their evolutionary relatives to
estimate, for instance, rRNA gene copy numbers, gene contents or tolerance to abiotic conditions.
Unlike the ‘macrobial’ world, microbial ecologists face scenarios potentially compromising the
accuracy of trait reconstruction methods, as, for example, extremely large phylogenies and limited
information on the traits of interest. We review 990 bacterial and archaeal traits from the literature and
support that phylogenetic trait conservatism is widespread through the tree of life, while revealing
that it is generally weak for ecologically relevant phenotypic traits and high for genetically complex
traits. We then perform a simulation exercise to assess the accuracy of phylogeny-based trait
predictions in common scenarios faced by microbial ecologists. Our simulations show that ca. 60%
of the variation in phylogeny-based trait predictions depends on the magnitude of the trait
conservatism, the number of species in the tree, the proportion of species with unknown trait values
and the mean distance in the tree to the nearest neighbour with a known trait value. Results are
similar for both binary and continuous traits. We discuss these results under the light of the reviewed
traits and provide recommendations for the use of phylogeny-based trait predictions for microbial
ecologists.
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Trait-based approaches in community ecology
studies are becoming increasingly appealing for
microbial ecologists partly because metagenomic
sequencing allows surveying molecular functions
(Green et al., 2008; Lauro et al., 2009; Burke et al.,
2011; Raes et al., 2011; Brown et al., 2014; Fierer et al.,
2014). Although genetic data can provide precise
information on cellular processes or metabolic path-
ways, they are generally blind to other ecologically
relevant phenotypic traits such as the tolerance to
certain abiotic conditions or the specific growth rate
(but see Vieira-Silva and Rocha, 2010). Unlike ‘macro-
bial’ ecologists, who can directly observe phenotypic
characters of plants and animals, microbial ecologists
usually face situations where most of the phenotypes
of their study organisms are unknown. This difficulty
relies on the fact that gathering phenotypic (physiolo-
gical, morphological, biochemical) data requires
culturing microbial species. The unbalanced growth
of genotypic vs phenotypic information is currently
challenging microbial ecologists to work with phylo-
genetic trees of increasing size (hundreds to thousands
of species) in which the percentage of species with
unknown traits becomes larger and larger.

Recent evidence indicate that phylogeny reflects
molecular functions and phenotypes in Bacteria and
Archaea (Langille et al., 2013; Martiny et al., 2013).
This is due to the phylogenetic conservatism of
microbial traits (Martiny et al., 2013), which likely
arises from microbial evolution mostly proceeding by
vertical gene inheritance rather than horizontal gene
transfer (Kurland et al., 2003, see Fraser et al., 2007 for
theoretical models on the role of horizontal gene
transfer in bacterial speciation). At present, the
massive sequencing of microbes in the environment
is providing a huge amount of genetic information that
is extremely useful to reconstruct the phylogenetic
relationships among microbial lineages. This fact has
triggered the interest of microbial ecologists to apply
the methods developed to predict unobserved trait
values of extant taxa based on the traits observed in
their evolutionary relatives (Kembel et al., 2012;
Langille et al., 2013; Angly et al., 2014, see review in
Zaneveld and Thurber, 2014). All these methods are
based on the existence of a significant phylogenetic
signal or, in other words, in the fact that close relatives
have more similar traits than expected by chance.
Phylogeny-based trait prediction procedures (PTP
hereafter) in microbes have been mainly performed
under the phylogenetic generalized least squares
framework (Martins and Hansen, 1997; Garland and
Ives, 2000). Specifically, the trait value (for continuous
traits) or state (for binary traits) of the focal species
have been reconstructed through ancestral state
reconstructions after rerooting the phylogeny at the
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most recent common ancestor of the taxon with
unobserved trait and the rest of the tree (Kembel
et al., 2012). The accuracy of PTP methods has been
typically assessed under ‘macrobial’ scenarios con-
taining phylogenies of moderate size, with low-to-
medium proportion of species with unknown traits
and significant phylogenetic signals. For example,
Fagan et al. (2013) predicted population growth rates
of mammals in phylogenies of 42–65 species contain-
ing 54–64% of unknowns and a significant phyloge-
netic signal (Blomberg et al., 2003; Blomberg's K)
ranging from 0.68 to 1.42. However, the current
microbial scenarios derived from high-throughput
sequencing projects face large-sized phylogenies (hun-
dreds to thousands tips) with a high number of species
with unknown traits and varying phylogenetic signals
jeopardizing the applicability of PTP methods
(Zaneveld and Thurber, 2014).

The extent to which phylogeny reflects phenotype
is strongly dependent on the degree of conservatism
with which the focal trait has evolved. For instance,
complex traits that involve many genes (for example,
photosynthesis or methanogenesis) show higher
conservatism than simpler traits, such as the con-
sumption of a specific carbon source (Martiny et al.,
2013). Furthermore, certain traits such as those
related to genes encoding antibiotic or metal resis-
tance are particularly prone to be horizontally
transferred (Bruins et al., 2000), a process that can
blur their phylogenetic signal. Therefore, if phylo-
genetic relatedness is to be used to infer the
phenotype, the phylogenetic conservatism of the
target trait needs to be quantified in every case.

Altogether, the abovementioned observations indi-
cate that the possibility to estimate phenotypes from
phylogenies depends on the amount of phylogenetic
and phenotypic information available to predict the
unobserved trait values. Here we provide a simulation
exercise to test the accuracy of the most widely used
PTP method in microbial ecology to predict contin-
uous trait values and binary trait states of extant taxa
with different amount of phenotypic and phylogenetic
information. We simulated several situations faced by
microbial ecologists, including phylogenies of differ-
ent sizes in which a small (P=0.3), medium (P=0.6)
or large (P=0.9) proportion of species have unknown
trait values. The correlations between the actual and
the predicted trait values were obtained for characters
evolved under different degree of conservatism.
Finally, we put these values in the context of the
phylogenetic signals described in the literature for
different continuous and binary microbial traits and
provide some recommendations for future analyses
aimed to predict microbial traits with the help of the
phylogenetic information.

Materials and methods
Simulations of phylogeny-based trait predictions
The accuracy of trait predictions under different
scenarios were studied following four sequential

steps: (i) simulating trait evolution in a phylogenetic
tree, (ii) removing trait values from a number of
species in the tree, (iii) reconstructing the trait values
in the species previously removed, and (iv) compar-
ing the actual with the predicted trait values.

Five hundred trees for each combination of trait
type (continuous and binary) × number of species
(100 and 1000) ×proportion of unknown unobserved
traits of species in the phylogeny (30, 60 and 100%)
were generated by simulating stochastic pure birth
trees with the pbtree command in the phytools
package for R (Revell, 2012). Pure-birth has been
shown to be a convenient model describing the
evolution of bacterial lineages (Lorén et al., 2014).

The evolution of continuous traits with different
strength of phylogenetic signal was simulated in the
phylogenetic trees generated above. A phylogenetic
signal equalling the evolution under a Brownian
Motion (BM) expectation was obtained with the
fastBM function in the phytools package. Phylo-
genetic signals departing from BM were obtained by
adding increased amounts of random noise to the
trait vector generated by fastBM. Random noise was
generated through a normal distribution with mean=
0 and different values of s.d. Large s.d. values
increase random noise and reduce the phylogenetic
signal of the trait. To obtain phylogenetic signals
higher than the BM expectation, we used the high-
signal-trait R code developed by Steve Kembel
(https://gist.github.com/skembel/8523702; accessed
14 April 2015). This code generates a highly
conserved trait by scaling phylogeny branch lengths
with a delta time-dependent model of trait evolution
(Pagel, 1999). Slow trait evolution, and therefore
high phylogenetic signal, is obtained when delta
values are o1. Phylogenetic signals of continuous
traits were calculated with Blomberg's K statistic
(Blomberg et al., 2003) in the picante package.
This test compares the variance of the phylogeneti-
cally independent contrast of the study trait against
those obtained with data randomly reshuffled in the
phylogeny. It quantifies the phylogenetic signal in
the interval (0, ∞) indicating whether the evolution
of a trait (a) does not show a significant signal (K=0);
(b) is more conserved than expected by chance
(K40); (c) is less conserved than expected under BM
(0oKo1), (d) is as conserved as expected under BM
(K=1) or (e) is more conserved than expected under
BM (K41).

The evolution of binary traits along the phylo-
genetic trees was simulated through a Markovian
model where the transition probabilities between the
states of the trait are calculated for each branch. This
procedure was run with the help of the rTraitDisc
function in the ape package for R (Paradis et al.,
2004). Different phylogenetic signal strengths were
obtained by altering the transition probabilities
between states. The high-signal-trait R code was also
used to generate binary traits with high phylogenetic
signals. Phylogenetic signal of binary traits was
calculated with the phylo.D algorithm in the caper
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package (Orme et al., 2013). This metrics compares
the observed sister-clade differences in the study
trait against those expected for a random phyloge-
netic pattern. It was developed by Fritz and Purvis
(2010) to calculate the strength of the phylogenetic
signal in binary traits and ranges within the interval
(−∞, ∞), with low values indicating trait conserva-
tism. However, for comparative purposes with
Blomberg's K statistic, we transformed the D value
into −D+1 to indicate whether the evolution of a trait
(a) does not show a significant signal (−D+1=0); (b)
is more conserved than expected by chance (−D
+140); (c) is less conserved than expected under BM
(0o−D+1o1), (d) is as conserved as expected under
BM (−D+1=1) or (e) is more conserved than
expected under BM (−D+141).

Once we had the traits evolved onto the phyloge-
netic trees, we randomly removed the trait states of a
different proportion of species (30, 60 and 90%) in
the trees. To account for the closeness of these
removed species to the nearest relative with known
traits, we calculated their mean nearest neighbour
phylogenetic distance (MNND). We subsequently
reconstructed these missing traits with the help of
the functions phyEstimate for continuous traits and
phyEstimateDisc for binary traits in the picante
package for R (Kembel et al., 2010). These functions
use phylogenetic ancestral state estimation to infer
trait values for novel taxa on a phylogenetic tree by
rerooting the tree on the parent edge for the node to
be predicted (Kembel et al., 2012). Finally, the
accuracy of trait reconstructions was obtained by
correlating the predicted values obtained with these
algorithms with the actual values of the traits.
Pearson correlations were used for continuous traits
and Spearman rank correlations for binary traits.

To mimic a more realistic situation where the
availability of microbial data are clustered around
particular groups of interest (that is, human patho-
gens or organisms of biotechnological interest), we
also simulated several scenarios where species
with unknown traits were not randomly distributed
in the phylogeny but clustered within certain clades.
We performed the same procedure as described
above but pruning the desired percentage of tips (30,
60 or 90%) within particular clades instead of
randomly pruning across clades. These clades were
detected with the help of the getCladesofSize
command in the phytools package for R (Revell,
2012). This function gets all subtrees that cannot be
further subdivided into two reciprocally monophy-
letic subtrees of size higher than a given clade size.
We set to five the clade size, producing extremely
clustered pruning. PTP was subsequently performed
for traits evolved within the range of phylogenetic
signals for bacterial and archaeal traits observed
in the literature, as explained below.

To evaluate the factors affecting the accuracy of
trait prediction in our simulations, we fitted a linear
model with the correlation between predicted and
actual trait values as the dependent variable and

phylogenetic signal, number of species in the
phylogeny, the proportion of unknown species as
independent variables and MNND. The phylogenetic
signal (both K and −D+1) were log-transformed to
account for the non-linear relationship with the
dependent variable.

Phylogenetic signals of Bacteria and Archaea
The search of studies quantifying phylogenetic
signals of microbial traits was performed by using a
combination of the keywords ‘phylogenetic signal’
and ‘bacteria’ and/or ‘archaea’ in Web of Science
and Google Scholar until February 2015. Very few
studies were found and then we enlarged our
database by calculating phylogenetic signals when
trait information was provided at the strain or
species level. In cases where the tree reconstructing
the phylogenetic relationships among species was
not given, we assumed the topology of the Silva tree
(Release 119, Quast et al., 2013). In brief, we
exported the guide tree containing 4125 000
sequences of cultured organisms with the ARB
software package (Ludwig et al., 2004). We randomly
removed duplicate names (that is, sequences belong-
ing to the same organism) from the guide tree and
further pruned it to obtain smaller trees containing
the set of organisms for which trait information
was available in each case using the ape package for
R (Paradis et al., 2004). These phylogenetic trees and
the corresponding trait data are provided in
Supplementary Information S1 as an RData object.

We also computed the phylogenetic depth at
which binary traits were conserved with the help
of the consenTrait index (Martiny et al., 2013).
This index determines the mean depth of clades
containing 490% of species sharing a trait.

Results

Simulations of phylogeny-based trait predictions
When continuous traits were evolved in the simu-
lated phylogenetic trees, the correlation between the
predicted and the actual trait values increased in a
non-linear manner with the phylogenetic signal
of the trait, measured as Blomberg's K (Figure 1a).
The accuracy of trait prediction increased very fast
from low (K~0.1) to medium (K~0.5) phylogenetic
signals and tended to stabilize around the phyloge-
netic signal equalling the BM expectation (K=1). For
binary traits, the correlation between the predicted
and the actual trait states increased linearly with the
phylogenetic signal of the trait, measured as −D+1,
with the exception of the best scenario (1000 species
and only 30% of unknowns) where a non-linear
trend appeared (Figure 1b).

The accuracy of the predictions decreased with
the proportion of species with unknown trait values.
For example, in small phylogenies (N=100), the
expected correlation between the actual and the
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reconstructed continuous trait values under BM (that
is, K=1; vertical dotted lines in Figure 1a, upper
panel), was 0.88, 0.80 and 0.57 for the scenarios
where 30, 60 and 90% of the species had unknown
trait values, respectively. Similarly, for binary traits
the correlation between the predicted and the actual
trait states under BM (that is, −D+1=1; vertical
dotted lines in Figure 1b, upper panel) was 0.58, 0.48
and 0.29 for the scenarios with 30, 60 and 90% of
unknowns, respectively. The uncertainty associated
with this relationship increased with the proportion
of species whose traits were unknown, as shown by
the large scattering and the wider prediction inter-
vals in the plots with high proportion of species with
unknown traits (Figure 1). The same trends were
observed with large phylogenies (N=1000), although
the predictions under BM were more accurate as

shown by the higher correlations between actual and
reconstructed states (continuous traits: 0.92, 0.89
and 0.77 (Figure 1a lower panel); binary traits: 0.65,
0.57 and 0.41 (Figure 1b lower panel) for the
scenarios where 30, 60 and 90% of the species had
unknown traits, respectively) and the narrower
prediction intervals.

Taking together all the factors, the accuracy of trait
prediction significantly increased with the phyloge-
netic signal and the number of species in the
phylogeny and decreased with the percentage of
unknown species and MNND (Table 1). The negative
sign of MNND in the model indicates that the lower
the distance the higher the accuracy of trait predic-
tion. Altogether, these four variables explained 63%
and 59% of the variation in the accuracy of the trait
prediction in continuous and binary traits,

Figure 1 Accuracy of the PTP method for (a) continuous and (b) binary traits evolved in simulated phylogenetic trees with varying
numbers of species in the tree (100, 1000) and proportions of unknown species (30, 60, 90%). The magnitude of the phylogenetic signal
increases towards the positive pole of both statistics (K and −D+1). Solid and dashed lines represent the regression slope and prediction
intervals. Dotted lines indicate phylogenetic signals equalling a BM expectation.
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respectively (Table 1). Phylogenetic signals and
number of species yielded the highest contribu-
tions to the total variation in the model while
the proportion of unknowns and MNND explained
a very low percentage of variance. However,
MNND may become relevant in other scenarios
where species with unknown traits are not
randomly distributed but extremely clumped in
the phylogeny, as will be shown at the end of the
following section.

Phylogenetic signals of Bacteria and Archaea
Our data set contained phylogenetic signals for 990
microbial traits compiled from the literature, most of
which (91%) were binary traits (Supplementary
Information S2 and S3). A total 90% of all binary
traits described molecular functions, specifically the
presence or absence of a gene or a set of genes
involved in biochemical pathways. The remaining
10% described phenotypic traits mostly related
to tolerance to abiotic conditions, ecological interac-
tions and consumption of specific organic
substances (Supplementary Information S2). A total

61% of the continuous traits were related to genomic
characteristics, such as GC content, genome size or
copy numbers of specific genes, while 39% were
phenotypic traits related to cellular features,
response to the environment and growth rate
(Supplementary Information S3). Phylogenetic sig-
nals in the literature were calculated at different
taxonomic levels. Most study cases (86%) targeted
simultaneously two domains (Bacteria and Archaea),
while the rest were computed for the bacterial
domain (9%), a single phylum (4%) or a functional
group (1%).

Binary microbial traits showed a mean phylo-
genetic signal of −D+1=0.93± 0.01 (Figure 2a). A
total 98% of these signals (878 out of 899) were
significant indicating trait conservatism. Most of the
traits were conserved at very shallow clade depths
(Supplementary Information S2). The mean phylo-
genetic signal of continuous microbial traits was
K=0.16 ± 0.59 (Figure 2b). Seventy-four percent
(67 out of 91) of these traits showed significant
phylogenetic signals. Taking the average, phylo-
genetic signal of continuous traits compiled from
the literature as a reference (K=0.16) and according

Table 1 Linear model fits to explain the correlation between predicted and actual continuous (top panel) and binary (bottom panel) trait
values as a function of different variables in the simulated phylogenetic trees

Estimate ± s.e. t Variance explained

Continuous traits
(Intercept) 9.0E-01±7.3E-03 122.9*
log(phylogenetic signal) 1.1E-01±1.9E-03 57.4* 40.6%
Proportion of unknown species −1.2E-01±2.3E-02 −5.1* 0.32%
Number of species 2.2E-04±5.4E-06 40.4* 20.2%
MNND −7.3E-02±5.9E-03 −12.3* 1.9%

Binary traits
(Intercept) 1.0e+00±1.2E-02 79.1*
log(phylogenetic signal) 7.1e-01±1.1E-02 63.8* 55.5%
Proportion of unknown species −1.5e-01±2.6E-02 −5.9* 0.5%
Number of species 9.5e-05±7.6E-06 12.5* 2.1%
MNND −6.4e-02±7.3E-03 −9.08* 1.1%

Abbreviation: MNND, mean distance of the species with unknown traits to their nearest relatives. *Po0.001.

Figure 2 Phylogenetic signals of 990 microbial (a) binary and (b) continuous traits compiled from the literature. The magnitude of the
phylogenetic signal increases towards the positive pole of both statistics (−D+1 and K). Boxplots indicate average and s.d. values. Dashed
lines indicate phylogenetic signals equalling a BM expectation. The signals of three binary traits with –D+1⩾3 and one continuous trait
with K45 were not included for clarity.
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to our simulations PTP would perform well in the
best scenario of 1000 species and 30% unknowns (r
ranging from 0.70 to 0.87) but not in the scenario
with limited information (100 species and 90%
unknowns; r from − 0.12 to 0.66; Figure 1a). Simi-
larly, for binary traits, whose mean phylogenetic
signal shown by microbial traits was −D+1=0.93,
predictions would be better for scenarios with more
information (that is, 1000 species and 30%
unknowns; r from 0.38 to 0.84) than for scenarios
with limited information (that is, 100 species and
90% unknowns; r from −0.08 to 0.62; Figure 1b).
PTP would be recommendable for continuous traits
with phylogenetic signals K⩾0.4 (for example, for
K=0.4, r ranged from 0.78 to 0.97 for 1000 species
and 30% unknowns; Figure 1a). Reaching similar
predictions with binary traits would require phylo-
genetic signals of –D+1⩾1.14 (for example, for
–D+1=1.14, r ranged from 0.52 to 0.95 for 1000
species and 30% unknowns; Figure 1b). In our data
set, these acceptable conditions would apply to 9.9%
and 8.6% of the continuous and binary traits,
respectively (Supplementary Information S2 and
S3). Fortunately, the prediction accuracy of PTP
even for a high percentage of unknowns will increase
as larger phylogenies become available as simula-
tions in trees containing up to 10 000 species show
(Supplementary Information S4).

In the extreme situation where the availability of
trait data were clustered in particular clades of the
phylogenetic tree, the accuracy of PTP was drasti-
cally reduced (Figure 3). By pruning whole clades,
the average distance of the species with unknown
traits to their nearest relatives with known traits was
greater by fourfold in our simulated trees.

Discussion

Our literature review confirms that the presence of a
phylogenetic signal in microbial traits is widespread
across the bacterial and archaeal tree of life (Martiny
et al., 2013). This observation implies that the
phylogenetic conservatism of traits is a universal
phenomenon that has been previously reported for
eukaryotes (Freckelton et al., 2002; Blomberg et al.,
2003). Comparatively, however, prokaryotes show
continuous traits with weak phylogenetic signals.
As an illustration, the average signal that we found in
the literature for continuous bacterial and archaeal
traits (K~0.11) was remarkably lower than the
average reported for plants and animals (K~0.77)
by Blomberg et al. (2003). Differences might be partly
methodological and specifically related to the taxo-
nomic breadth at which phylogenetic signals are
computed. Although in eukaryotes calculations are
performed at narrow taxonomic levels (from genus to
subphylum, Blomberg et al., 2003), the vast majority
of studies that we compiled considered a whole
domain (Bacteria) or even two domains (Bacteria and
Archaea). Working at such a broad taxonomic

resolution can decrease the magnitude of the
phylogenetic signal as microbial traits tend to be
conserved at shallower clade depths (Martiny et al.,
2013; see Supplementary Information S5 for exam-
ples with simulated and empirical data). The weaker
phylogenetic signals detected in prokaryotes com-
pared with eukaryotes can also arise from the
horizontal transfer of genes, which is a remarkable
natural source of variation (Dagan et al., 2008). This
might weaken the signal by partly shuffling the traits
in the phylogeny but does not blur it as the fixation
of horizontally transferred genes is not substantial
between phylogenetically distant microbes (Choi
and Kim, 2007). Other numerous evolutionary
processes show complex relationships with the
phylogenetic signal of traits as has been thoroughly
discussed (Revell et al., 2008). Here we rather focus
on the use of phylogenetic signal as an evolutionary
pattern that can allow predicting microbial traits
from phylogenies.

An interesting outcome of our phylogenetic signal
database is that the most conserved continuous traits
(for example, optimal pH and temperature for
growth, soil moisture niche breadth or lag time prior

Figure 3 The accuracy of PTP diminishes drastically when the
trait values of the known species are phylogenetically clustered in
both continuous (top panel) and binary (bottom panel) traits
evolved with the most frequent phylogenetic signals of bacterial
and archaeal traits. The trend was similar across all the simulated
scenarios.
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to exponential growth) are abiotic stress tolerance
and competition-related traits that can underlie
microbial community assembly (Goberna et al.,
2014). These are probably complex traits controlled
by multiple genes and their interactions. Genetically
complex traits in microbes are evolutionarily con-
served at very deep phylogenetic depths, resulting in
stronger phylogenetic signals (Martiny et al., 2013)
and consequently allowing for more accurate pre-
dictions of traits as our simulations demonstrate.
Supporting this view that genetically complex traits
are evolutionarily conserved, we found that most
of binary traits reflecting the presence or absence of
metabolic pathways are strongly conserved.

Caution is needed to reconstruct traits for most of
the microbial traits where a low phylogenetic signal
has been detected. In these cases, the question arises
whether it is convenient to use phylogeny-based trait
predictions. Our simulation results suggest that the
answer depends on three main factors other than
the magnitude of the phylogenetic signal, namely,
the number of species in the phylogeny, the propor-
tion of species with unknown trait values and the
distance of these species to their nearest neighbors
with known traits. In brief, our ability to predict
traits with phylogenies increased as traits were
phylogenetically more conserved, trees were more
populated and there was a higher proportion of
species with known trait values. The efforts
of microbial ecologists to improve the ability to
predict traits should be then addressed to enlarge the
phylogenetic tree of phenotyped Bacteria and
Archaea. For the observed phylogenetic signals of
the studied traits, phylogenies including 42000 tips
allow to reconstruct unknown traits very accurately.
These efforts to increase the phylogenetic knowledge
of traits with moderate signals, such as soil moisture
niche breath, lag time prior to exponential growth,
optimal pH for growth or salt tolerance, might push
the correlations between the observed and the actual
trait values to r=0.65–0.90. It should be also noted
that this would be the case if our phylogenetic
knowledge was randomly or evenly distributed
across the whole phylogenetic tree. However, much
of our current knowledge is clustered around
organisms of medical and biotechnological interest.
As our simulations show, under an extremely
clustered situation the accuracy of trait prediction
is drastically reduced. Although the current
situation is probably not as extreme as depicted in
our clustered scenario, it is of special importance to
extend our phenotypic knowledge across all the
clades of the phylogenetic tree guided by a
phylogenetic-diversity-driven genome sequencing
approach (Wu et al., 2009; Rinke et al., 2013; Shih
et al., 2013).

Possible biases affecting PTP, as those emerging
from taxonomic sampling bias, intraspecific varia-
bility or trait-driven diversification can be now dealt
with refined methods (Ives et al., 2007; FitzJohn
2010; FitzJohn et al., 2014), but low phylogenetic

signals seem more difficult to deal with because they
always worsen trait prediction. Unless the new
statistical models significantly improve the accuracy
of PTP at low phylogenetic signals (Guénard et al.,
2013; Elliot and Mooers, 2014; Revell, 2014), other
methods should be used instead.

Recent methods claim for the use of genomic
information to infer microbial traits that are hard to
measure (Lauro et al., 2009; Barberán et al., 2014;
Fierer et al., 2014). This method confidently assigns
traits to those sequenced microbes that are closely
related to representatives of sequenced genomes. But
how close is closely related? Again, the answer
depends on the phylogenetic conservatism of the
trait. The lower the phylogenetic signal, the closer
the sequenced representative should be. Barberán
et al. (2014) assigned genomic traits to operational
taxonomic units whose 16S rRNA sequence differed
in ⩽1% of the bases to the query genome (that is, at
⩾99% sequence identity). Such a stringent cutoff
allowed assigning traits to only 500 out of a total
124 000 sequenced operational taxonomic units.
This brute force approach will increase its efficiency
as more genomes become sequenced. But, at the
same time we massively sequence genomes we also
need to culture microbes and record traits of
ecological relevance that cannot be inferred from
genomes. The scarcity of information on direct
measures of microbial phenotypes has slowed down
the development of trait-based approaches in the
study of microbial communities. Altogether, these
findings should prompt scientists to continue phe-
notyping microbes as taxonomists have always done
to characterize the diagnostic characters. This is the
way our phylogenetic signal database may grow in
the future and, together with the PTP guidelines
provided here, facilitate ecologists to infer microbial
traits easily.
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