Comparative study of the high-pressure behavior of ZnV₂O₆, Zn₂V₂O₇, and Zn₃V₂O₆

D. Díaz-Anichtchenko^a, D. Santamaria-Perez^a, T. Marqueño^a, J. Pellicer-Porres^a, J. Ruiz-Fuertes^b, R. Ribes^a, J. Ibañez^c, S.N. Achary^d, C. Popescu^e, D. Errandonea^a

^a Departamento de Física Aplicada-ICMUV, Universidad de Valencia, Dr. Moliner 50, Burjassot, 46100, Valencia, Spain

- ^b DCITIMAC, MALTA Consolider Team, Universidad de Cantabria, 39005, Santander, Spain
- ^c Institute of Earth Sciences Jaume Almera, MALTA Consolider Team, CSIC, 08028, Barcelona, Spain
- ^d Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- ^e CELLS-ALBA Synchrotron Light Facility, Cerdanyola, 08290, Barcelona, Spain

We report a study of the high-pressure structural behavior of ZnV_2O_6 , $Zn_2V_2O_7$, and $Zn_3V_2O_8$, which has been explored by means of synchrotron powder x-ray diffraction. We found that ZnV_2O_6 and $Zn_3V_2O_8$ remain in the ambient-pressure structure up to 15 GPa. In contrast, in the same pressure range, $Zn_2V_2O_7$ undergoes three phase transitions at 0.7, 3.0, and 10.8 GPa, respectively. Possible crystal structures for the first and second high-pressure phases are proposed. Reasons for the distinctive behavior of $Zn_2V_2O_7$ are discussed. The compressibility of the different polymorphs has been determined. The response to pressure is found to be anisotropic in all the considered compounds and the room-temperature equations of

state have been determined. The bulk moduli of ZnV_2O_6 (129(2) GPa) and $Zn_3V_2O_8$ (120(2) GPa) are consistent with having a structural framework composed of compressible ZnO_6 octahedra and uncompressible VO4 tetrahedra. In contrast, $Zn_2V_2O_7$ is highly compressible with a bulk modulus of 58(9) GPa, which is almost half of the bulk modulus of the other two vanadates. The large compressibility of $Zn_2V_2O_7$ and its sequence of structural transitions are related to the fact that this material is less dense than the other zinc vanadates and to the penta-coordination of Zn atoms by oxygen atoms in $Zn_2V_2O_7$. A comparison to the high-pressure behavior of related compounds is presented.

- Third-order Birch-Murnaghan equation of state from ZnV_2O_6 and $Zn_3V_2O_8$, respectively $V_0 = 200.16(6) \text{ Å}^3$, $K_0 = 129(2)$ GPa, K_0 '= 4.1(3) and $V_0 = 585.0(4) \text{ Å}^3$, $K_0 = 115(2)$ GPa, K_0 '= 5.1(6).
- The pressure dependence for unit-cell parameters is anisotropic for both. Respectively λ_1 =4.59(5) 10⁻³ GPa⁻¹, λ_2 =1.29(4) 10⁻³ GPa⁻¹, λ_3 =0.39(1) 10⁻³ GPa⁻¹ and λ_1 =2.5(1) 10⁻³ GPa⁻¹, λ_2 =2.4(1) 10⁻³ GPa⁻¹, λ_3 =1.4(1) 10⁻³ GPa⁻¹.
- ZnV₂O₆: Octhaedral chains Zn-O distances: 1.981 Å x 2 (apical) and 2.244 Å x 4 (equatorial) and tetrahedral chains V-O distances: 1.659 Å, 1.681 Å, and 1.856 Å x 2.

 Zn₃V₂O₈: Close packing arrangement of O atoms. Zn atoms occupy octahedral sites and the V atoms occupy tetrahedral positions.

- Second-order Birch-Murnaghan equation of state from $Zn_3V_2O_8$, $V_0 = 581.4(6)$ Å³, $K_0 = 58(2)$ GPa. The high-pressure phase have $V_0 = 269.6(6)$ Å³, $K_0 = 151(4)$ GPa.
- Zn and five O form chains of distorted trigonal bipyramids that share edges along the [110] direction. V atoms are four coordinated and each pair of [VO4] slightly distorted tetrahedra is linked by a common O atom.
- We observe three different phase transition at 1.1 GPa, 3.0GPa and 10.8 GPa.

Acknowledgements:

Financial support given by the Spanish Ministry of Science, Innovation and Universities under Grant Nos. PID2019-106383GB-C41 and RED2018-102612-T (MALTA Consolider-Team) and by Generalitat Valenciana under Grant Prometeo/2018/123 (EFIMAT).

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Proyecto EFIMAT PROMETEO 2018 / 123

