

Escola Tècnica Superior d'Enginyeria

Departament d´Enginyeria Electrònica

Intelligent Data Analysis Laboratory http://idal.uv.es

Fundamentos físicos de los Rayos X

Sistemas e Imágenes Médicas

Máster en Ingeniería Biomédica

- Descripción
- Producción de los Rayos X
- Interacción de los Rayos X con la materia
- Dosis y riesgo

- Los Rayos X son una forma de radiación electromagnética ionizante.
- La radiación electromagnética tiene comportamientos a la vez de partícula y de onda.
 - Como partícula, la radiación EM se representa como un flujo de paquetes o cuántos de energía –llamados fotones– que viajan en línea recta.
 - Como onda, la radiación EM se representa como dos campos -eléctrico y magnético- trasversales que varían sinusoidalmente.

- Las ondas electromagnéticas viajan a una velocidad
 c con una frecuencia de oscilación f.
 - Cada ciclo de onda atraviesan una distancia λ.

espectro de radiación electromagnética

 La energía de una onda EM depende de su longitud de onda λ:

 $E = h \cdot f$, $h = 4.1357 \cdot 10^{-18} \text{ keV} \cdot \text{s} (6.6261 \cdot 10^{-34} \text{ m}^2 \cdot \text{kg} / \text{s})$

 Por ejemplo, un fotón de rayos X de λ = 0.1nm tiene una energía de 12,4keV. En cambio, un fotón de luz azul (λ = 400nm) tiene una energía de unos 3eV.

Energía de ionización			
H	12.6 keV		
С	9.3 keV		
12	30 eV		

Estructura del átomo

- Un átomo está formado por un núcleo atómico rodeado de una nube de electrones.
 - El núcleo está compuesto por protones y neutrones.
 - El número de protones o número atómico, Z, determina su elemento químico.
 - El número de neutrones determina su isótopo.
 - La suma del número de protones y neutrones es el número másico del átomo, A.
 - Los electrones orbitan alrededor del núcleo atómico.
 - La fuerza que mantiene unido cada e- al núcleo se denomina energía de enlace (*binding energy*)

Estructura del átomo

Estructura del átomo

Capa de electrones:

Diagnóstico por la imagen [SIM – Máster IB]

ICITER DI

Producción de rayos X

 Se producen al colisionar partículas cargadas (electrones) con la materia:

aver 5

Producción de rayos X

- Los rayos X se producen al interaccionar los e- con la materia mediante dos mecanismos:
 - Radiación de frenado (bremstrahlung)
 - Radiación característica

Radiación de frenado (bremstrahlung)

THEFT'S

Radiación característica

Interacciones de los e⁻ con la materia

Espectro de emisión de la radiación de frenado

Espectro de emisión total

NIGHT 2

 Ejemplo: espectro de emisión de un tubo de Tungsteno excitado a 100 keV

IONALS

 Ejemplo: espectro de emisión de un tubo de Molibdeno (mamografía)

IONALS

- Eficiencia de la producción de Rayos X:
 - Aproximadamente sólo un 1% de la E. cinética se convierte en Rayos X.
 - En el rango de 60-120keV, la intensidad emitida es aproximadamente proporcional a kV² x mA.
 - La radiación de frenado es proporcional a kV x Z.

El tubo de rayos X

THEFT

- Cuando un haz de Rayos X atraviesa la materia, a cada fotón le puede ocurrir uno de los siguientes casos:
 - Transmisión: el fotón atraviesa la materia como radiación directa.
 - Absorción: el fotón transfiere toda su energía a la materia y desaparece.
 - Dispersión: el fotón se desvía de dirección, pudiendo perder parte de su energía, y saliendo del material como radiación dispersa (scattered) o secundaria.

Diagnóstico por la imagen [SIM – Máster IB]

- Tipos de interacción de los Rayos X con la materia:
 - Dispersión Rayleigh
 - Efecto fotoeléctrico
 - Dispersión Compton
 - Producción de pares

Dispersión Rayleigh (coherente)

Efecto fotoeléctrico

Efecto fotoeléctrico

Coeficiente de atenuación debido al efecto fotoeléctrico en función de la energía del haz

Dispersión o efecto Compton

Dispersión o efecto Compton

Producción de pares

Porcentaje de absorción debido a efecto fotoeléctrico frente a Compton en función de la energía del haz para distintos materiales

$$\frac{dI}{I(\eta)} = -\mu d\eta$$
$$I(\eta) = I_{0}e^{-\mu\eta}$$

0

μ: coeficiente de atenuación lineal (1/cm)

 Si se normaliza μ respecto a la densidad del tejido ρ, se obtiene el coeficiente de atenuación másico:

coef. de atenuación másico para el agua

 $\kappa = \mu / \rho$

Diagnóstico por la imagen [SIM – Máster IB]

- La atenuación de los rayos X también se puede caracterizar mediante el half-value layer (HVL):
 - Grosor de tejido que reduce la intensidad del haz de RX a la mitad.
 - Está relacionado con µ por:

Dependencias de la atenuación de los RX

- El ojo humano no detecta los rayos X.
- Hay que convertir la distribución de los rayos X transmitidos en una forma "visible" mediante:
 - Exposición de una película fotográfica sensible a los RX.
 - Estimación de la densidad de fotones midiendo la ionización de una cámara de gas.
 - Conversión de los fotones de RX en luz visible.
 - Utilización de un detector de estado sólido que genere una corriente proporcional a la densidad de fotones incidente.

- Mejora del contraste:
 - para baja energía (kV pequeño):

Domina efecto fotoeléctrico contraste proporcional a la diferencia entre Z

para alta energía (kV grande):

Domina dispersión Compton is contraste proporcional a la diferencia entre p

Endurecimiento del haz de RX

los rayos X menos energéticos son absorbidos por los tejidos y no aportan información a la imagen VIONES SI

- Energía del haz adecuada:
 - A bajas energías predomina el efecto fotoeléctrico:
 - mayor contraste entre distintos tejidos (p. ej. hueso/músculo)
 - mayor absorción del haz (incremento de la dosis)
 - A altas energías predomina el efecto Compton:
 - menor contraste entre tejidos
 - mayor dispersión (emborronamiento de la imagen)

No hay un valor óptimo, hay que llegar a un compromiso en función del grosor a observar

Escola Tècnica Superior d'Enginyeria

Departament d´Enginyeria Electrònica

Intelligent Data Analysis Laboratory http://idal.uv.es

Dosis y riesgo Imágenes por rayos X

Exposición radiológica

- La exposición es la magnitud física que caracteriza el efecto de las radiaciones ionizantes.
- Se mide como la cantidad de carga eléctrica que produce un haz en una unidad de masa de aire seco en condiciones estándar de presión y temperatura (1 atm y 20°C).
- Unidades:
 - roentgens [R] (unidad tradicional)
 - [C·Kg⁻¹] (unidad del S.I.)

 $1 \text{ R} = 2.58 \cdot 10^{-4} \text{ C} \cdot \text{Kg}^{-1}$

- La dosis absorbida mide la cantidad de radiación ionizante recibida por un material.
- Se mide como la energía depositada en un medio por unidad de masa.
- Unidades:

gray [Gy] (unidad del S.I.)

 1 Gy = 1 J·kg⁻¹ de material

 rad (radiation absorbed dose, unidad tradicional)

 1 rad = 0.01 Gy

Kerma

- El kerma (Kinetic Energy Released per unit MAss) mide la energía transferida por la radiación ionizante a los electrones del material irradiado.
 - Para radiaciones en el rango del diagnóstico médico (por debajo de 1MeV), dosis absorbida y kerma son equivalentes.
 - Su unidad es J/Kg (= Gy, unidad de dosis absorbida)
 - El Air kerma equivale a la dosis absorbida por el aire.

Relación entre exposición y dosis

El ratio, f-factor, entre dosis absorbida (rad) y exposición (R) depende del tipo de tejido y la energía de la radiación

Dosis de radiación equivalente

- La dosis equivalente tiene en cuenta el riesgo de daño producido en los tejidos humanos según el tipo de radiación.
- Este riesgo se calcula multiplicando cada tipo de radiación por una constante específica w_R.
- Unidades:
 - sievert [Sv] (unidades S.I.)

 $1 \operatorname{Sv} = 1 \operatorname{J} \cdot \operatorname{Kg}^{-1} \cdot w_R$

rem (unidades tradicionales)

1 rem = 0.01 Sv

Dosis de radiación equivalente

La constante o factor de peso de la radiación w_R es:

Radiation type and energy range		Radiation weighting factor <i>w</i> _R
Photons (all energies)		1
Electrons und muons (all energies)		1
Neutrons	$E < 10 \mathrm{keV}$	5
	$10 \mathrm{keV} < E \le 100 \mathrm{keV}$	10
	$100 \mathrm{keV} < E \leq 2 \mathrm{MeV}$	20
	$2 \mathrm{MeV} < E \leq 20 \mathrm{MeV}$	10
	$E > 20 \mathrm{MeV}$	10
Protons (other than recoil protons) $E > 2 \text{ MeV}$		5
α -Particles, fission fragments, heavy nuclei		20

Diagnóstico por la imagen [SIM – Máster IB]

Cosmic radiation	200 µSv (20 mrem) over 1 year	
Natural radioactive materials (e.g., ²³⁸ U)	300 µSv (30 mrem) over 1 year	
Naturally occurring radioactive materials in	300 µSv (30 mrem) over 1 year	
the body (e.g., 40 K)		
Chest X-ray	500 µSv (50 mrem) skin dose for one X-ray	
Coronary angiogram	20 mSv (2 rem) skin dose for one	
	procedure	
Nuclear power station	<pre>< 1mSv (100 mrem) over 1 year 1 km from</pre>	
	the station	

dosis de radiación promedio para algunas situaciones tipo

Table 3.4 Typical effective dose equivalents for variousdiagnostic procedures.

Examination	Range (µSv)
Dental x-ray	10–20
Chest	10–50
Skull	100-200
Pelvis	700–1400
Abdomen	600–1700
Mammogram (each image)	1000-2000
Lumbar Spine	1300-2700
Barium meal	1900–4800
IVU (intra-venous urography)	2500-5100
Head CT scan	2000-4000
Body CT scan	5000-15000
Nuclear medicine	2000-10000

dosis de radiación promedio para algunas exploraciones médicas

NIGNES