

Biocompatible polymer/perovskite nanocrystals composites for sensing applications

Eduardo Aznar-Gadea, Pedro J. Rodríguez-Cantó, Juan P. Martínez-Pastor, Rafael Abargues

¹ Institut de Ciència dels Materials, Universitat de València, P.O. Box 22085, 46980 Paterna, Spain

*E-mail: <u>azgae@uv.es</u>

Abstract

In this work, we have developed a photoluminescent chemosensor based on a Molecularly Imprinted Polymer nanocomposite of CsPbBr3 PVKs embedded in a polymer for the selective detection of explosive or explosive-like molecules. The sensor is based on homogeneous and transparent thin films of CsPbBr3 PVKs embedded in polycaprolactone (PCL) as a polymer host matrix and 3-NT as a template. The sensor fabrication is performed by spin-coating. We evaluate the sensing capability of the nanocomposites by exposing the patterns to vapours of some high explosive or explosive-like molecules. Additionally, two different molecules such as 2-mercaptoethanol (MET) and ethylenediamine (EDA) are also tested for comparison. The change in intensity and response times for PCL-PVK MIP and NIP nanocomposites are quite varied depending upon the analyte to which it is exposed. The sensitivity of the sensor was improved by using the PCL-PVK MIP sensor.

Background

Sensor Fabrication

Chemical sensors based on metal halide perovskites have attracted intense interest because of their excellent optical electronic, high absorption coefficients, high quantum emission efficiencies, tunable properties, and solution processability properties [1].

The sensing mechanism of the CsPbBr₃ PVK sensor is based on the changes of the chemical composition of their environment. Possible sensing mechanisms include doping, gas-induced defect reparation, trap passivation and, ion-exchange [2].

Analyte interaction on PVK surface

Changes in the emission intensity

Ex-Situ Synthesis of PVK-PCL Sensor

Sensing Performance

Exposure to Analytes of interest

Analyte	PL Eff. _{MIP} (%)	PL Eff. _{NIP} (%)
3-NT	-58,05	-49,04
4-NT	-48,52	-28,02
4-NP	-25,72	-25,76
DMDNB	-32,00	-33,56
5-NI	-37,12	-30,69
1-NN	-43,89	-30,18
EDA	-99,77	-99,76
2-MET	-98,94	-95,44

The chip sensor approach exhibits very fast response (few seconds) and selectivity for nitrocontaining compounds

Reusable sensor

The analyte adsorption on the sensor surface is a reversible process

Conclusions

• This nanocomposite can form the basis of a low cost, easy-to-fabricate and portable sensing platform technology for chemo-sensing.

- \cdot CsPbBr₃ nanocomposite showed chemo-sensing performance with very short response times and high selectivity.
- PCL-PVK MIP sensor contributes to increase the sensitivity.
- Reversible explosive adsorption process allows to reuse the MIP/NIP sensor.

References

[1] E. Kymakis, A. Panagiotopoulos, M. M. Stylianakis and K. Petridis, 2D Nanomaterials for Energy Applications, 2020, 131-147
[2] Z. Zhu, Q. Sun, Z. Zhang, J. Die, G. Xing, S. Li, X. Huang and W. Huang, J. Mater. Chem C, 2018, 6, 10121-10137
Aknowlegments
NATO Project SPS G5361