Precise Characterization of the Rich Structural Landscape Induced by Pressure in Multifunctional FeVO₄

J. Gonzalez-Platas¹, S. Lopez-Moreno², E. Bandiello³, M. Bettinelli⁴, <u>D. Errandonea³</u>

¹Depto. de Física, Inst. Univ. de Estudios Avanzados en Física Atómica,Molecular y Fotónica (IUDEA), and MALTA ConsoliderTeam, Univ. de La Laguna, La Laguna, Tenerife E-38206, Spain ²CONACYT, Division de Materiales Avanzados, Instituto Potosino de Investigacioón Científica y Tecnológica (IPICYT), 78216, Mexico ³Departamento de Física Aplicada - ICMUV - MALTA Consolider Team, Universitat de València, c/Dr. Moliner 50, 46100 Burjassot (Valencia), Spain ⁴Luminescent Materials Laboratory,Department of Biotechnology, University of Verona and INSTM, UdR Verona, Verona, Verona 37134, Italy

We studied the HP behavior of FeVO₄ by means of single-crystal XRD and DFT calculations. We found that the structural sequence of FeVO₄ is different than previously assumed. In particular, we discovered a new HP phase at 2.11(4) GPa (FeVO₄-I') which was not detected by previous studies. We determined that FeVO₄, under compression (at RT) first transforms at 2.11(4) GPa from the ambient-pressure triclinic structure (FeVO₄-I) to a second previously-unknown triclinic structure (FeVO₄-I'), which experiences a subsequent phase transition at 4.80(4) GPa to a monoclinic structure (FeVO₄-II'). Single-crystal XRD has enabled these novel findings and s an accurate determination of the crystal structure of HP FeVO₄ polymorphs. The crystal structure of all polymorphs was accurately solved at all measured pressures. The pressure dependence of the unit-cell parameters, RT EOS, and polyhedral coordination were obtained. The structural phase transition detected at 2.11(4) GPa implies abrupt coordination modifications. DFT calculations support the conclusions extracted from experiments.

2. Crystal structure of FeVO₄-I (top), HP FeVO₄-I' (center), and HP FeVO₄-II' (bottom). Fe (V) coordination polyhedra are shown in brown (red). Red spheres are oxygen atoms.

3. Pressure dependence of unit-cell parameters of $FeVO_4$ -I and $FeVO_4$ -I'. Symbols are from experiments and lines are linear fits. The inset shows the relative change of unit-cell parameters with pressure in $FeVO_4$ -I. We used red color for c/c_0 , white color for b/b_0 , and black color for a/a_0 .

pressure-temperature conditions where each polymorph has been found. In the top, we show the results of ex-situ HP-HT studies. The red lines in the center are from previous RT-HP experiments and the black lines in the bottom are from the present study. Pressure is indicated at the bottom of the figure.

105

4. Pressure dependence of the unit-cell volume of the three polymorphs of $FeVO_4$. $FeVO_4$ -I is represented by squares; $FeVO_4$ -I' by circles, and $FeVO_4$ -II' by diamonds. The red solid lines are the EOSs here determined for $FeVO_4$ -I and $FeVO_4$ -I'. The dashed black lines are the EOSs determined from powder XRD for $FeVO_4$ -II'.

Conclusions

- Using single-crystal XRD and DFT calculations we have shown that the HP structural behavior of multifunctional FeVO₄ is more complex than believed before.
- We found evidence of the existence of a new triclinic polymorph (FeVO₄-I') which is stable from 2.11(4) GPa to 4.37(4) GPa. Its crystal structure has been solved as well as the structure of FeVO₄-II', a monoclinic polymorph found beyond 4.80(4).
- Room-temperature equations of state have been determined for the different polymorphs (see Table).
- The HP phases are considerably less compressible than the low-pressure phase (see Table).
- The transition from $FeVO_4$ -I to the new HP FeVO_4-I' phase causes a large volume collapse and a change in the cationic coordination.
- The structural changes associated with the phase transition at 2.11(4) GPa cause a color change of FeVO₄, which suggests a collapse of the band gap.

J. Gonzalez-Platas et al. Inorg. Chem. 59, 6623 (2020).

Acknowledgements:

The authors thank the European Synchrotron Radiation Facility and especially the beamline ID27, for the beam time allocated. D.E. acknowledges the financial support from the Spanish Ministerio de Ciencia, Innovación y Universidades, the Spanish Research Agency, the Generalitat Valenciana, and the European Fund for Regional Development under Grants No. PID2019-106383GB-41, No. PGC2018-097520-A-100, and No. Prometeo/2018/123 (EFIMAT). S. L.-M. thanks CONACYT of México for financial support through the program "Catedras para Jóvenes Investigadores". S. L.-M. also acknowledges the computing time granted by IPICYT Supercomputing National Center for Education & Research, grant TKII-R2020-SLM1. The support of the FUR funding scheme (University of Verona) is also acknowledged.

